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Abstract

Optimal solution to the energy management problem in
hybrid electric vehicles has been extensively addressed
in literature during last decade, especially with the
application of dynamic programming, Pontryagin mini-
mum principle or equivalent consumption minimization
strategy. However, most of the works consist in finding
cycle-specific optimal trajectories which are far from
being general control strategies.
The aim of this work is to derive an analytical ex-

pression, general and not cycle-specific, for the energy
management problem that summarizes the optimal con-
trols for a series hybrid electric vehicle. Starting from a
simple definition of the powertrain, an explicit formula-
tion is deducted to minimize fuel consumption based on
an analytic analysis of Pontryagin minimum principle.
Explicit expressions for control variables and costates
are provided. The result is a general control strategy
that specifies the optimal generator set usage for a given
probability distribution of expected traction demands.
This methodology is benchmarked with common meth-
ods in literature (dynamic programming and numerical
Pontryagin minimum principle) showing near identi-
cal results but with strongly reduced computational
time. The general form of this control strategy can also
be used to analyze the optimal operation range of the
engine, which could be useful for designing purposes.

Nomenclature

1 Introduction

Energy management problem (EMP) in hybrid electric
vehicles (HEV) is a common topic in optimal control
literature that has been extensively addressed during
the last decade as indicated in [1]. Several methods to
solve this problem have been proposed as [2] summa-
rizes. Despite the apparent simplicity of the formulation,
the powertrain complexity makes methods incapable of
reaching the optimal solution in a general way but de-
pendent on particular driving conditions. Accordingly,
many authors base their works on specific driving cycles,
bringing the optimal solution to best fit those particular
situations [3, 4]. However, those control strategies are

∗This work was supported by Ministerio de Economı́a y Com-

petitividad through Project TRA2016-78717-R.

Eb Internal battery energy content (stored
in the chemicals).

Eb,0 Initial internal battery energy content.
H Hamiltonian function.
J Cost index to be minimized (integration

of cost function L).
L Cost function to be minimized.
Pb Battery terminals electric power (deliv-

ered or absorbed).
Pc Battery internal power content stored

in the chemicals.
Pf Fuel power content.
Pg Electrical power delivered by the gener-

ator set.
Pm Electrical power consumed or delivered

by the traction motor.
Pf,idle Generator set fuel power consumption

at idle.
R Battery internal resistance.
Voc Battery open circuit voltage.
Ψ Terminal state constraint function.
·∗ Asterisk denotes an optimal trajectory.
ηg Generator set fuel to electricity conver-

sion efficiency.
λ(t) Costate function as defined at the Pon-

tryagin minimum principle theory.
ν Costate value (if costate is a constant

function).
ϕ Terminal state constraint function ad-

joined to the cost index.

P̂g Minimum electric power that the gener-
ator set delivers at the optimal solution.

P̂m Traction motor power threshold for gen-
erator set disconnection.

P̃m Rearranged traction motor power de-
mand trajectory, required to calculate
ν.

T̃ Total time Pm(t) remains over the

threshold P̂m.
a Linear coefficient of generator set fuel

consumption model.
f State dynamics function.
g Path constraints generic function.
SoC Battery state of charge.
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only valid for the reference driving trajectory and, con-
sequently, hard to implement in real vehicles since there
is no clue on how the optimal solution will perform on
a different route. Some examples of cycle-dependent
approaches present in literature are dynamic program-
ming (DP) [5–7], Pontryagin minimum principle (PMP)
[8–12], equivalent consumption minimization strategy
(ECMS) [13–17] or linear programming (LP) [18].

Many different approaches can be found in literature
in order to overcome the driving cycle dependency issue
and to provide an implementable control algorithm for a
real scenario. By far, PMP is the most commonly used
for that aim, and two main streams can be found in
the existing works: estimation of costate and numerical
application of plain PMP theory, and analytic derivation
of particular control rules (usually known as “operating
modes”) from the analysis of PMP necessary conditions.
For the first approach, costate estimation is done in

very different ways: extrapolating current usage of the
vehicle with a statistic analysis [18–23], using a feedback
controller that controls the costate such that battery
indicators does not violate constraints and terminal
requisites are fulfilled [24–28], assuming the driving
cycle as a Markov chain process and predicting a good
enough costate [29, 30], using information from an
existing optimal solution to the EMP (mostly from DP)
to calculate the optimal costate [12, 31, 32], correlating
the observed optimal costate with the driving cycle
characteristics [33], estimating the costate by looking
on a receding horizon prediction of driving behavior [34],
and by using previous geo-located driving information
to estimate the most probable optimal costate [35].

The second stream found their works on stating the
EMP with PMP theory and, if model is simple enough,
optimal controls can be calculated as a function of
costate. That brings what it is usually called “oper-
ating modes”: full throttle, cruising, coasting, maxi-
mum regeneration and maximum braking among others.
Once operating modes that are optimal under some as-
sumptions according to PMP theory are obtained, the
problem is reduced to finding the best combination of
those modes to minimize fuel consumption on a cy-
cle. Some works that use this philosophy are [36–38].
Also [39] shows similar concepts, but those operating
modes are not deducted from PMP formulation but by
observing PMP solutions to particular driving cycles.

Another methodology that has been used in literature
to address the EMP is stochastic dynamic programming
(SDP) [4, 40], showing promising results but demanding
computing requirements that limits its online applica-
tion.
Most of the above methods are online capable with

good performance. However, they need tuning parame-
ters (feedback controllers), sufficient amount of infor-
mation collected from previous drivings (estimation
of costate), or they reduce the EMP to the selection
of an operating mode which is only optimum under
strong simplifications. Moreover, since they are based
on numerical PMP, any change in powertrain parame-
ters (battery aging, different engine performance, etc.)
requires a complete recalibration/review of the control

strategy.

