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A piecewise-linear nerve conduction equation is investigated further. The theory of Poincare 
halfmaps induced by the flow of a three-dimensional linear saddle-focus is developed. Using a 
description of the dynamical system in diagonalized coordinates, a canonical formulation of two-
dimensional halfmaps is found. This leads for each hal fmap to an implicit scalar equation plus a 
side condition. The effect of the halfmaps on different types of invariant curves occurring is 
investigated. Thereby the capacity of the halfmaps to separate adjacent points (such that the 
images acquire a finite distance) is shown. Two of three possible mechanisms for separating 
points are investigated in detail. The regions in the canonical parameter space where the 
different separating mechanisms appear are indicated analytically. The possible appearance of 
chaotic solutions, at least in the neighborhood of homoclinic trajectories in state space, is 
demonstrated. The underlying separation mechanism is present also in regions of state space far 
from a homoclinic orbit. 

1. Introduction 

This is the first paper of a series treating the 
propert ies of piecewise-linear dynamical systems in 
terms of Poincare hal fmaps . 

Piecewise-defined continuous dynamical systems 
are a very interesting class of systems because they 
allow to combine dif ferent types of dynamical 
behavior in different regions of state space. So this 
is the most general class possible. At first sight, 
requir ing the partial dynamics that act on each of 
the regions to be linear, appears like a severe re-
striction. This is not the case, however. Fo r a small 
enough size of the regions chosen, any nonlinear 
dynamical system can be approximated to any 
accuracy by a piecewise-linear one [1, 2]. On the 
o ther hand, even those models using only a few 
regions in state space show a rich variety of types of 
qual i ta t ive dynamical behavior already (cf. [3, 4]). 
This aspect of piecewise-linear dynamical systems is 
more interesting than the capability to approx imate 
arbi t rary nonlinear systems. It seems as if most, if 
not all, types of quali tat ive dynamical behavior 
appea r in "s imple" (few-region) piecewise-linear 
systems. This class therefore provides ra ther easy 
to investigate prototypes for continuous nonlinear 
dynamical systems in general. 
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Piecewise-linear dynamical systems are especially 
amenab le to analysis because inside each region of 
state space the solutions can be found in an ele-
mentary manner . The main problem is to determine 
the entry and exit points of a trajectory for each 
region. If the boundar ies separat ing the regions are 
regular [5], the l inear dynamics inside induce non-
singular point - t ransformat ions between the bound-
aries (or of one part of a boundary onto another 
part, respectively). Fo r two-region dynamical sys-
tems these point - t ransformat ions are called Poin-
care ha l fmaps [6, 7]. This term stems f rom the fact 
that for these systems, the boundary between the 
regions — more precisely, that port ion of the bound-
ary where the trajectories cross f rom say region A to 
region B - may be used as a conventional Poincare 
cross section. So a composi t ion of the two "hal f -
m a p s " yields a Poincare map. 

The example t reated here is among the simplest 
in three variables: It is the well-known Rinzel-
Keller equat ion of nerve conduct ion [3], slightly 
modi f ied [2, 8]. The system contains just two regions 
separated by a flat plane, and the two dynamics 
d i f fer only by the nonhomogeneous part of the right 
hand side. Unfor tunate ly , the ha l fmaps that one 
meets in each region of state space can only be 
formula ted implicitly. Nevertheless, some inter-
esting substructures — which may be used to prove 
the possibility of chaot ic solutions — can be cal-
culated explicitly, using the analytical propert ies of 
ha l fmaps . 
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The appearance of chaos in nerve conduct ion 
equat ions [9, 10] is one of the most surprising 
findings in the present class of systems. Na tu re 
divides the nerve f iber (or, as we will see, t ime) into 
roughly equidistant port ions (cf. [8]), and then 
makes use only of the "pulse - nonpulse" (supra- or 
subthreshold) distinction as useful in format ion , no 
mat ter what the detai led shape of the pulse. This 
means that the message t ransmit ted by a nerve is 
completely encoded in the pulse sequence [11, 12], 
Chaot ic solutions of the nerve conduct ion equat ion 
thus imply chaotic pulse sequences on the nerve. 
This, to us, points to the existence of a potentially 
rich "vocabulary" . 

2. The Mode l Sys tem 

As our model system, we take a modi f ied Rinzel-
Keller equat ion [3] of nerve conduct ion [2, 8], 

9,m = Duud2
ru + n[—u + v — b + 0(u — d)], 

5,v = — eu + v . (1) 

Here the theta funct ion is 9 (x) = 0 if .x < 0 and 
9 (x) = 1 if x > 0. (We leave the funct ion undef ined 
at x = 0 for reasons of symmetry and will obta in 
trajectories at that point by a l imiting process, cf. 
[5].) We rescale space by a factor of 
int roduce a wave variable (p by looking for solutions 
of constant shape, 

(p\= r— ct (2) 

and take the first derivative of u with respect to cp 
as a new variable w. This leads us to a three-di-
mensional , first order O D E [2, 8], 

du/d<p = w, 

dv/dcp = (eu - v)/c , 

dw/d <p = /i[u-v+ b-6(u-d)]-cw . (3) 

For a detailed discussion of the procedure leading 
f rom (1) to (3) cf. [2], Equat ion (3) is our basic 
equat ion of motion to be considered fur ther on. 
Compared to the original reac t ion-di f fus ion-equa-
tion (1), it contains an addit ional " f ree pa ramete r" , 
the wave speed c (a property of the wave-solution). 
This parameter has to be chosen in such a way as to 
fulfill the boundary condit ions of the original P D E 
[2], leading to a nonlinear eigenvalue problem. 

