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1. Introduction

Recently, many mathematicians, particularly Carlitz [1,2], Kim et al. [3], Sharma et al. [4,5],
and Khan et al. [6–8], have studied and delivered diverse degenerate variations of many
unique polynomials and numbers (such as degenerate Bernoulli polynomials, degenerate
Euler polynomials, degenerate Daehee polynomials, degenerate Fubini polynomials, de-
generate Stirling numbers of the first and second kind, and so forth). It is noteworthy that
studying degenerate variations is not always most effective when limited to polynomials,
but also prolonged to transcendental features, like gamma functions. It is likewise terrific
that the degenerate umbral calculus is delivered as a degenerate version of the classical
umbral calculus. Degenerate versions of special numbers and polynomials have been ex-
plored by way of various techniques, such as combinatorial strategies, producing functions,
umbral calculus techniques, p-adic analysis, differential equations, unique capabilities,
probability principles, and analytic variety ideas. In this paper, we focus on degenerate
Genocchi polynomials and numbers of the second kind. The intention of this paper is to
introduce a degenerate version of the Genocchi polynomials and numbers of the second
type, the so-called degenerate Genocchi polynomials and numbers of the second type,
made from the degenerate exponential characteristic. We derive a few express expressions
and identities for those numbers and polynomials. Further, we introduce degenerate
Genocchi polynomials of the second kind attached to Dirichlet character χ and establish
some properties of these polynomials.

Let p be a fixed odd prime number. Throughout this paper, Zp, Qp, and Cp will
denote the the ring of p-adic integers, the field of p-adic rational numbers, and the
completion of algebraic closure of Qp, respectively. The p-adic norm | . |p is normalized
as | p |p= p−1 = 1

p . Let ∪D(Zp) be the space of Cp-valued uniformly differentiable
functions on Zp.
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For f ∈ ∪D(Zp), the p-adic invariant integral on Zp is defined as (see [8–11])

I0( f ) =
∫
Zp

f (ξ)dµ0(ξ) = lim
N→∞

pN−1

∑
ξ=0

f (ξ)µ0(ξ + pNZp)

= lim
N→∞

1
pN

pN−1

∑
ξ=0

f (ξ). (1)

For f ∈ ∪D(Zp), the fermionic p-adic integral on Zp is defined by Kim as follows
(see [11])

I−1( f ) =
∫
Zp

f (ξ)dµ−1(ξ) = lim
N→∞

pN−1

∑
ξ=0

f (ξ)(−1)ξ . (2)

From (1) and (2), we have

I0( fω)− I0( f ) =
ω−1

∑
l=0

f ′(l) (ω ∈ N), (3)

and

I−1( fω)− (−1)ω I−1( f ) = 2
ω−1

∑
a=0

(−1)ω−1−a f (a) (ω ∈ N). (4)

For any non-zero λ ∈ R (or C), the degenerate exponential function is defined by
(see [4–7])

eξ
λ(z) = (1 + λz)

ξ
λ , e1

λ(z) = (1 + λz)
1
λ . (5)

By binomial expansion, we get

eξ
λ(z) =

∞

∑
ω=0

(ξ)ω,λ
zω

ω!
, (6)

where (ξ)0,λ = 1, (ξ)ω,λ = (ξ − λ)(ξ − 2λ) · · · (ξ − (ω− 1)λ) (ω ≥ 1).

Note that

lim
λ→0

eξ
λ(z) =

∞

∑
ω=0

ξω zω

ω!
= eξz.