Approaching these issues, Ambühl et al. presented in
[41] a general formulation for a parallel HEV optimal
operation. That work was based on a simple parallel
HEV model expressed as a set of explicit equations.
Starting from those expressions, the optimal control
problem is stated and the ECMS and PMP methods are
applied. This lets reaching a general control law that is
expressed as a function of powertrain parameters and
boundary constraints. Several works that also follow a
similar philosophy to bring an explicit PMP solution
in the case of a fuel cell vehicle [42] or a hybrid truck
for battery life control [43].

Following the the above results, this study presents
an explicit approach to the EMP. The main contribu-
tion of this paper is the methodology to assess the EMP
in a completely analytical manner, providing explicit
expressions for both control variables and costate calcu-
lation. This brings identical results to existing optimal
methods but with a fraction of their computational
requirements. Also, the explicit dependency on pow-
ertrain parameters allows to account for any change
(battery aging, etc.) without modifying the control
strategy scheme.

This work is based on a non-time dependent HEV
model that allows to address the EMP analytically,
reaching a general expression for the optimal control
policy. This control strategy specifies the optimal gen-
erator set usage to minimize fuel consumption as a
function of physical powertrain parameters and driver
requirements (i.e. traction requirements). As long as
the HEV model is non-time dependent, traction require-
ments can be specified both as a time trajectory or as
a probability distribution of the expected traction de-
mands. The only dependency of the optimal control
policy on physical parameters allows, on the one hand
to deliver a vehicle-specific control straight from the
model which can be updated as the powertrain ages
and, on the other hand, to optimize powertrain speci-
fications for the particular use of a HEV based on its
optimal control strategy (e.g. to identify typical engine
operating zones to assist engine calibration or to fit
engine performance for a particular use).

To reach the above targets, the paper is organized
as follows: first, a model of a series HEV, the gen-
eral formulation of a PMP optimization problem and
application to the EMP are presented; following, the
analytical solution to the EMP is derived from the
aforementioned formulation; then, a case study is pre-
sented where, on the one hand the analytical solution is
benchmarked against DP and numerical PMP in terms
of fuel economy and, on the other hand, the EMP solu-
tion helps identifying the main engine operation area;
finally, results are summarized and several conclusions
are drawn.

2 Problem description

This section presents the necessary tools to approach
the EMP solution: a series HEV model, the general
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Figure 1: Series HEV powertrain layout scheme. The
color of the arrow represents the type of energy that
flows through that path: electric (blue), mechanical
(red) and chemical (brown). The power flow nomencla-
ture is shown in orange.

formulation of PMP method and its particularization
to the EMP. All these tools are strictly kept in an ana-
lytical form to reach an explicit EMP solution, avoiding
any numerical approximation.

2.1 Model

A HEV consists of two main energy sources, namely
a fuel tank and an electric energy storage system (e.g.
battery). The energy demand may be supplied by any of
those elements or split into both. In particular, a series
HEV consists of a generator set (internal combustion
engine coupled to a generator), a battery and a traction
motor. The powertrain ultimately satisfies the power
requirement with the traction electric motor so the
gross power goes through an electric bus, as opposed
to parallel architecture where power flows from the
crankshaft to the transmission and wheels.

The energy flow, as illustrated in figure 1, starts on
one hand at the tank where fuel is sent to the ICE
to be converted into mechanical energy. This feeds
the generator that powers the main electric bus. On
the other hand battery directly feeds the electric bus
(mostly through an inverter) at the expense of its in-
ternal chemical energy storage. This bus powers the
electric traction motor. During decelerations energy
regeneration is also possible inverting the path to the
battery, increasing its state of charge.

An important advantage of series architecture in mod-
eling is that, since it decouples the ICE rotational speed
from vehicle speed, it is possible to run the generator
set on any operation point regardless of the current
vehicle speed. Therefore, if emissions or engine dynam-
ics are not considered, the ICE operation range can
be collapsed to the minimum specific fuel consumption
(SFC) curve. Otherwise, full operation map must be
considered.

Following, the HEV powertrain model is described.
Note that, several simplifications are assumed in order
to provide a non-time dependent (i.e. quasi-steady)
model as stated in the introduction. A simple but
representative model will allow to address the PMP
theory explicitly.

Engine type Euro V, spark ignited
Cylinder configuration 3, in-line
Engine displacement 1.2 liter
Engine max output 60 kW
Generator type PMSM, liquid cooled
Generator max output 50 kW

Table 1: Main engine and generator specifications.

2.1.1 Generator set

This work is based on a pre-series range extender unit,
consisting of a Euro V spark ignited engine and a 50 kW
generator, whose specifications are at table 1. Figure
2 shows engine, generator and generator set test cell
steady state maps. Particularly, the right plot depicts
the operation zone resulting from the coupling of the
engine and the generator (generator set), where it may
be appreciated that the lowest fuel consumption at each
electric power output level may be approximated to a
linear function (dashed line in black). Accordingly, the
generator set is represented with a linear model:

Pf =

{
Pf,idle + aPg Pg > 0

0 Pg = 0
(1)

where Pf is the fuel power content, Pg is the electric
power the generator set delivers (the control variable in
this work), Pf,idle is the fuel power consumption when
idling, and a is a tunable coefficient. Fuel consumption
is zero when generator delivers no power since it is
considered switched off in this situation. Throughout
this work, the value of these parameters are Pf,idle = 3.2
kW and a = 3, corresponding to the black dashed line
in figure 2. This model entails a generator set efficiency
given by:

ηg =
Pg

Pf
=

Pg

Pf,idle + aPg
(2)

This value converges asymptotically to 1/a = 0.33 as
Pg increases.
As shown in figure 2, the correlation between this

linear approach and the experimental data is pretty
accurate (R2 = 0.94). Nevertheless, a more complex
model (quadratic, exponential, etc.) could be used if
necessary following the same methodology. Anyhow, it
must be remarked that, as the reader will find in the fol-
lowing sections, in order to apply explicit PMP theory,
first and second derivatives of Pf must be calculated.
For example, if a quadratic model is used in this case,
(27) has no explicit solution unless Pf,idle and a are set
to fixed values (it is a root of a third order polynomial).
Therefore, the linear model has been considered suffi-
cient for this work since there is no need to complicate
the formulation for representative results.