Let us first discuss the geometry of the state space 
of the dynamical system (3). The 9 function in the 
nonhomogeneous par t of (3) divides the state space 
T into two halves. 

T:= {(u, v, w)T u < d\ 

and 

(4) 

(5) 

(6) 

T:= {(«, v, w)T\u> d), 

with the flat separat ing plane 

S:={(u,v,w)T u = d). 

in between. It is he lpful to introduce 

o \ = 1 and ä : = - 1 , 

so that (4) now reads 

T:= {(u, v, tv)r du < öd). (4a) 

Here the " " " is ei ther a or a """', respectively. 
The steady states (L) of (3) are easily found: 

c 2 b - ( \ - 6 ) 

2(e — 1) ' 

V =eÜ, 

IV =0. 

Transforming (3) in such a way that the steady state 
L (or L, respectively) becomes the origin, both 
partial dynamics read 

(8) 

or equivalently 

— l=El. 
dtp 

Here / is the state vector and B the dynamical 
matrix. Fur ther on we shall always use steady state 
coordinates, such as ü = u — L7, for example. In 
addi t ion we omit the " " for the coordinates, as we 
already did in (8). 

Only for pa ramete r values 

1 j ( 0 0 

1 = 1 e/c - 1 / c 
J \M -P 

and 

e- d> b + d , 

e > l , (9) 

excitations (and hence wave propagat ion) phenom-
ena appear [13]. So only this part of the parameter 
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space of (1) needs to be considered. Here we find 
( f rom (9)) that 

d > b/(e - 1) = U. (10) 

The steady state L thus is s i tuated inside F, i.e., it is 
a real steady state. On the o ther hand, we also 
obtain from (9) 

<d. ( I D 

This means that the steady state L too is s i tuated 
inside F. It is a virtual steady state [13] for the 
dynamics of T. 

Some words on the dynamics of the model system 
(3). The spectrum of the matr ix B as a funct ion of 
the wave speed c is shown and discussed in [2], so 
we skip this topic here and mention only two 
general aspects. First, the steady states are always 
unstable for p > 1. The characterist ic equat ion of B 
reads 

A3 - /.2 tr B + A min B - det B = 0 , 

whereby 

c 2 + 1 
tr B = , m i n B = l - ^ , 

d e t B = — ( e - 1). 
c 

(12) 

This cubic equation possesses (by Descartes ' rule) 
always one real negative root (Ai) and two positive 
real or complex conjugate roots (A2,A3). Restrict ing 
our attention to the latter case, we factorize (12) to 
obtain 

0 = ( / - z 1 ) - ( A - A 2 ) - ( / . - A 3 ) 

= A 3 - A 2 ( A , + 2 R e A 2 ) 

+ A (2 Aj Re A 2+ : A212) - A, | A2|2 (13) 

Compar ing the coefficient of (12) and (13) for A 
leads one to 

A.2 2 + 2 Ai Re A2 = 1 — n . 

Thus 

Re A? = - M ~ 2 
2 A, 

(14) 

As n > 1 and A] < 0, Re A2 will always be positive 
and hence the focal parts of the steady states are 
unstable. 

Second, a certain quant i ta t ive relation between 
the eigenvalues is always fulfilled. Compar ing the 
coefficients of A2 f rom (12) and (13) one finds 

c 2 + 1 
— (A] + 2 Re A2) = , 

that is 

Hence 

or 

— A] = 2 R e A2 + (c2 + l ) / c 

- A] > 2 Re A2, 

A] / R e A2 > 2 . (15) 

The latter relation between the first eigenvalue and 
the real part of the second means that the system 
fulfills the prerequisi tes of Shil 'nikov's theorem [14] 
( Ai > Re A2), and therefore may possess at least 
one type of chaotic solutions if a homoclinic tra-
jectory in state space is present (see Section 5). 

As to the eigenvectors of the dynamical matr ix B, 
they are easily found to be 

= (16) 
1 + A, c 

A, 

(cf. [2]), de termining the t ransformat ion matr ix 

M:=(t\t2,t3) (17) 

which diagonalizes B : 

(18) 
M 0 0 

A := IH - 1 BIH = 1 0 h 0 
\ o 0 

Thus the state vectors t ransform like 

/ = i = IH y = IH k , (19) 

or equivalently 

k = H"1/. 

The dynamics of system (8) in the diagonalized co-
ordinates (/:-space, using the eigenvectors (16) as a 
basis) now simply reads 

k=Ak. 
d cp 

(20) 
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Of part icular interest are the t ransformat ion 
propert ies of the switching condit ion in the separ-
ating plane S, t ransformed to steady state coordi-
nates. We obtain for this condit ion (u = d - Ü=: S), 
when written in diagonalized coordinates, 

A- + Y +z=x+2 Re y=S. 

Putting 

77 := Re y and c Im y 

the switching condit ion (21) simplif ies to 

x + 2rj = S. 

(21) 

(22) 

(23) 

The formulation of the dynamics in (20) describes 
the system in the state space IR x C2 . As two of the 
eigenvalues (A2 and A3) are complex conjugate , 
necessarily a side condit ion z = y arises. It therefore 
appears more convenient to re formula te the dy-
namics of the system in the space IR x C (in x, y 
coordinates) without a side condition. 

As (23) already fits into this representat ion, the 
separating plane S is written now as 

S = {(-v,y)r!>/ = 
S-x 

(24) 

This means that all points of S are characterized 
uniquely by their x and £ coordinates while rj be-
comes a funct ion of x alone. A reformula t ion of the 
dynamics in the new state space will be given in the 
next Section. 