In [1], Carlitz considered the degenerate Bernoulli polynomials given by

z

(1 + λz)
1
λ − 1

(1 + λz)
ξ
λ =

∞

∑
ω=0

βω,λ(ξ)
zω

ω!
(λ ∈ R). (7)

Here, ξ = 0, βω,λ = βω,λ(0) are called the degenerate Bernoulli numbers.
The degenerate Genocchi polynomials Gω(ξ; λ) are defined by (see [12])

2z
eλ(z) + 1

eξ
λ(z) =

∞

∑
ω=0

Gω(ξ; λ)
zω

ω!
. (8)

In the case when ξ = 0, Gω(λ) = Gω(0; λ) are called the degenerate Genocchi numbers.
From (8), we note that

lim
λ→0

∞

∑
ω=0

Gω(ξ; λ)
zω

ω!
= lim

λ→0

2z
eλ(z) + 1

eω
λ (z)

=
2z

ez + 1
eξz =

∞

∑
ω=0

Gω(ξ)
zω

ω!
, (9)
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where Gω(ξ) are called the Genocchi numbers.
The partially degenerate Genocchi polynomials are defined by the generating function

as follows (see [13])
2 log(1 + λz)

1
λ

ez + 1
eξz =

∞

∑
ω=0

Gω,λ(ξ)
zω

ω!
. (10)

At the point ξ = 0, Gω,λ = Gω,λ(0) are called the partially degenerate Genocchi numbers.
The new type of degenerate Changhee–Genocchi polynomials are defined by (see [14])

2 logλ(1 + z)
2 + z

(1 + z)ξ =
∞

∑
ω=0

CGω,λ(ξ)
zω

ω!
. (11)

In the case when ξ = 0, CGω,λ = CGω,λ(0) are called the new type of degenerate
Changhee-Genocchi numbers.

For ω ≥ 0, the Stirling numbers of the first kind are defined by

(ξ)ω =
ω

∑
l=0

S1(ω, l)ξ l , (12)

where (ξ)0 = 1, and (ξ)ω = ξ(ξ − 1) · · · (ξ − ω + 1) (ω ≥ 1). From (12), it is easy to
see that

1
r!
(log(1 + z))r =

∞

∑
ω=r

S1(ω, r)
zω

ω!
(r ≥ 0). (13)

For ω ≥ 0, the Stirling numbers of the second kind are defined by

ξω =
ω

∑
l=0

S2(ω, l)(ξ)l . (14)

From (14), we attain that

1
r!
(ez − 1)r =

∞

∑
ω=r

S2(ω, r)
zω

ω!
. (15)

This article is structured as follows. In Section 2, we consider degenerate Genocchi
polynomials of the second kind and derive some basic properties of these polynomials
by using different analytical means of their respective generating functions. In Section 3,
we introduce degenerate Genocchi polynomials of the second kind attached to Dirichlet
character χ and derive some properties of these polynomials.

2. Degenerate Genocchi Polynomials of the Second Kind

Let λ, z ∈ Cp be | λz |p< p−
1

p−1 . Now, we consider the degenerate Genocchi polyno-
mials of the second kind defined by

2 log(1 + λz)
1
λ

eλ(z) + 1
eξ

λ(z) =
∞

∑
ω=0

Gω,λ(ξ)
zω

ω!
. (16)

In the case when ξ = 0, Gω,λ(0) = Gω,λ are called the degenerate Genocchi numbers
of the second kind.

Note that
lim
λ→0

Gω,λ(ξ) = Gω(ξ) (ω ≥ 0).
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Theorem 1. For ω ≥ 0, we have

Gω,λ(ξ) =
ω

∑
ν=0

(
ω

ν

)
(−1)ν

ν + 1
λνν!Gω−ν(ξ; λ).

Proof. Using (8) and (16), we have

∞

∑
ω=0

Gω,λ(ξ)
zω

ω!
=

2 log(1 + λz)
1
λ

eλ(z) + 1
eξ

λ(z)

=
log(1 + λz)

1
λ

λz
2z

eλ(z) + 1
eξ

λ(z)

=

(
∞

∑
ν=0

(−1)ν

ν + 1
(λz)ν

)(
∞

∑
ω=0

Gω(ξ; λ)
zω

ω!

)

=
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)
(−1)ν

ν + 1
λνν!Gω−ν(ξ; λ)

)
zω

ω!
. (17)

Therefore, by (16) and (17), we obtain the result.