2.1.2 Battery

The battery model consists of an ideal voltage source
with a resistance in series. It is a quite simple approach
but pretty representative of battery behaviour in a
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Figure 2: Generator set steady state maps from test cell measuring. The left plot shows the engine fuel
consumption map (in kg/h) in terms of speed (rpm) and torque (Nm). The middle plot shows the generator
electric power output map (in kW) in terms of speed (rpm) and torque (Nm). The right plot shows the efficiency
map of the coupling of engine and generator in terms of fuel consumption (kW) and electric power output (kW);
the black dashed line is a linear model representing the maximum generator set efficiency.

HEV, as utilized in [44]. Accordingly, the chemical
power (function of the internal energy stored in the
chemicals), Pc, that the battery spends to deliver an
electric power, Pb, is:

Pc =
Voc

2R

(
Voc −

√
V 2
oc − 4RPb

)
(3)

where Voc is the open circuit voltage and R is the battery
internal resistance. Note that Pb > 0 discharges the
battery according to the sign criterion used in this
paper. The energy that remains internally stored in
the battery can be calculated from the Pc history, so
its variation comes defined as:

Ėb = Pc (4)

The total energy that remains in the battery is a mag-
nitude that quantifies the current state of the vehicle
and, therefore, it is selected as the main state in the
presented EMP.

The battery state of charge (SoC) is typically defined
as:

SoC(t) = 1−

∫ t

0
ib(t)dt

Qb,0
(5)

with Qb,0 the nominal charge of the battery. Given
that Pc = Vocib and Qb,0 = Eb,0Voc, the SoC can be
calculated from the above problem variables as:

SoC = 1−
Eb

Eb,0
(6)

with Eb,0 the nominal energy content of the battery
(5.15 MJ is used this model). Note that this expression
follows the same definition than the battery state of
energy since Voc is constant with SoC.

Additionally, since the voltage drop in the resistance
increases with power delivery, there is a maximum
amount of power that the battery can achieve, given
by:

Pb,max =
V 2

oc

4R
(7)

More detailed models such as those with variable
Voc or R as a function of Eb could be used to some
extent with similar results. However, this dependency

on Eb introduces time dependency in the model (Eb is a
function of time) which limits the explicit PMP theory
application. Particularly, as it will be introduced later
to the reader, (24) will no longer hold for a battery
model with variable Voc or R, and therefore an explicit
control cannot be calculated. However, long term effects
that introduce a drift in powertrain performance (but
which could be considered negligible during a trip) such
as battery aging could be taken into account with the
current formulation. Due to the explicit dependency
on physical parameters, an updated estimation of aged
Voc and R can be directly applied to the model and,
therefore, the explicit control strategy will immediately
account for the new specifications of the powertrain.

2.1.3 Power split

Due to the series architecture, the power split at the
powertrain must verify that:

Pb = Pm − Pg (8)

with Pm the electric power that the traction motor re-
quires which, in this work, is assumed to be a known
quantity given by the driver request (as a known tra-
jectory or as an expected probability distribution of
traction requirements). As Pm is determined, the con-
trol does not need a motor neither a vehicle model,
which are implicit on the traction requirements; these
models are only necessary for simulation. It can also be
appreciated that as Pm is given and Pg is a control vari-
able, the battery power Pb is defined by the generator
set control strategy.
The powertrain constraints include a minimum and

maximum generator set power and rotational speed.
The first is introduced by limiting the permitted range
of Pg, while the second is implicitly included in the
above fuel consumption model (it must represent a fea-
sible zone of the generator set operation map). The
battery also implies a power limitation due to its inter-
nal resistance: the voltage drop at the resistance cannot
be greater than the battery open circuit voltage, but
actually this constraint is overridden by the maximum
power the battery can deliver from (7). Finally the
traction motor specifications limit the maximum power
that might be delivered from/to the vehicle, restricting
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the maximum acceleration that can be performed in a
driving cycle.

2.2 General formulation of Pontryagin

Minimum Principle

An optimal control problem might be formally stated
as the minimization of the integral form of a certain
cost function L:

J = ϕ(x(T ), T ) +

∫ T

0

L(x(t), u(t), t)dt (9)

where x is the vector of system states and u ∈ U is
the vector of control actuations, restricted to the sub-
set of permitted actuations U . The main idea of an
optimization problem is to find the control trajectory
u(t) that minimizes J , i.e. minu{J}. ϕ is an arbitrary
function that penalizes the cost index to account for
any terminal state constraints. Instead of it, a terminal
constraint could also be stated as a hard constraint in
the form of an additional equation to the problem:

Ψ(x(T ), T ) = 0 (10)

where Ψ is another arbitrary function, similar to ϕ.
This last form is preferred for the present work since it
forces the state to adopt a particular value at t = T .

The states are driven by the dynamics of the system,
defined as a first order differential equation given by a
generic function f and with initial values x(0) = x0:

ẋ = f(x(t), u(t)) (11)

In a general form, the dynamic system is constrained
with path constraints with an arbitrary function g as
follows:

g(x(t), t) ≤ 0 (12)

which may also include both upper and lower bounds
of state variables.
The optimization problem consists in finding the

optimal control trajectory u∗(t) that satisfies the above
constraints, such that:

J(u∗(t)) ≤ J(u(t)) (13)

Unfortunately, this kind of problems are difficult to
assess in this form since it requires to evaluate the
whole time domain to find a solution u∗. In practical
applications, where the full problem is unknown at the
time of the optimization, it is not possible to evaluate
the integral form of the cost function L. However,
it is possible to adjoin the system dynamics to L by
introducing a vector of costate variables λ, avoiding the
integral form:

H(λ(t), x(t), u(t), t) =L(x(t), u(t), t)+

λ(t)f(x(t), u(t))
(14)

This construction is the Hamiltonian, as defined by
Pontryagin in its Minimum Principle (PMP) [45, 46].