3. The Canonical Parameter Space 

After having considered a concrete model system, 
let us now def ine a more abstract class of systems 
possessing the required properties. Firstly, the geo-
metry of the state space is to be described by the 
position of the separat ing plane 5 and the displace-
ment of the two steady states f rom this plane. Hence 
the difference vector between the steady states 
(A = (A |, A2, A3)t:= L - L) and the position of S 
are not completely mutual ly independent : 

and 

ö-ö=(d- U ) - ( d - Ü ) 

j,= w - W= 0. 

(25) 

(26) 

As far as purely geometrical parameters are con-
cerned. there remain only b, S, and A2. In addit ion, 
there is one f ree paramete r left : An arbitrary shift of 
the whole system in the v direction. Since this causes 
only a parallel shift of equivalent halfmaps, it 
generates no new structures and can thus be ignored. 

Let us now turn to the dynamical parameters. The 
wave variable <p appears in (3) as a time-like quan-
tity. As we are only interested in the Poincare half-
maps induced by the flow of each partial system, we 
do not need to know the " s p e e d " at which the sys-
tem follows a trajectory. We therefore define a new 
" t ime" , tp\ as 

<p' := (p Re a2 • (27) 

The derivatives with respect to this new variable 
t ransform like 

(28) 
dtp' Re A2 dtp 

Since the vv variable was a l ready interpreted as the 
derivative of u with respect to (p, it now has to be re-
def ined: 

du 
w ' : = . (29) 

d(p' Re A2 

The use of cp' leads to a "normal izat ion" of the 
speed at which the system runs along a trajectory. 

For abbreviat ion, we introduce the canonical 
dynamical parameters : 

and 

Q:--

co 

Re A 

Im A 

Re A-

(30 a) 

(30 b) 

Hence for our equat ions of mot ion, we obtain in the 
old coordinates 

du 

eu 

dip' 

di__ 

dcp' R e A 2 c 

du- p 

d(p' 
[u — v + b — 6 (u — d)] — cw' (31) 

Re A 2 

and in the new (diagonal ized) coordinates: 

dx/dip' = — QX , 

dv/dip' = (1 + ico)v . (32) 
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This shows that g is the relaxation constant in the 
direction of the real eigenvector (x direct ion) while 
OJ is the angular velocity of the focal mot ion. F r o m 
now on we omit the pr imes since only the new vari-
ables will be used. 

As can be seen f rom (32), we have, by a (in 
parameter space local) gauging, condensed the infor-
mation of the formerly three (complex) eigenvalues 
into two real numbers , namely, Q and co. T h e class of 
systems to be considered therefore now contains five 
parameters (Ö, 5, A2, Q, co) which completely clas-
sify the Poincare ha l fmaps . The remain ing two 
degrees of f reedom (a v shift and an arb i t rary non-
singular t ransformat ion on cp) do not affect the 
character of the ha l fmaps . 

Let us condense the propert ies of interest of our 
class of systems into two axioms. 

SY1: The systems possess one real and one virtual 
steady state. 

This axiom reflects the proper t ies of the model sys-
tem (3). As will be shown, only one part ial system 
(the one governed by the real steady state) needs to 
be considered in detail. 

SY2: Both steady states are of the saddle-focus type 
and possess the same eigenvalues and eigen-
vectors. 

This is the most relevant axiom because it restricts 
the type of dynamical behavior that gives rise to the 
halfmaps. (A third axiom " S Y 3 " will be added for 
purely technical reasons in Section 5.) 

4. Formulation of the Halfmaps 

Inside each region of state space (T or T, respec-
tively) the trajectories of the system can be in-
dicated explicitly. For initial condi t ion, say 
(5, ß)T E T, the solution of (32) reads 

x(cp) = 5 exp(-e^), 

y(cp) = ß exp ((1 +\co)cp). (33) 

This solution is valid as long as (x(<p), y(cp))T is 
f rom T. If at cp — z the trajectory meets the require-
ments of the switching condit ion (23), the second 
dynamics takes over; here the initial condi t ion is 

a = x ( T ) + (X - X ) , 

ß = y(z) + ( Y - Y ) . (34) 

As the canonical parameters Q and co are identical 
for both part ial systems, the functional shape of the 
trajectory in T is again given by (33) (now with 
initial condit ion (34)). So if we know all the entry 
points (or the exit points, equivalently, si tuated 
inside S) of a trajectory, the solution is completely 
de termined. 

Owing to the two dif ferent possible orientat ions 
that the flow may have as it passes through S, this 
p lane is divided in a natural manner into two 
halves: 

:= {(u, v, w ) r u = S, vv > 0} 

and 

S - : = { ( « , V, vv)7" u = S, w < 0 j . (35) 

T h e simplicity of this division is due to the linearity 
of the flows. Inside S+, the system always crosses the 
boundary f rom T towards T, while the opposi te 
holds t rue for S~. These two halfplanes are separ-
ated by a straight line, 

W\={(u, v, vv)7"\u = S, w = 0}. (36) 

Along this line the trajectories are tangential to S. In 
diagonal ized (x, c) coordinates PV, may be written 
as -

(37, 
2 co 

This follows f rom (36) and the t ransformat ion equa-
tion (19). 