Theorem 2. For ω ≥ 0, we have

Gω,λ(ξ) =
ω

∑
ν=0

(
ω

ν

)
DνλνGω−ν(ξ; λ).

Proof. Following Equation (8) and (16), we find

∞

∑
ω=0

Gω,λ(ξ)
zω

ω!
=

2 log(1 + λz)
1
λ

eλ(z) + 1
eξ

λ(z)

=
log(1 + λz)

1
λ

λz
2z

eλ(z) + 1
eξ

λ(z)

=

(
∞

∑
ν=0

Dνλν zν

ν!

)(
∞

∑
ω=0

Gω(ξ; λ)
zω

ω!

)

=
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)
DνλνGω−ν(ξ; λ)

)
zω

ω!
. (18)

Therefore, by (16) and (18), we get the result.

Theorem 3. For ω ≥ 0, we have

Gω,λ(ξ) = ω
ω−1

∑
ν=0

(
ω− 1

ν

)
DνλνEω−1−ν,λ(ξ).

Proof. Using the definition (8) and (16), we have

∞

∑
ω=0

Gω,λ(ξ)
zω

ω!
=

2 log(1 + λz)
1
λ

eλ(z) + 1
eξ

λ(z)

=
log(1 + λz)

1
λ

λz
2

eλ(z) + 1
eξ

λ(z)
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= z

(
∞

∑
ν=0

Dν(λ)
ν zν

ν!

)(
∞

∑
ω=0

Eω,λ(ξ)
zω

ω!

)

=
∞

∑
ω=0

(
ω−1

∑
ν=0

(
ω− 1

ν

)
DνλνEω−1−ν,λ(ξ)

)
zω

(ω− 1)!
. (19)

Comparing the coefficients of z on both sides, we obtain the result.

Theorem 4. For ω ≥ 0, we have

Gω(ξ) =
ω

∑
ν=0

Gν,λ(ξ)λ
ω−νS2(ω, ν).

Proof. By replacing z with 1
λ (e

λz − 1) in (16), we get

2z
ez + 1

eξz =
∞

∑
ν=0

Gν,λ(ξ)
[ 1

λ (e
λz − 1)]ν

ν!

=
∞

∑
ν=0

Gν,λ(ξ)λ
−ν

∞

∑
ω=ν

S2(ω, ν)
λωzω

ω!

=
∞

∑
ω=0

(
ω

∑
ν=0

Gν,λ(ξ)λ
ω−νS2(ω, ν)

)
zω

ω!
. (20)

On the other hand, we have

2z
ez + 1

eξz =
∞

∑
ω=0

Gω(ξ)
zω

ω!
. (21)

In view of (20) and (21), we obtain the result.

Theorem 5. For ω ≥ 0, we have

1
2
[Gω,λ(1) + Gω,λ] = λω(−1)ωω!. (22)

Proof. From (16), it is shown that

∞

∑
ω=1

[Gω,λ(1) +Gω,λ]
zω

ω!

=
2 log(1 + λz)

1
λ

eλ(z) + 1
eλ(z) +

2 log(1 + λz)
1
λ

eλ(z) + 1
= 2 log(1 + λz)

1
λ

∞

∑
ω=0

[
Gω,λ(1) +Gω,λ

ω + 1

]
zω

ω!

= 2
∞

∑
ω=0

λω(−1)ωω!
ω + 1

zω

ω!
.

Comparing the coefficients of z, we obtain the result (22).

Theorem 6. For ω ≥ 0 with d ∈ N, we have

Gω,λ(ξ) = dω−1
d−1

∑
a=0

Gω

(
a + ξ

d
|λ
d

)
. (23)
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Proof. From (16), we find

∞

∑
ω=0

Gω,λ(ξ)
zω

ω!
=

2 log(1 + λz)
1
λ

eλ(z) + 1
eξ

λ(z)

=
2 log(1 + λz)

1
λ

(1 + λz)
λ
d + 1

(1 + λz)
a+ξ

λ

=
1
d

(
d−1

∑
a=0

2 log(1 + λz)
d
λ

(1 + λz)
λ
d + 1

(1 + λz)
d
λ

a+x
λ

)

=
∞

∑
ω=0

(
dω−1

ω−1

∑
a=0

Gω

(
a + ξ

d
|λ
d

))
zω

ω!
. (24)

Equating the coefficients of z, we get (23).