The optimal solution u∗ and the corresponding optimal
trajectory of states, x∗, and costates, λ∗, must minimize
the Hamiltonian:

H(λ∗(t), x∗(t), u∗(t), t) ≤ H(λ∗(t), x∗(t), u(t), t) (15)

The PMP also gives the rest of necessary conditions
for optimality of u∗, namely the terminal constraint,
inherited from (10):

Ψ(x(T ), T ) = 0 (16)

the trajectory of the costates, also known as costate
equations:

λ̇(t) = −
∂H

∂x
(17)

and the corresponding terminal constraint for the
costates:

λ(T ) =
∂ϕ

∂x

∣∣∣∣
t=T

+ ν
∂Ψ

∂x

∣∣∣∣
t=T

(18)

where ν is a vector of scalars that must be selected in
order to satisfy (16). If x(T ) is free, λ(T ) = 0 as ϕ
and Ψ are no longer function of x. The PMP theory
gives no information on how to select the appropriate ν
value. Several iterative techniques have been proposed
in literature to approximate its value, such as shooting
method, offline tuning, or heuristics [1, 10, 24]. In
section 3.2 a different–non-iterative but direct–method
is proposed to analytically extract the optimal ν value.

2.3 Pontryagin Minimum Principle ap-

plied to the Energy Management

Problem

The HEV energy management problem consists of min-
imizing the fuel consumption during vehicle’s operation
along a driving cycle. Therefore, the cost function L
corresponds to a function of the fueling rate. Partic-
ularly, it is defined as the instantaneous fueling rate
expressed in terms of power units (to be coherent with
other magnitudes of the problem). Introducing the
piecewise expression from (1), the performance index
is:

L =

{
Pf,idle + aPg Pg > 0

0 Pg = 0
(19)

According to the proposed HEV model, the only ODE
that drives the dynamic system is the gradient in battery
energy content–other dynamic effects in the powertrain
have been neglected for simplicity and vehicle dynamics
are implicitly included in the traction requirement which
is known to the problem as it is given by the driver.
Consequently, this system is fully defined with just one
state: the energy content of the battery, Eb, given in
(4). Therefore, the system dynamics f are conducted
by:
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Ėb = f =
Voc

2R

(
Voc −

√
V 2
oc + 4R(Pg − Pm)

)
(20)

where the right side term is the internal chemical power
delivered by the battery from (3) and (8).

The Hamiltonian can be constructed with the above
expressions, so (14) is particularized as:

H =

{
H1 = Pf,idle + aPg + λ(t)Ėb Pg > 0

H2 = λ(t)Ėb Pg = 0
(21)

Additionally, a terminal constraint in battery energy
content must be introduced to avoid a trivial solution
depleting the battery. Generally, HEVs are forced to
operate in such a way that the battery charge (Eb) at
the end of the cycle keeps the same level than at the
beginning, i.e. the HEV operates in charge sustain-
ing mode. For convenience it is introduced as a hard
constraint:

Ψ = Eb(T )− Eb,0 = 0 (22)

where Eb,0 is the initial battery energy level, which is
a known quantity. Accordingly, the costate terminal
constraint from (18) is transformed into:

λ(T ) = ν
∂Ψ

∂Eb

∣∣∣∣
t=T

= ν (23)

Finally, the costate equations at (17) are particular-
ized as:

λ̇(t) = −
∂H

∂Eb
= 0 (24)

where λ̇ is zero since no term in Hamiltonian explicitly
depends on the state Eb (neither L nor f). Therefore,
λ is constant over the time and equals the unknown ν
according to (23).

Therefore, the energy management problem consists
on finding the appropriate set of control actuations
that verifies (15) for the Hamiltonian at (21). Neces-
sary conditions for optimality, (22)-(24), must be also
fulfilled.
An important remark is that, while it is pretty easy

to introduce constraints on the control set (in the form
of u ∈ U) by limiting the seeking range for (15), state
constraints are hard to include in PMP formulation, so
constraints such as (12) have been deliberately obviated.
Although usually battery energy level rarely reaches the
battery capacity limits in a charge-sustaining non-plug-
in HEV, in some situations states constraints might
be necessary to avoid boundaries violation. A typical
workaround is to define an arbitrary penalization func-
tion weighting the costates to pull states and keep them
away from constraint limits. The result is, of course,
suboptimal but feasible. This technique has been exten-
sively discussed in the literature (the interested reader
may address to [14], [25] or [31]) but it is out of the
scope of this work.

3 Analytical solution

The presented analytical solution to the energy manage-
ment problem consists of an explicit application of PMP,
whose basic formulation has been detailed in the previ-
ous section. This solution is derived from the necessary
conditions for optimality stated in (22)-(24) to extract
an analytical expression for the optimal trajectory of
the control variable (Pg). Note that although PMP is
defined for continuous and differentiable variables as
needed by the aforementioned derivatives, the current
Hamiltonian is a piecewise function with a jump dis-
continuity. However, since Hamiltonian derivative in
(24) is null in this case and it is still possible to find
a minimum for the Hamiltonian according to (15), a
relaxation in the continuity requisite is conducted with
no impact on the formulation nor the optimality of
results.