We are now in the posit ion to formula te the two 
Poincare h a l f m a p s P and P that are induced by the 
flows inside f a n d T, respectively: 

P: S~ S+ , (x, £)++ P (x, q) 

and 
P : S + ^ S - , (x, c ) ^ P ( x , O - (38) 

T h e complete Poincare m a p P is, as ment ioned, a 
composi t ion of these ha l fmaps : 

P = P ° P: S~ S~ , 

( A - , 0 »P(x,Z) = P{P{x,Z)). (39) 

By inserting the solution (33) into the switching 
condi t ion (23), we obtain a concrete formula t ion of 
each h a l f m a p : 

x e~QZ + 2 Re [(rj(x) + i f ) exp {(1 + i co) t}] = S. (40 a) 

This is an implicit scalar algebraic equat ion. Here 
f j ( x ) is nothing but a re formula t ion of the switching 
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condit ion (23) - namely the condit ion that 
(x, 77(x) + i c)T e S — written in the form 

r,(x) = (S-x)/2. (41) 

In addi t ion, since (40 a) contains infinitely many 
solutions, we must select the one that is relevant for 
the h a l f m a p by requiring 

a(xe~ev+ 2 Re [(77 (x) + i c ) exp{( l + i w)<p\}) 

< a S , 0 < ^ < T . (40 b) 

This inequality guarantees that the solution t of 
(40 a) is actually the first one possible in 1R+ (the 
trajectory has stayed inside F for all positive values 
of (p that are smaller than r). This condit ion will 
somet imes be omit ted in the following in order 
then to be reintroduced as a selection rule (cf. Sec-
tion 6). 

The implicit equat ion (40 a) with side condi t ion 
(40 b) cannot be solved explicitly for all points of S+ 

(or S - , respectively). Nevertheless, it can be solved 
analytically for some singular points. Moreover the 
images of special curves in 5 can be calculated 
(Sections 6 through 8). 

5. Statical and Dynamical Manifolds 

In the preceding Section it was shown how a 
trajectory is completely def ined by all its entry and 
exit points of the two regions T and f , respectively. 
Hence the structures that are generated by these 
points, inside the separat ing plane S, de te rmine the 
phase portrait of the dynamical system. On the 
other hand, the propert ies of structures in state 
space (like manifolds) , can too be found again as 
propert ies of sets of points in S. 

As the two partial dynamics are linear, the stable 
and unstable manifolds of the steady states coincide 
inside each halfspace with those spanned by their 
eigenvectors. Hence the two stable mani fo lds are 
simply 

M, := K + y.r2. x e <T (42) 

(with the " " " aga in standing for either " " " or " ~ 
respectively). These are the planes of the two steady 
states (of saddle-focus type) which contain the foci. 
Their intersections with the separat ing plane S are 
two straight lines, 

£ := {(x, y)T x = 0 , >7=7700! , (43) 

whereby 

= (44) 

cf. (41). 
The two parallel lines I and I cut out a strip 5° 

f rom S, cf. Figure 1. Within this strip S°, almost all 
of the entry and exit points of any concrete solution 
will be found. This is due to the fact that every 
trajectory with f ini te initial condit ion necessarily 
relaxes in the direct ion towards the stable manifold 
that is pert inent and will therefore, sooner or later, 
enter the (unbounded) space between the two parallel 
planes M s and A/s in order to remain there for-
ever. Specifically all periodic and nonperiodic limit-
ing structures of the Poincare m a p P can be found 
inside of S°. 

This strip S° can (like S itself) now be divided up 
fur ther into the two port ions 

S 0 + := 5° n 

and 
5 0 - (45) 

Turning to the unstable manifolds , their equa-
tions 

Mu = K+ v/1 , v € IR , (46) 

are especially s imple since they are spanned by the 
real eigenvector alone. The intersection points of 
these two mani fo lds with S are 

/f := {(.y, y)T x = S,y = 0] . (47) 

u 
Fig. 1. Geometry of the phase space T of the model system 
(3). The stable (Ms) and the unstable (MJ manifolds of 
the two steady states L are shown. The virtual parts of the 
stable manifolds are dashed. The lines t and the points Ii 
are the intersections of the stable and unstable manifolds, 
respectively, with the separating plane S. Axes: u = 
- 0 . 1 . . . 0.2. r = - 1.3 . . . 0.5. vv = - 2 . . . 1.4. System pa-
rameters: b = \,d= 0.2, e = 15,//= 100, c = 3.5. 
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These points will be called "homocl ino id" since h is 
the last entry point of a homoclinic trajectory (as 
will be shown shortly). 

In analogy to the / ; x above, we now def ine two 

-Vn := Ö (48) 

which give the x coordinates of the two homo-
clinoid points h. 

The simple s t ructure of both (44) and (48) is a 
consequene of the fact that no normalizat ion of the 
eigenvectors t' was used (recall that the first row of 
the matr ix 1H contains only l 's, cf. [17]). Fo r normal-
ized /', we instead would obta in: 

and 

x0= d/Ml 

f / x = S/2Mn, (49) 

respectively. 
Within the stable and unstable manifolds , very 

special t rajectories are partially located. When a 
solution spirals out f rom the real steady state K 
inside of M s (the two-dimensional stable manifold) , 
it crosses the separa t ing plane S in a point of L, i.e., 
with vanishing x component . The same trajectory 
may, a f te r having crossed 5 for an even number of 
times, eventually reenter T in such a way that its 
y component is zero (no matter how unlikely this 
may be). In this singular situation, the system 
returns towards the steady state K inside the un-
stable mani fo ld M u . It could leave this point again 
only af ter an inf ini te interval of the " t i m e " cp. Such 
a trajectory is homocl inic in state space. 

Since inside the unstable manifold M u all phase 
in format ion gets lost (y = 0), the homoclinic tra-
jectory would leave the steady state — after the 
ment ioned " inf in i te interval of t ime" - with an 
arbi t rary phase. This means that a homoclinoid 
point h is m a p p e d by a ha l fmap onto the whole 
line I . Hence these two points are singular points of 
the two ha l fmaps . 