Theorem 7. For ω ≥ 1, we have

Dω−1λω−1 =
1

2ω

(
ω

∑
ν=0

(
ω

ν

)
(1)ν,λGω−ν,λ +Gω,λ

)
. (25)

Proof. Using (16), we see

2 log(1 + λz)
1
λ = (eλ(z) + 1)

∞

∑
ω=0

Gω,λ
zω

ω!

2z log(1 + λz)
λz

=
∞

∑
ν=0

(1)ν,λ
zν

ν!

∞

∑
ω=0

Gω,λ
zω

ω!
+

∞

∑
ω=0

Gω,λ(ξ)
zω

ω!

2z
∞

∑
ω=0

Dωλω zω

ω!

=
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)
(1)ν,λGω−ν,λ +Gω,λ

)
zω

ω!

2
∞

∑
ω=1

Dω−1λω−1 zω

(ω− 1)!

=
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)
(1)ν,λGω−ν,λ +Gω,λ

)
zω

ω!
.

On comparing the coefficients of zω

ω! , we get the result (25).

Theorem 8. Let ω ≥ 0. Then

CGω,λ =
ω

∑
ν=0

λω−νGν(λ)S1(ω, ν). (26)

Proof. Replacing z by log(1 + λz) in (8), we find(
2 log(1 + λz)

(1 + λ log(1 + λz))
1
λ + 1

)
=

∞

∑
ν=0

Gν(λ)
(log(1 + λz))ν

ν!

=
∞

∑
ν=0

Gν(λ)
∞

∑
ω=ν

S1(ω, ν)λω−ν zω

ω!
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=
∞

∑
ω=0

(
ω

∑
ν=0

λω−νGν(λ)S1(ω, ν)

)
zω

ω!
. (27)

On the other hand,(
2 log(1 + λz)

(1 + λ log(1 + λz))
1
λ + 1

)
=

∞

∑
ω=0

CGω,λ
zω

ω!
. (28)

By (27) and (28), we obtain the result (26).

Theorem 9. Let ω ≥ 0. Then

ω

∑
ν=0

Gν,λ(ξ)S1,λ(ω, ν) =
ω

∑
ν=0

(
ω

ν

)
CGω−νDν,λ(ξ). (29)

Proof. On changing z with logλ(1 + z) in (8), we get

2 logλ(1 + z)
2 + z

(1 + z)ξ =
∞

∑
ν=0

Gν,λ(ξ)
(logλ(1 + z))ν

ν!

=
∞

∑
ν=0

Gν,λ(ξ)
∞

∑
ω=ν

S1,λ(ω, ν)
zω

ω!

=
∞

∑
ω=0

(
ω

∑
ν=0

Gν,λ(ξ)S1,λ(ω, ν)

)
zω

ω!
. (30)

On the other hand, we have

2 logλ(1 + z)
2 + z

(1 + z)ξ =
2z

2 + z
logλ(1 + z)

z
(1 + z)ξ

=
∞

∑
ω=0

CGω
zω

ω!

∞

∑
ν=0

Dν,λ(ξ)
zν

ν!

=
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)
CGω−νDν,λ(ξ)

)
zω

ω!
. (31)

In view of (30) and (31), we obtain (29).

For r ∈ N, we define the higher-order degenerate Genocchi polynomials of the second
kind given by the generating function(

2 log(1 + λz)
1
λ

eλ(z) + 1

)r

eξ
λ(z) =

∞

∑
ω=0

G(r)
ω,λ(ξ)

zω

ω!
. (32)

When ξ = 0,G(r)
ω,λ = G(r)

ω,λ(0) are called the higher-order degenerate Genocchi num-
bers of the second kind.