3.1 Optimal operation of the generator

set

The minimization of the Hamiltonian with respect to
the control actuation (Pg) could be approached by find-
ing the minimum of the two members (H1, H2) of the
piecewise function (21) and, then, selecting the mini-
mum among those two candidates. The minimum of
the first member, H∗

1
, may be calculated applying first

and second derivatives:

∂H1

∂Pg
= a−

νVoc√
V 2
oc + 4R(Pg − Pm)

= 0 (25)

∂2H1

∂P 2
g

=
2RνVoc√

[V 2
oc + 4R(Pg − Pm)]3

> 0 (26)

where λ has been replaced by a constant ν according
to (23) and (24). The minimum corresponds to:

P ∗

g,1 = Pm +
V 2

oc

4R

(
ν2

a2
− 1

)
(27)

and the value of the Hamiltonian at that minimum is:

H∗

1
= Pf,idle + aPm +

V 2

oc

2R
ν −

V 2

oc

4Ra
ν2 −

aV 2

oc

4R
(28)

which is the first minimum candidate for the Hamilto-
nian.

The minimum for the second member, H∗

2
, is trivial

since the expression does not depend on Pg. There-
fore, the corresponding candidate for Hamiltonian’s
minimum is:

H∗

2
=

νVoc

2R

(
Voc −

√
V 2
oc − 4RPm

)
(29)

The minimum among candidates H∗

1
and H∗

2
might

be calculated by stating the inequality expression:

H∗

1
< H∗

2
(30)

which may be solved resulting in:
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ν >
a
√

V 2
oc − 4RPm + 2

√
RPf,idlea

Voc
(31)

ν <
a
√

V 2
oc − 4RPm − 2

√
RPf,idlea

Voc
(32)

These expressions give the regions where H∗

1
is the

absolute minimum of the piecewise Hamiltonian. Other-
wise, H∗

2
is the minimum. A singularity may occur when

ν equals any of the right side term of the above equa-
tions. In this case, both minimum candidates adopt the
same value and, therefore, there are two optima. It can
be argued that for a HEV it might be more attractive to
shut down the engine whenever is possible to minimize
noise, vibrations and wear (so the preference would be
selecting H∗

2
in the singularity), but other criteria may

be included in the form of additional constraints such
as minimization of number of on/off switches, maxi-
mization of after-treatment efficiency (preserving a high
temperature), etc. In any case, the Hamiltonian as de-
fined in (21) still verifies the necessary condition from
(15), so optimality is guaranteed. Therefore, authors
decided to give preference to H∗

2
in the singularity to

keep the formulation simple and clear.
Additionally to the necessary conditions for opti-

mality, the HEV introduces several constraints in the
intermediate variables due to limitations of powertrain
machines that must be considered to reach a physically
feasible solution. The first limitation is the admissi-
ble operation range of the generator set (Pg), which is
introduced as a constraint to the space of permitted
control actuations U as early stated in section 2.2, which
limits the generator set power output between 0 and
Pg,max = 50 kW. This also constrains the minimum
of (27) so that P ∗

g,1 > 0 kW and P ∗

g,1 ≤ Pg,max kW.
Accordingly, two new constraints are introduced to the
region where the candidate H∗

1
is valid. For the upper

bound this constraint is expressed as:

ν ≤ a

√
1−

4R

V 2
oc

(Pm − Pg,max) (33)

Similarly, the lower bound is expressed as:

ν > a

√
1−

4R

V 2
oc

Pm (34)

resulting that among constraints in (31) and (32) only
the first one is active, i.e. the region where candidate
H∗

1
is the minimum is reduced to the first of both.

The second powertrain limitation is the operation
capability of the battery, which is restricted in the
power output (and current) by its internal resistance R
according to (7). Using (8), the constraint results in:

Pm ≤
V 2

oc

4R
+ Pg (35)

for the candidate H∗

1
. It can be clearly seen that in-

troducing the value of P ∗

g,1 in the above equation, the
inequality is always satisfied, meaning that this con-
straint is not active.

Additionally, for the candidate H∗

2
, the battery limi-

tation introduces a similar constraint:

Pm ≤
V 2

oc

4R
(36)

To clarify the present set of constraints at the prob-
lem, the figure 3 represents all the above constraints for
both minimum candidates, H∗

1
(left plot, in red color)

and H∗

2
(center plot, in blue color), for different values

of motor power Pm (x-axis) and ν (y-axis). On the
candidate H∗

1
side, as it has been previously stated, it

is clear that only one of the two regions where H∗

1
is

the minimum, expressed in (31) and (32), is feasible
due to constraint (34). On the candidate H∗

2
side, the

feasible region is bounded by constraints (31) and (36).
As it may be appreciated, both H∗

1
and H∗

2
regions are

in practice constrained just by these last two equations.
Right plot in figure 3 denotes the combination of

both Hamiltonians and the regions where each one is
the minimum. Note that there are some particularities:
H∗

2
is the minimum even below (31) since it is the only

feasible Hamiltonian as H∗

1
is constrained by (34). H∗

1

is the minimum even over (33) as long as H∗

2
is not

feasible due to (36). However, in this last region, H∗

1

is saturated because of (33) (the generator set delivers
the maximum power output). Therefore, they can be
expressed as a piecewise function:

P̂m =





V 2

oc

4R
−

Pf,idle

a
+

Voc

√
RPf,idlea

Ra2
ν −

V 2

oc

4Ra2
ν2

ν ≥ ν̂

V 2

oc

4R
ν < ν̂

(37)

where ν̂ is:

ν̂ =
2
√
RPf,idlea

Voc
(38)

Accordingly, the candidate H∗

1
is the minimum for

any Pm > P̂m while otherwise H∗

2
is the minimum.

Therefore, the control actuation P ∗

g that minimizes the
Hamiltonian satisfying (15) is:

P ∗

g =

{
P ∗

g,1 Pm > P̂m

0 Pm ≤ P̂m

(39)

This control policy is the optimal set of actuations
as it verifies all the PMP necessary conditions for op-
timality (as discussed in the last two sections). It is
graphically represented in a Pm vs ν plot in figure 4.