Homocl inic t rajectories in state space play an 
impor tan t role in the theory of excitable media (cf. 
[15]). They descr ibe finite wavetrains on an infinite 
l inear f iber [2], cf. also [10], Homoclinic trajectories 
are also impor tan t in chaos theory (cf. [16]). A theo-
rem of Shil 'nikov [14] shows that under a mild con-
dit ion ment ioned above, there exist infinitly many 
per iodic solutions of d i f fer ing periods in a neigh-
borhood of these trajectories. 

A necessary condi t ion for the appearance of a 
homoclinic solutions is 

h e (50) 

Only in this case is there the possibility of a return 
to K. Equat ion (50) is satisfied in the paramete r 
space of (3) for two intervals of the wavespeed c 
which represent the stable and the unstable branch, 
respectively, of a certain dispersion relation [2, 17]. 

While the existence of a homocl inic trajectory is 
sufficient for chaos to exist, it certainly is not 
necessary. Instead of requir ing a homocl inic tra-
jectory (50), it suff ices to consider systems fulfi l l ing 
the following weaker axiom: 

SY3: For all systems to be considered h is f rom S~. 

Here the superscript of S (restricting it to the 
strip S°) is missing. This axiom serves a purely 
technical purpose. It rules out systems which are not 
able to circle the unstable mani fo ld M u more than 
once before crossing the separat ing plane S. This 
sort of behavior is not of interest. Omit t ing these 
systems spares us having to dist inguish dif ferent 
subcases in the following. 

The above mani fo lds M s / u are l imit ing cases of 
more general structures. All t rajectories that d i f fer 
in their initial condit ions by a shift in phase only 
belong to the same, more general mani fo ld . 

As an example, let us look at solutions of (32) 
with initial condi t ion (a, ß)T. Then in cylindrical 
coordinates (with r the absolute value, and y the 
pase of y, respectively) the trajectory is found to be 

A- {<p) = 

/•(<?):= y (<p) = r0e', 

/(cp) := arg y (cp) = x0 + co cp, 

(51a) 

(51b) 

(51c) 

where r 0 = \ß\ , and y0
 = a r § ß- This shows that tra-

jectories with initial condit ions d i f fer ing by a 
certain phase, cont inue to d i f fer by exactly this 
phase through all values of cp. 

Choosing i = jx 0 for convenience, we elim-
inate the pa ramete r of representat ion cp by using 
(51 a), arriving thereby at a purely geometrical 
representat ion of each mani fo ld : 

/ / ( / - 0 ) : = j ( x , V') y = r 0 

-i/e\ 
(52) 

These manifo lds may be called "dynamica l " be-
cause the dynamical evolution of the system always 
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mm 

Fig. 2. Example of a dynamical manifold • ^(>o) with 
r0 = 0.15. The two-dimensional stable manifold (AQ of the 
steady state separates the two branches of the dynamical 
manifold (characterized by positive and negative values 
of .Y, respectively). The unstable manifold (Mu) is the axis 
of rotational symmetry. 

takes place on such a mani fo ld as long as the system 
remains inside the same halfspace T. 

As (52) shows, each dynamical man i fo ld pre-
serves rotational symmetry , with radius r depend ing 
on .Y: 

- 1 /Q 

(53) / - ( . Y ; / - 0 ) = /-( 

A dynamical mani fo ld is thus character ized by a 
single real positive paramete r , /-0 (see F igure 2). 
Hence a natural order ing on the dynamical mani-
folds is induced, this proper ty will be used fre-
quently. 

6. Intersection of the D y n a m i c a l M a n i f o l d s 
with the Plane S 

As all t rajectories of each half system remain 
inside a dynamical mani fo ld until they become 
eligible to switch dynamics (23), any entry and exit 
point of a trajectory must lie on the same intersec-
tion curve of the per t inent dynamical man i fo ld with 
the separating plane S. 

Before treating the general propert ies of the 
ment ioned curves, let us have a brief look at the 
intersections of the . //'s with another type of planes. 
The plaes X0 (x = x 0 ) are parallel to the stable (two-
dimensional) mani fo lds of the steady states so that 
the intersection curves in quest ion are circles. The 
great advantage of treating these planes is their 
having constant x values. 

W e therefore def ine , in analogy to the h a l f m a p s P 
(38), the two maps 

and 

ß : Ä o 

Q-.x* n + i c H- Q (n + i 0 . (54) 

T h e inverse of Q can be found using (51a) . This 
equat ion yields, for the durat ion of evolut ion under 
the dynamics of each halfspace, 

1 
(p<2 In 

Hence Q 1 can be calculated explicitly: 

(55) 

+ i c e x p ( - ( l + i c o ) ^ ) . (56) 

All those structures for which the t ransformat ions 
( induced by the dynamics of the half systems) 
between S+ (or S~, respectively) and X0 are non-
singular can be calculated inside the X0 planes. This 
offers an advantage because here the explicit m a p 
Q~ ] is available. 

Let us now look at the intersection of the dynam-
ical manifolds with S. As the two part ia l dynamics 
are identical, it suffices to treat the h a l f m a p P (the 
one possessing more structure due to the presence of 
a " r ea l " steady state). We assume the convention 
x'o > 0 and suppress the bar where possible. 

First a useful fact. The planes X0 and S intersect 
in a straight line parallel to 27. On this line the real 
par t o f y vanishes: 

rj{x) = rj{x (57) 

There fo re the imaginary part of y (the numerical 
value of c) yields the pertinent r0 of the dynamical 
mani fo ld intersecting S at that point. 