It is worth noting that

lim
λ→0

G(r)
ω,λ(ξ) = G(r)

ω (ξ) (ω ≥ 0).

Theorem 10. Let ω ≥ 0. Then

G(r)
ω,λ(ξ) =

ω

∑
ν=0

(
ω

ν

)
G(r−k)

ω−ν,λ(ξ)G
(k)
ν,λ. (33)
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Proof. Equation (32), we see

∞

∑
ω=0

G(r)
ω,λ(ξ)

zω

ω!
=

(
2 log(1 + λz)

1
λ

eλ(z) + 1

)r

eξ
λ(z)

=

(
2 log(1 + λz)

1
λ

eλ(z) + 1

)r−k(
2 log(1 + λz)

1
λ

eλ(z) + 1

)k

eξ
λ(z)

=

(
∞

∑
ω=0

G(r−k)
ω,λ (ξ)

zω

ω!

)(
∞

∑
ν=0

G(k)
ν,λ

zν

ν!

)

=
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)
G(r−k)

ω−ν,λ(ξ)G
(k)
ν,λ

)
zω

ω!
, (34)

which gives the result (33).

Theorem 11. Let ω ≥ 0. Then

G(r)
ω,λ(ξ + η) =

ω

∑
ν=0

(
ω

ν

)
G(r)

ω−ν,λ(ξ)(η)ν,λ. (35)

Proof. By (35), we note that

∞

∑
ω=0

G(r)
ω,λ(ξ + η)

zω

ω!
=

(
2 log(1 + λz)

1
λ

eλ(z) + 1

)r

e(ξ+η)
λ (z)

=
∞

∑
ω=0

G(r)
ω,λ(ξ)

zω

ω!

∞

∑
ν=0

(η)ν,λ
zν

ν!

=
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)
G(r)

ω−ν,λ(ξ)(η)ν,λ

)
zω

ω!
. (36)

Comparing the coefficients of z, we get (35).

Theorem 12. Let ω ≥ 0. Then

G(r)
ω,λ(ξ) =

ω

∑
l=0

l

∑
m=0

(
ω

l

)
G(r)

ω−l,λ(ξ)mS2,λ(l, m). (37)

Proof. From (32), we observe that

∞

∑
ω=0

G(r)
ω,λ(ξ)

zω

ω!
=

(
2 log(1 + λz)

1
λ

eλ(z) + 1

)r

[eλ(z)− 1 + 1]ξ

=

(
2 log(1 + λz)

1
λ

eλ(z) + 1

)r ∞

∑
m=0

(
ξ

m

)
(eλ(z)− 1)m

=

(
∞

∑
ω=0

G(r)
ω,λ

zω

ω!

)(
∞

∑
m=0

(ξ)m

∞

∑
l=m

S2,λ(l, m)
zl

l!

)

=

(
∞

∑
ω=0

G(r)
j,λ

zω

ω!

)(
∞

∑
l=0

l

∑
m=0

(ξ)mS2,λ(l, m)
zl

l!

)
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=
∞

∑
ω=0

(
ω

∑
l=0

l

∑
m=0

(
ω

l

)
G(r)

ω−l,λ(ξ)mS2,λ(l, m)

)
zω

ω!
, (38)

which complete the proof.

Theorem 13. Let ω ≥ 1. Then

4λG
(r)
ω,λ(ξ) = ωG(r)

ω−1,λ(ξ). (39)

Proof. By applying the difference operator4λ to both sides of Equation (32), we get

4λ

(
∞

∑
ω=1

G(r)
ω,λ(ξ)

zω

ω!

)
= 4λ

((
2 log(1 + λz)

1
λ

eλ(z) + 1

)r

(1 + λz)
ξ
λ

)

and then we have

∞

∑
ω=1
4λG

(r)
ω,λ

zω

ω!
=

(
2 log(1 + λz)

1
λ

eλ(z) + 1

)r

4λeξ
λ(z)

=

(
2 log(1 + λz)

1
λ

eλ(z) + 1

)r

eξ
λ(z)z

=
∞

∑
ω=1

G(r)
ω,λ(ξ)

zω+1

ω!
. (40)

Therefore, by (40), we obtain (39).