3.2 On the determination of ν

The value of ν must be selected such that the termi-
nal constraint (22) is fulfilled. Numerical methods are
available at literature, such that the shooting technique
in [35] or the λ-plots method in [32]. However, the
analytical control policy obtained in the previous sec-
tion permits to explicitly find the exact value of ν in a
straightforward fashion.
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Figure 3: Graphical representation of both candidates for minimum, H∗

1
(left) and H∗

2
(center). Solid colors

represent regions where one candidate is the minimum; hatched lines represent constraints (corresponding
equations are indicated). Combining both candidates and constraints results in the right plot where active
regions are shown for H∗

1
(red) and H∗

2
(blue).

Figure 4: Representation of optimal set of actuations
P ∗

g for different levels of traction requirements (Pm)
and parameter ν. The red dashed line is the generator
set disconnection limit, (37), and the blue dashed line
is the generator set maximum power constraint, (33).

Reviewing the steps performed so far, first, (23)
shown that λ(T ) = ν and, second, (24) proved that
λ is constant and therefore equals the constant value ν.
Thereby, the parameter ν must be selected such that
(22) is fulfilled. Based on the EMP solution, this last
equation may be rewritten as:

Ψ =

∫ T

0

fdt+ Eb(0)− Eb,0 =

∫ T

0

fdt =

∫ T

0

Voc

2R

(
Voc −

√
V 2
oc − 4RPb

)
dt = 0

(40)

since
∫ T

0
fdt = Eb(T ) − Eb(0) according to (20) and

Eb(T )−Eb(0) = 0. Note that Pb is a piecewise function
as defined in (8) and (39):

Pb(t) =

{
Pm(t)− P ∗

g,1 Pm > P̂m

Pm(t) Pm ≤ P̂m

(41)

The idea is to integrate Ψ as a function of ν (P ∗

g,1

contains ν) and then solve the resulting equation for ν.
The main issue when addressing this integral equation is
the fact that Pb is a piecewise function. In order to avoid
this issue, a workaround is to split this integral equation

into the sum of two integrals, one where only the first
member of the piecewise function applies, and another
where only the second member appears. To do so, the
proposed method is to separate Pm(t) trajectory into n
sections {Pm,1, · · · , Pm,n} at times {t1, · · · , tn−1} such

that each part is completely over or under P̂m. Due to
continuity reasons, Pm sections over and under P̂m will
obviously alternate in time:

{
Pm,2i−1 > P̂m

Pm,2i ≤ P̂m

∀i ∈
[
1,

n

2

]
(42)

In the above expression it is assumed that Pm,1 > P̂m

and n
2
∈ Z for clarity, but the opposite also applies

following a similar methodology. Thus, sections with
odd subscripts are over P̂m while sections with even
subscripts are under it. Now, Pm(t) trajectory may be

rearranged into a new P̃m(t) trajectory with all odd
subscripts first:

P̃m = [Pm,1, Pm,3, · · · , Pm,n−1,

Pm,2, Pm,4, · · · , Pm,n]
(43)

where it is clear that the first n
2
members are completely

above P̂m and the remaining are below it. The time
instant where P̃m moves from over to under P̂m, called
T̃ , can be easily calculated by summing up the durations
of the odd sections of Pm:

T̃ =

n/2∑

i=1

[t2i−1 − t2i] (44)

Finally, the integral form of Ψ from (40) can be

rewritten in terms of P̃m:

Ψ =

∫ T̃

0

Voc

2R

(
Voc −

√
V 2
oc − 4R

[
P̃m(t)− P ∗

g,1

])
dt+

∫ T

T̃

Voc

2R

(
Voc −

√
V 2
oc − 4RP̃m(t)

)
dt

(45)

Operating and simplifying, Ψ results:
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Ψ =
Voc

2R

[
Voc

(
T −

ν

a
T̃
)
−

∫ T

T̃

√
V 2
oc − 4RP̃m(t)dt

]

(46)
Then, solving Ψ = 0 for ν brings the following expres-
sion:

ν =
aT

T̃
−

a

VocT̃

∫ T

T̃

√
V 2
oc − 4RP̃m(t) dt (47)

Note that the above expression losses its time depen-
dency as P̃m is integrated, substituting t for the inte-
gration limits T̃ and T . As long as the trajectory P̃m

is a rearrangement of the actual motor power trajec-
tory Pm according to its value–see (43)–, any other Pm

trajectory with the same power distribution would lead
to the same integrated value–the order of the discrete
values in Pm is not relevant. In fact, Pm can be replaced
with its probability distribution for practical reasons
delivering the same results.

The existence of an explicit solution for the integral
in the above equation depends on the expression given
for P̃m(t), not only because of the explicit presence

of this variable but also because T̃ is a function that
depends on the threshold P̂m which, according to (37),
is a function of ν. However, if no explicit solution exists,
it can still be solved by iterating in (37) and (47).

3.3 Example of analytical optimization

To clarify the above method, an example of the op-
timization of a series HEV operation along a simple
trajectory is provided below. The Pm(t) trajectory is
depicted at the left plot in figure 5 and consists of a
ramp with a constant decreasing rate, from positive
traction to energy recovery, that follows the expression:

Pm(t) = P 0

m − kt (48)

where in this case P 0

m = 40 kW, k = 0.5 kW/s, and t ∈
[0, 120] seconds. This trajectory is deliberately selected
to be such a simple case to keep formulation clear and
understandable. Anyhow, it can be interpreted as a
driver approaching a full stop, slowly releasing the pedal
from positive to negative traction requirements.

First the appropriate value of ν that fulfills the termi-
nal constraint must be found. To do so, Pm(t) must be
rearranged according to (42) and (43). The trajectory
in this case is monotonically decreasing, so there is only
one section of Pm over P̂m and another one below it.
Therefore the rearrangement results in P̃m(t) = Pm(t).