In order now to investigate the intersection curve 
F(/-0) of a dynamical manifold . # ( r 0 ) with S, we 
choose the geometrical x representat ion given by 
(55). Let us first look at the x interval, specific to a 
given manifold // (r0), within which an intersection 
occurs (Figure 3). The word " intersect ion" is used 
here in a more general, set theoretical sense (non-
transversal points of contact belong to the intersec-
tion curve). Therefore the criterion for an intersec-
tion to exist is simply, whether at a given value of x, 
the dynamical mani fo ld possesses both u values that 
are greater or equal than <5, and u values less or 
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Fig. 3. Intersection of the separating plane 5 with a 
dynamical manifold coming from the halfspace T 
with r0 = 0.15. Axes and system parameters as in Figure 1. 

X1 X 2 *3 \ 
Fig. 4. The graph of the function r(x;r0) shown for two 
different values of r0. One sees that it intersects the piece-
wise-straight function rj(.x) j in either two or four points. 
The number of intersection points, in turn, determines the 
character of the intersection curve F{r0) (shown in 
Figure 5). 

equal than (5. It is sufficient to look at extremal 
values of u for the x in question. These extremal 
values are invariably reached at d; = 0 (no mat te r 
what the values of x and /-0), because in this case the 
real part of y becomes equal to the radius of the 
dynamica l manifold (cf. (19)), 

>7(.Y) = ± ! y ( x ) | = ± r ( x 7 / - 0 ) . (58) 

Inserting (58) into (23), we obta in a condit ion for an 
intersection point to exist 

rj(x) < r (x; r0) . (59) 

Here r(x;r0) is the radius of the dynamical mani-
fold (53), at the level x. 

To find out in what x interval the condit ion (59) 
can be fulfi l led, we look for the zeros of the 
funct ion F(x\r0):= rj (x) | — r (x; r0) which is con-

tained in (59). This funct ion possesses one zero 
(A',) inside the interval ( - o o , 0 ) ; either no zero or 
else two zeros (x 2 , x3) (which may be degenerate) 
inside the open interval (0, x 0 ) ; and exactly one zero 
(x4) inside (x 0 , oo). This follows directly f rom Fig. 4 
using some elementary a lgebraic reasoning [17]. 

Therefore , the intersection curves r (r0) of 
with S are given by all points with 

r(x;r0)2 = rj(x)2 + Q2. 

Tha t is, 

F(r0) :={(*. Or| £ = £(*)}. 

whereby 

C(x) = ± ] / r ( x ; r 0 ) 2 - / / ( x ) 2 

= + , 7 X ~2 / q (<5 — x')2 

'0 
*0 4 

(60) 

This was obta ined by using the expressions (41) and 
(53) for >7(x) and /-( . \ ; / 0) , respectively. Note that 
the r s , like t h e . //'s, are character ized by one real 
pa ramete r r0 that induces an order ing on these 
curves. The r curves can be classified according 
to the n u m b e r of zeros of the funct ion F. When 
there is just one zero (x, or x4) present inside 1R+ 

(or IR", respectively), the intersection curve is a 
s imply connected curve that is shaped like a Greek 
letter Q. For three d i f fe ren t zeros (x 2 , x 3 , x4) of F 
present inside IR+, the above funct ion £ (x) is real-
valued on the two disjoint intervals (0, .x2] and 
[x 3 , x 4 ] , meaning that the intersection curve F(r0) 
consists of a closed curve, called an isola, plus an 
open arc (called base line) that hugs I for large 
values of £ . 

Note that the curves F (r0) of (60) depend only on 
one of the two canonical pa ramete rs describing the 
sytem dynamics, namely Q, and not on the angular 
velocity co. 

W h e n the zeros x 2 and x 3 of the funct ion F are 
degenerate , the two branches of an ß - c u r v e coalesce 
(or equivalently, the base line touches the isola) and 
fo rm a Cartes ian leaf. This l imiting case is of 
special interest because this curve divides between 
the (as we shall see) ra ther s imple behavior of the 
h a l f m a p on an ß - c u r v e and the (potentially very 
rich) behavior on an isola. Secondly, the point in 
which the two branches of the leaf meet can be 
calculated explicitly; cf. F igure 5. 



1020 C. Kahlert and O. E. Rössler • Analytical Properties of Poincare Halfmaps 

w ) 

Fig. 5. Intersection curves r(r0), of one branch of a 
dynamical manifold // (/'0), with the separating plane 5. 
The three possible types (see b) are: (I) an isola with its 
corresponding base line. (II) a Cartesian leaf (as a limiting 
case), and (III) an ß-curve. In part (a), these curves are 
visualized in the 5-plane of the model system. In part (b), 
the same curves are shown in a model independent .Y, Q 
representation (in diagonalized coordinates). This repre-
sentation will be used further on. Axes for (a): v = 
V— 0.3 . . . V+ 0.3, w = — 3 . . . 3; system parameters for 
(a): b= 1. d= 0.2, e= 15, n = 100. c = 3.5. Axes for (b): 
c, = — 0.5 . . . 0.5. x = 0 . . . 1.7; canonical system parameters 
for ( b ) : g = 5 , OJ = 2, Ö= 1. 

Fig. 6. Demonstration that, for r0 = rc, the two graphs of 
?7(.Y) and r(x;r0) meet tangentially at one point (.YC). 

This is the criterion for determining both rc and xc (see 
text). 