Theorem 14. Let ω ≥ 0. Then

∂

∂ξ
G(r)

ω,λ(ξ) =
ω

∑
ν=0

(
ω

ν

)
G(r)

ω−ν,λ(ξ)(1)ν,λ. (41)

Proof. By applying the derivative operator δ
δξ with respect to ξ to both sides of Equation (32),

we have

∂

∂ξ

(
∞

∑
ω=0

G(r)
ω,λ(ξ)

zω

ω!

)
=

∂

∂ξ

((
2 log(1 + λz)

1
λ

eλ(z) + 1

)r

(1 + λz)
ξ
λ

)
∞

∑
ω=0

∂

∂ξ
G(r)

ω,λ(ξ)
zω

ω!

=

(
2 log(1 + λz)

1
λ

eλ(z) + 1

)r
∂

∂ξ
(1 + λz)

ξ
λ

=

(
2 log(1 + λz)

1
λ

eλ(z) + 1

)r

(1 + λz)
ξ
λ (1 + λz)

1
λ

=

(
∞

∑
ω=0

G(r)
ω,λ(ξ)

zω

ω!

)(
∞

∑
ν=0

(1)ν,λ
zν

ν!

)

=
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)
G(r)

ω−ν,λ(ξ)(1)ν,λ

)
zω

ω!
. (42)

By, comparing the coefficients of zω on both sides, we get the following theorem.



Symmetry 2022, 14, 1500 10 of 15

3. Degenerate Genocchi Polynomials of the Second Kind Attached with Dirichlet
Character χ

Here, we introduce degenerate Genocchi polynomials of the second kind attached
with Dirichlet character χ and establish some properties of these polynomials by applying
the generating function. First, we present the following definition.

Let d ∈ N with d ≡ 1(mod2) and χ be a Dirichlet character with conductor d. We
define generalized degenerate Genocchi polynomials of the second kind attached to χ
given by the following generating function

2 log(1 + λz)
1
λ

(1 + λz)
d
λ + 1

d−1

∑
a=0

(−1)aχ(a)(1 + λz)
(a+ξ)

λ

=
∞

∑
ω=0

Gω,χ,λ(ξ)
zω

ω!
. (43)

When ξ = 0, Gω,χ,λ = Gω,χ,λ(0) are called the generalized degenerate Genocchi
numbers of the second kind attached to χ.

We note that

lim
λ→0

2 log(1 + λz)
1
λ

(1 + λz)
d
λ + 1

d−1

∑
a=0

(−1)aχ(a)(1 + λz)
(a+ξ)

λ

=
∞

∑
ω=0

lim
λ→0

Gω,χ,λ(ξ)
zω

ω!

=
2z

edz + 1

d−1

∑
a=0

(−1)aχ(a)e(a+ξ)z =
∞

∑
ω=0

Gω,χ(ξ)
zω

ω!
. (44)

Thus, by (43) and (44), we have

lim
λ→0

Gω,χ,λ(ξ) = Gω,χ(ξ) (ω ≥ 0).

Theorem 15. Let ω ≥ 0. Then

Gω,χ,λ(ξ) =
ω

∑
l=0

(
ω

l

)
λl DlGω−l,χ,λ(ξ). (45)

Proof. From (43), we have

∞

∑
ω=0

Gω,χ,λ(ξ)
zω

ω!
=

2 log(1 + λz)
1
λ

(1 + λz)
d
λ + 1

d−1

∑
a=0

(−1)aχ(a)(1 + λz)
(a+ξ)

λ

=

(
log(1 + λz)

λz

)(
2z

(1 + λz)
d
λ + 1

d−1

∑
a=0

(−1)aχ(a)(1 + λz)
(a+ξ)

λ

)

=

(
∞

∑
l=0

Dl
λlzl

l!

)(
∞

∑
ω=0

Gω,χ,λ(ξ)
zω

ω!