Introducing this P̃m in (47) brings an explicit expression
for ν:

ν = a

(
1

6Rk

[
(V 2

oc − 4RkT )3/2−

(V 2

oc − 4RkT̃ )3/2
]
+

T

T̃

) (49)

Battery open circuit voltage, Voc [V] 220
Battery internal resistance, R [Ohm] 0.5
Fuel consumption at idle, Pf,idle [kW] 3.2
Fuel consumption coefficient, a [-] 3

Table 2: Powertrain parameters and their values.

Note that in the above equation the integral from (47)

has been solved for P̃m.

Next, T̃ should be calculated (total time Pm stands

over P̂m). Since Pm is a monotonic function, T̃ can be
easily solved as:

T̃ =
P 0

m − P̂m

k
(50)

Substituting P̂m with its analytic expression from (37)
leads to:

T̃ =





V 2

oc

4Ra2k
ν2 −

Voc

√
RPf,idlea

Ra2k
ν+

4RPf,idle + 4RaP 0

m − aV 2

oc

4Rak

ν ≥ ν̂

4RP 0

m − V 2

oc

4Rk
ν < ν̂

(51)

At this point there are two unknowns–T̃ and ν–, and
two equations–(49) and (51). The idea is to solve ν
explicitly, but unfortunately (49) implies a fifth degree

polynomial in terms of T̃ , so a general explicit solution
for ν does not exist. However, it is still possible to
analytically reach a solution for specific values of the
parameters. In this case, the parameters at table 2 have
resulted in a value of ν = 2.776.

T̃ for the above value of ν is 56.4 seconds, and the
threshold P̂m results in a value of 11.8 kW. Therefore,
the optimal trajectory for the generator set is:

P ∗

g (t) =

{
36.5− 0.5t t < 56.4 s

0 t ≥ 56.4 s
(52)

This optimal trajectory P ∗

g (t) as well as the evolution
of battery’s SoC (with initial SoC level at 40%) are
represented in figure 5 where it can be appreciated that
the terminal constraint (same SoC at the end than at
the beginning) is precisely fulfilled.

Despite this case showed a pretty simple Pm(t) tra-
jectory for clearness, more complex evolutions can be
considered following the same methodology, even if they
are not explicitly integrable (calculating ν by numerical
iteration). Of course if Pm(t) is not integrable this
method is not as straightforward as the fully explicit
approach, but it is still much more efficient than the
common shooting technique since this only involves
iteration in a single equation instead of a full trajectory
simulation.
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Figure 5: Trajectory and optimization solution for an example case of 120 seconds. The left plot shows the
Pm trajectory, the middle plot shows the optimized generator set power output, and the right plot shows the
variations on battery’s SoC throughout the example with an initial level of 40%.

Mass [kg] 1300
Cd [-] 0.3
Reference area [m2] 2.0
Rolling resistance coefficient [-] 0.01
Nominal motor efficiency [-] 0.85
Battery open circuit voltage [V] 220
Battery internal resistance [Ohm] 0.5
Battery capacity [Ah] 6.9

Table 3: Main characteristics of simulated series HEV.

4 Case study

4.1 Optimal control policy

An analytical solution to the EMP in a series HEV
has been stated in the previous section, summarized
in (39). This equation indicates the amount of power
the generator set must deliver throughout time, P ∗

g (t),
to minimize fuel consumption, being only a function
on the instantaneous traction motor power required to
follow a driving cycle, Pm.

The aim of this section is to benchmark and vali-
date the optimality of this analytical solution to the
EMP on a real driving trajectory compared to the most
common optimization methods in literature: dynamic
programming (DP) and numerical Pontryagin minimum
principle (PMP).

The benchmark driving trajectory consists of 1,122
seconds of urban driving, recorded at public roads with
a light duty vehicle. The cycle presents several accel-
erations, a couple of strong brakings and some stops
of different durations, representing a wide variety of
driving situations. Figure 6 illustrates this driving tra-
jectory and some of its statistics.

The main characteristics of the vehicle used for sim-
ulations are summarized at table 3. The utilized pow-
ertrain parameters are specified in table 2. The initial
SoC level is arbitrarily set to 30%–actually this level
is a consequence of the previous usage of the vehicle–
and, since it is a charge sustaining HEV, the final SoC
constraint is also set to 30%.

First of all, the optimal solution to the EMP has been
calculated with Dynamic Programming. DP is based on
Bellman’s Principle of Optimality to iteratively compute

the optimal trajectory among all possibilities from an
initial space of feasible solution candidates. In other
words, the method globally minimizes the integral cost
function J at (9). Theoretically, the solution achieved
is the global optimum to the problem since roughly all
possibilities are checked with no further assumptions;
however, the resulting solution is restricted to a discrete
grid of candidates, which could lead to a suboptimal
solution for a continuous problem.

Following, the EMP has been also solved with nu-
merical PMP. As [10] states, PMP is equivalent to DP
when the necessary conditions for the global optimal-
ity are met. Thus, the global optimization problem
approached with DP is converted into a local problem
where the Hamiltonian, represented by (21), is mini-
mized at each time instant. The costate λ is tuned by
shooting technique in order to satisfy the terminal state
constraint at (22).

Finally the analytical policy presented in previous
sections of this work is evaluated. The parameter ν is
calculated with (37) and (47) by means of numerical
iteration. Then the EMP solution is just constructed
substituting values at (39).

All three methods have been implemented and simu-
lated with a backwards series HEV model as described
in section 2.1. The simulation results are shown in figure
7 where the optimal control policy may be appreciated,
namely the control actuation (Pg) and the battery state
of charge, SoC, which is proportional to the state of the
system, Eb. Additionally, figure 8 shows the correla-
tion between analytical method and DP and PMP fuel
consumption. The total fuel consumption, which is the
minimization target, is 3.44, 3.45 and 3.45 L/100km
for DP, PMP and analytic methods respectively. The
computation time that each method takes to find the
optimal solution is pretty interesting, especially if tar-
geting for an online implementation where calculation
time is limited. Figure 9 summarizes the necessary time
to reach the EMP solution, where it can be appreciated
that analytical method is the fastest (0.03 seconds), fol-
lowed by numerical PMP (0.73 seconds) and DP (76.4
seconds), where the “curse of dimensionality” strongly
penalizes the computation time.