Let us first do this (Figure 6). If the zeros x 2 and 
.V3 coalesce for a certain r0 = rc at A 2 = A3 = x c > 0, 
the two condit ions 

r(xc:rc) 
b A, 

(61) 

and 

d - 1 
— /" ( A C ; rc) = r (xc; rc) 
d A Q X C 

2 d.v 
(62) 

have to be fulfilled simultaneously. (x c is a zero 
point of F and the slopes of rj(xc) and r(xc\rc) 
have to be equal.) The second equat ion can be 

solved for x c : 

A 
2/ 

* " v0 

xc = 

Xol 

2rr\Q/{Q + l) 

= QXC 

(63) 

Inserting this result into (61) yields 

/ ? , \-i/(e + D / 2 r \e/(e + D 

Making use of the identity <5 = A0 = 2/7oo, we ob 
tain 

-(e + i)/e I'c = In (Q + F (64) 

When now inserting (64) into (63), we finally arr ive 
at the A component of the "Car tes ian point", 

A , = 
0+ 1 

(65) 

F h e corresponding c componen t of this point is 
zero by construction. Therefore the x component 
alone may be called "Car tes ian point" for short. 
This point possesses a second interesting feature: It 
is situated on the boundary between range and 
domain of the ha l fmap F, i.e., on the line W. This 
follows f rom a s traightforward calculation using 
(19) [17]. 

The radius rc characterizing the Cartesian leaf is 
critical in the sence that for /*Q < the F(/"Q) are 
isolae plus base lines, while for r0 > rc the intersec-
tion curves are ß -cu rves (cf. [17]). 

7. The Case of Complicated Isolae 

The examples of intersection curves F presented 
so far seem to suggest that all isolae are si tuated 
completely inside S~, the doma in of the h a l f m a p P. 
In fact, this is the simplest and most common case, 
but it is not the only possible one. Any isola that is 
si tuated completely inside can be called s imple 
since it is m a p p e d by P on a part i t ion of its cor-
responding base line. Some isolae. however, may 
cross W. Fhey will be called complicated isolae 
(Figure 7). In the latter case the isola is partially 
mapped to itself and partially to the base line. 
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w \ 

ST 

yr(r0) 

Fig. 7. Occurrence of simple and complicated isolae. In 
part (a), the canonical parameters are chosen so that the 
system can only possess simple isolae. Parameters: 0 = 2 , 
co = 1, (5=1, r0 = 0.95rc. In part (b), it is demonstrated 
that for values of r0 close to rc, a complicated isola (F (/-,)) 
appears, while nevertheless for small enough values of r0, 
the isolae are still of the simple type (r (r2)). Parameters: 
g = 2, co = 5, (5=1, /-j = 0.9 , r2 = 0.5rc. Axes for both 
pictures: £ = - 0.5 . . . 0.5, x = 0... 1.7. 

Here a discontinuity appears in the ha l fmap P since 
the image of the connected portion of the isola, 
s i tuated in S~, becomes disconnected. 

So far, we have looked at features (described 
by r 0 , for example) within a single system. Now let 
us look at d i f ferent systems — i.e., at different points 
of the canonical pa ramete r space - to see inside 
which regions of that space complicated isolae 
appear . We f ind: 

Theorem: For all systems fulfil l ing the condit ion 

CO2 < Q + 1 (66) 

all isolae are simple, that is, are completely f rom S~. 
For a proof see the Appendix. 
As a s imple consequence of the proof (see Appen-

dix) we formula te the following 

Corollary: In all systems fulfi l l ing 

CO2 > 0 + 1 

complicated isolae appear . 
The appearance of complicated isolae may be 

visualized in the l imit ing " low" and "h igh" fre-
quency cases, respectively. In the first case (where 
W 2 < ^ £ ) + 1 ) , the relaxation of the system in the 
direction of the real eigenvetor is much faster than 
the focal motion, so a trajectory with an entry point 
situated on an isola will exit T close to I . Tha t 
means the exit point is s i tuated on the base line. 
For the oher l imit ing case (where co2> Q+ 1), the 
mot ion inside T is mainly governed by the focal 
part of the dynamics. So the exit point shows almost 
the same x value as the entry point and thus is 
si tuated on the isola. For in termedia te co, Q ratios, 
both complicated and s imple isolae may coexist, 
depending on their r0 values. 

This theorem and its corollary allow us to dis-
t inguish between those systems that possess com-
plicated isolae and those that do not. By now all 
possible types of intersection curves r (r0) have 
been considered. These results permi t a quali tat ive 
picture of the action of the ha l fmap . 

8. Action of a Halfmap on the Intersection Curves 

The two h a l f m a p s induced by the partial dy-
namics in the halfspaces T and T are of the same 
type because their dynamics d i f fer only by the non-
homogeneous part on the r ight-hand side of (3). 
One of them (P) shows more structure by virtue of 
the real steady state being present. Since the second 
dynamics is governed by a virtual steady state, the 
only r ' s possible are ß -curves . So the h a l f m a p P 
acts more or less like a reflection along the straight 
line W (cf. [17]). Hence it suffices to discuss only the 
first ha l fmap , P. 

As our h a l f m a p can be formula ted only implic-
itly, three general strategies for investigating it are 
open in principle. The first approach consists in 
solving (40 a) numerical ly. This was done in [18]. 
The second method is based on the explicit m a p Q~x 

described in ( 5 4 - 5 6 ) . This m a p like P is induced 
by the dynamics f rom the halfspace f , but without 
any restriction analogous to (40 b) occurring. Tha t 
is, it is constructed as if there were just one 
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dynamics, acting on the whole state space, present. 
All possible intersection points of a t rajectory with 
the separating plane S are m a p p e d by onto the 
same point (in X0). Hereby the " m a p p i n g t imes" 
(PQ are different . Hence no global one- to-one cor-
respondence between the points of S~ (the domain 
of P) and those of X0 exists. Nevertheless, such a 
correspondence can be obta ined by int roducing a 
specific selection rule (for the tp@), permi t t ing some 
addit ional results to be found [19]. 