)

=
∞

∑
ω=0

(
ω

∑
l=0

(
ω

l

)
λl DlGω−l,χ,λ(ξ)

)
zω

ω!
. (46)

which proves the identity (45).
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Theorem 16. Let ω ≥ 0. Then

Gω,χ,λ(ξ) = dω−1
d−1

∑
a=0

(−1)aχ(a)Gω, λ
d

(
a + ξ

d

)
. (47)

Proof. From (43), we observe that

2 log(1 + λz)
1
λ

d−1

∑
a=0

(−1)aχ(a)(1 + λz)
(a+ξ)

λ =
1
d

d−1

∑
a=0

(−1)aχ(a)
2 log(1 + λz)

1
λ

(1 + λz)
d
λ + 1

(1 + λ)(
a+ξ

d )dz

=
1
d

d−1

∑
a=0

∞

∑
ω=0

(−1)aχ(a)Gω, λ
d

(
a + ξ

d

)
(dz)ω

ω!

=
∞

∑
ω=0

(
dω−1

d−1

∑
a=0

(−1)aχ(a)Gω, λ
d

(
a + ξ

d

))
zω

ω!
, (48)

which complete the proof.

Theorem 17. Let ω ≥ 0. Then

Gω,χ,λ

(
a + ξ

λ

)
=

ω

∑
l=0

(
ω

l

)
λl
∫

X
(γ)ldµ0(γ)

∫
X

χ(η)(ξ + η)ω−l,λdµ−1(η). (49)

Proof. From (4) and (43), we can derive

z
∫

X

∫
X
(1 + λz)γχ(η)(1 + λ)(ξ+η)zdµ0(γ)dµ−1(η)

=

(
log(1 + λz)

λz

)(
2z ∑d−1

a=0(−1)aχ(a)(1 + λz)
a
λ

(1 + λz)
d
λ + 1

(1 + λz)
ξ
λ

)

=
log(1 + λz)

1
λ ∑d−1

a=0(−1)aχ(a)(1 + λz)
a+ξ

λ

(1 + λz)
d
λ + 1

=
∞

∑
ω=0

Gω,χ,λ

(
a + ξ

λ

)
zω

ω!
. (50)

On the other hand, we have

z
∫

X

∫
X
(1 + λz)γχ(η)(1 + λ)(ξ+η)zdµ0(γ)dµ−1(η)

=
∞

∑
ω=0

(
ω

∑
l=0

(
ω

l

)
λl
∫

X
(γ)ldµ0(γ)

∫
X

χ(η)(ξ + η)ω−l,λdµ−1(η)

)
zω

ω!
. (51)

Therefore, by (50) and (51), we obtain (49).

Theorem 18. Let ω ≥ 0. Then

Gω,χ,λ(ξ) =
ω

∑
ν=0

(
ω

ν

)
Gν,χ,λ(ξ)ω−ν,λ. (52)

Proof. From (43), we see that

∞

∑
ω=0

Gω,χ,λ(ξ)
zω

ω!
=

2 log(1 + λz)
1
λ

(1 + λz)
d
λ + 1

d−1

∑
a=0

(−1)aχ(a)(1 + λz)
(a+ξ)

λ



Symmetry 2022, 14, 1500 12 of 15

=

(
2 log(1 + λz)

1
λ

(1 + λz)
d
λ + 1

d−1

∑
a=0

(−1)aχ(a)(1 + λz)
(a)
λ

)
(1 + λz)

ξ
λ

=

(
∞

∑
ν=0

Gν,χ,λ
zν

ν!

)(
∞

∑
ω=0

(ξ)ω,λ
zω

ω!

)

=
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)
Gν,χ,λ(ξ)ω−ν,λ

)
zω

ω!
. (53)

Equating the coefficients of z, we get (51).

4. Computational Values and Graphical Representations of Degenerate Genocchi
Polynomials of the Second Kind

In this section, certain zeros of the degenerate Genocchi polynomials of the second
kind Gω,λ(ξ) and beautiful graphical representations are shown.