According to the results it is clear that the calculated
optimal control policies are quite the same regardless
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Figure 6: Benchmarking driving trajectory. The upper plot depicts the speed of the vehicle along 1,122 seconds.
The bottom plots show, from left to right, the distribution over the vehicle speed of: power requirement for a
light duty vehicle, acceleration and time dedicated during cycle

Figure 7: DP (blue), PMP (red) and analytical method (green) results. The upper plot corresponds to the
control action, Pg, and the bottom plot to the state, battery SoC

of the method. On one hand, numerical PMP and the
analytical method result in an almost identical solution,
as the analytical method is an explicit formulation of the
PMP applied to a series HEV. Differences are only due
to numerical issues at integration and costate seeking
in the numerical PMP. On the other hand, in this case
the DP method is equivalent to PMP as, according to
[10], the necessary conditions for optimality are met;
any difference is just due to the discretization of control
and state.

4.2 Identification of the engine opera-

tion area

The existence of an explicit expression for the optimal
control policy allows performing some easy yet useful
calculations that reveals key parameters of the opera-
tion of the HEV. Probably one of the most interesting
analysis is to identify the region of the engine or of the
generator set where the powertrain operates the most
for a type of driving cycle or a set of cycles.

One of the key points of the explicit solution is that
the presented EMP ultimately depends on the power
requirements of the cycle but not on the time reference.
According to this, it is possible to replace the power

Figure 8: DP (blue) and PMP (red) fuel consumption
correlation with respect to analytical method. The
x-axis corresponds to analytical method and y-axis to
DP/PMP fuel consumption

requirements trajectory of interest with its probability
distribution. The use of a probability distribution allows
to extract conclusions about the optimal operation of
the powertrain in a more compact and general form,
similarly to [23] and [35].

The methodology is quite straightforward to analyze
a particular driving cycle whose probability distribu-
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Figure 9: Computation time of optimization methods
at the example driving cycle.

tion, PD, of power requirements is Pr = pdfPm
(Pm)

and its cumulative distribution, CD, is cdfPm
(Pm) =∫

pdfPm
dPm, which might be both explicit expressions

or discrete sets of values. Following the steps from
3.2 it is possible to determine the value of ν, taking
into account that in this case T̃ /T = cdfPm

(P̂m) and

P̃m = cdf−1

Pm
. Then, the explicit solution to the EMP

may be obtained by applying (39). The PD of the
generator set operation is, therefore:

pdfPg
(Pg) =





cdfPm
(P̂m) Pg = 0

0 0 < Pg ≤ P̂g

pdfPm

(
Pg −

V 2

oc

4R

(
ν2

a2
− 1

)) P̂g < Pg

(53)

where P̂g is:

P̂g = P̂m +
V 2

oc

4R

(
ν2

a2
− 1

)
(54)

The above methodology has been applied to a set
of diverse real driving cycles of urban and highway
recordings from non-professional drivers. On one hand
the PD of the power requirements of the cycle have
been calculated for each cycle and then (53) has been
applied to find out the region of the generator set that is
operated the most. On the other hand the same results
have been reached by optimizing the HEV operation
with DP and, then, calculating the PD of the solution
for benchmarking purposes. PD’s may be appreciated
in figure 10.
According to the results it is clear that close esti-

mations of the operation range of the generator set
could be obtained with both explicit method or DP
optimization. However, the explicit approach as pre-
sented in (53) shows two main advantages over DP or
any other trajectory optimization algorithm: first, only
the PD of the driving cycle is required to apply the
explicit method permitting to analyze the generator
set operation for different driving styles rather than
for particular driving cycles and, second, the compu-
tational cost is nearly zero as long as only a couple of

algebraic equations must be calculated (DP may take
from minutes to hours to optimize a single driving cycle)
making easier to quickly analyze a vast set of different
driving styles.

5 Conclusions

This work presents an analytical solution to the EMP
in a series HEV. This method is an explicit implemen-
tation of the PMP applied to a generic and validated
HEV model, resulting in an expression that gives the
optimal amount of power that the generator set needs
to deliver as a function of the instantaneous traction
power requirement Pm.

The explicit calculation of the Lagrangian multipliers
associated to the PMP is also discussed in this study.
According to the necessary conditions for optimality,
an analytical expression to calculate Lagrangian mul-
tipliers is obtained in an integral form. An iterative
methodology to solve this integral equation is provided
for cases where a fully explicit solution does not exist.
The optimization of a driving cycle with the ana-

lytical approach as well as DP and numerical PMP is
provided as an example. All three algorithms shown
nearly the same results while the analytical method was
the fastest by far.

The availability of an explicit expression for the solu-
tion of the EMP makes this method specially interesting
for optimal solution analysis. It is straightforward to
analyze the impact on the optimal control (generator
set operation, fuel consumption, etc.) when changing
any of the vehicle parameters. As an example, the
analysis of the operation region of the generator set
as been discussed and applied to some driving cycles.
This methodology has been shown to be much more
computationally efficient and general than reaching the
same results with DP.
It must be remarked that the applicability of this

analytical methodology to other hybrid powertrain ar-
chitectures will be up to the complexity of the model
and, especially, to its non-time dependency; otherwise,
the resulting control algorithm will be cycle-dependent.

In conclusion, the compactness, small computational
burden and simplicity of the explicit optimal solution
for such a complex EMP makes it particularly interest-
ing to assess studies with big sets of driving styles or to
implement on a real vehicle with a modest hardware.
Future works might be addressed to analyze and imple-
ment this method as an optimal energy management
controller for on-board applications and to explore its
applicability to other hybrid powertrain architectures.
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