For λ 6= 0, the first five degenerate Genocchi polynomials of the second kind are:

G0,λ(ξ) = 0, G1,λ(ξ) = 1, G2,λ(ξ) =
1
2
(2ξ − λ− 1),

G3,λ(ξ) =
1
6

(
3ξ2 − 3ξ − 6λξ + 2λ2 + 3λ

)
,

G4,λ(ξ) =
1

24

(
1− 6λ3 − 18λ(ξ − 1)ξ − 6ξ2 + 4ξ3 + 11λ2(2ξ − 1)

)
.

For instance, Figure 1 shows the plots of some degenerate Genocchi polynomials of
the second kind.

Figure 1. Graphs of degenerate Genocchi polynomials of the second kind for λ = 1, ω = 10 (red),
ω = 15 (blue), and ω = 20 (orange).

Further, we calculate an approximate solution satisfying the degenerate Genocchi
polynomials of the second kind Gω,λ(ξ) = 0, for λ = ±1. The results are displayed in
Tables 1 and 2.
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Table 1. Approximate solutions of Gω,1(ξ) = 0.

ω ξ

2 1

3 0.736237, 2.26376

4 0.585786, 2 , 3.41421

5 0.49031, 1.82092, 3.17908, 4.50969

6 0.42671, 1.69175, 3, 4.30825, 5.57329

7 0.383053, 1.59643, 2.85886, 4.14114, 5.40357, 6.61695

8 0.352346, 1.5254, 2.74661, 4, 5.25339, 6.4746,
7.64765

9 0.330213, 1.47227, 2.65719, 3.88103, 5.11897, 6.34281,
7.52773, 8.66979

10 0.313827, 1.43242, 2.58614, 3.7812, 5, 6.2188,
7.41386, 8.56758, 9.68617

Table 2. Approximate solutions of Gω,−1(ξ) = 0.

ω ξ

2 0

3 −1.26376, 0.263763

4 2.41421, −1 , 0.414214

5 −3.50969, −2.17908, −0.820923, 0.50969

6 −4.57329, −3.30825, −2, −0.691752, 0.57329

7 −5.61695, −4.40357, −3.14114, −1.85886, −0.596427, 0.616947

8 −6.64765, −5.4746, −4.25339, −3, −1.74661, −0.525404,
0.647654

9 −7.66979, −6.52773, −5.34281, −4.11897, −2.88103, −1.65719,
−0.472272, 0.669787

10 −8.68617, −7.56758, −6.41386, −5.2188, −4, −2.7812,
−1.58614, −0.432424, 0.686173

The plots of real zeros of Gω,λ(ξ), for λ = ±1 and ω = 2, . . . , 10 are presented in
Figure 2.

(a) (b)

Figure 2. Plots of real zeros of Gω,±1(ξ), for ω = 2, . . . , 10. (a) Plots of real zeros of Gω,1(ξ), for
ω = 2, . . . , 10. (b) Plots of real zeros of Gω,−1(ξ), for ω = 2, . . . , 10.
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The stacks of real zeros of Gω,λ(ξ), for λ = ±1 and ω = 2, . . . , 10 are presented in
Figures 3 and 4, respectively.

Figure 3. Stack of real zeros of degenerate Genocchi polynomials of the second kind Gω,1(ξ), for
ω = 2, . . . , 10.

Figure 4. Stack of real zeros of degenerate Genocchi polynomials of the second kind Gω,−1(ξ), for
ω = 2, . . . , 10.

5. Conclusions

Motivated by [5,13], in this paper, we defined degenerate Genocchi polynomials
of the second kind, which turn out to be classical ones in exceptional cases. We have
also derived their explicit expressions and some identities involving them. Later, we
introduced the higher-order degenerate Genocchi polynomials of the second kind and
deduced their explicit expressions and some identities by using the generating functions
method, analytical means, and power series expansions. Additionally, we introduced
degenerate Genocchi polynomials of the second kind attached to Dirichlet character χ and
obtained some properties of these polynomials.
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