The third approach is the one to be discussed 
here. It makes use of the intersection curves of the 
dynamical manifolds . / / ( r 0 ) with the separat ing 
plane S. These curves are known explicitly (60). The 
image (p') of any point p f rom S~ is located inside 
S+ on the same intersection curve T ( r 0 ) as p itself. 
The different ways in which the h a l f m a p P can act 
on each of the three types of intersection curves can 
be put together to obtain a coherent picture of the 
structure of the ha l fmap. 

As a general property of all ha l fmaps we find that 
the x component of the image of a point p is always 
less than px, the x component of p itself. Hence a 
segment of a base line is always m a p p e d onto 
another segment of the same base line. Also the 
image of a (simple) isola is always located on the 
corresponding base line. 

More specifically, it turns out that for the major -
ity of the ß -cu rves (all those possessing only one 
intersection point with the straight line W), the 
ha l fmap has a very s imple action. The trajectory, 
generating the map, goes a round the unstable mani-
fold for only (approximately) one half turn. The 
ha l fmap therefore acts as a kind of reflect ion along 
the straight line W (in analogy to what is the case 
in T). 

For co2 < 1, however, there exist also ß - c u r v e s 
(for r0 close to rc) that intersect W in three points. 
In this case, the arc ab (cf. Fig. 8) of the ß - c u r v e 
located inside is cut into two parts at a point s. 
These two portions are m a p p e d onto two dif ferent 
segments of the port ion of the ß - c u r v e which lies 
inside Figure 8 shows that the arc as is m a p p e d 
onto as' whereas be is the image of bs. 

More precisely it can be shown that ß - c u r v e s are 
cut open whenever their r0 is less than some critical 
r0 . The value of this threshold is 

"u- = 
X H' 

*0 

(q + 2)/2Q 

S" 

\ \ n r 2 > 

i h 

nr,) / 
s* 

Fig. 8. Demonstration of two facts: (i) The ß-curve r (r2) 
possesses but one intersection point with W. The arc inside 

is mapped homeomorphically into that inside S+ 

("mirrored" across W). (ii) The ß-curve F(/-,) intersects 
W in the three points a, b, and c. It is thus "cut open" so 
that the image of the arc as goes to the left in S+ while 
the image of sb goes to the right (onto cb). Axes: 
£ = — 0.5 . . . 0.5,x = 0 . . . 1.7. Parameters :q= 4,co = 1,0= 1, 
/'i = 1.002/-f, r2= 1.25 rc. (Note that both here and in the 
following two Figures, the image points that were in-
dicated by a prime are shown only schematically, since the 
true image points in this case are located far beyond the 
boundaries of the plotting area.) 

Fig. 9. A simple isola is cut open in the point 5 and 
mapped onto the open arc cc' in the base line. Axes: 

= — 0.5 . . . 0.5, x = 0 . . . 1 . 7 . Parameters: 0 = 5 , co= 1, 
ö= 1, r0 = 0.95 rc. 

where 

co2+ 1 
XM. = X'o (68) 

(67) 

( e + i)2 + co2 

(Cf. [19]). 
As to isolae, the ha l fmap may show several types 

of behavior again. Every simple isola (a closed 
curve) is mapped onto an open segment of the cor-
responding base line, so there is always a point s on 
the isola where it is cut open (Figure 9). The images 
of neighboring points (to the left and the right) of 5 
are always separated by the h a l f m a p P. This separa-
tion of nearby points under the action of a h a l f m a p 
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may give rise to a positive "Lyapunov exponen t" 
[20] of the overall Poincare m a p P [10]. This is a 
first chaos-generat ing mechanism (cf. also [19]). 

For complicated isolae. the situation is m o r e in-
volved (Figure 10). This type of isolae exists when-
ever co2 > o + l (see (66)). In this case, rw is less 
than rc (see (67)) and all isolae characterized by a 
radius r0 f rom the interval (rH., rc) are complicated 
[19]. 

For a complicated isola only the segment inside 
S~ is subjected to the m a p P. This por t ion is 
mapped partially onto the other part of the isola 
(inside S+) and partially into the base line. Whi le in 
the case of s imple isolae, the image of a p lanar 
region inside S~ (say the interior of a isola) was 
stretched and cut open but remained simply con-
nected, in the present case the planar region 
bounded by W and F (/-0) n S~ is mapped on to two 
disjoint regions of S+. Here connectivity is lost. This 
is a second separat ion-generat ing (and hence chaos-
producing) mechanism found in halfmaps. 

A third mechanism involving the "travell ing 
t imes" T (solutions of (40 a)) comes into play at even 
larger values of the rat io CO/Q, see [19]. 

The main effect is the same in all three cases. 
A port ion of an intersection curve F (r0) s i tuated in 
S~ is "cut in two" and the images of nearby points 
to the left and the right of the cutting point are 
separated. The various mechanisms of separa t ion 
di f fer in the n u m b e r of "cut t ing open poin ts" 
present on an intersection curve. The geometr ic 
locus of all "cutt ing open points" for different F ( r 0 ) 
can be calculated analytically [19]. 

S" 
VW 

\ / \T(r 0 ) 

\ ( h 
a i r 

bV-

* 
Fig. 10. Mapping situation of a complicated isola. The arc 
as, is "mirrored", becoming ab, while the rest of the isola 
(Sj b) is again cut open in the point s2 (cf. Fig. 9). No te the 
reversal of mutual orientation between the images of the 
arcs (becoming b'c') and s2b (becoming cb'). Axes: 
£ = - 0 . 5 . . .0 .5 , A' = 0 . . . 1.7. Parameters: o = 5 , co = 8, 
S= 1, r0 = 0.9rc. 

The discussed cutting open mechanisms occur in 
addi t ion to a stretching in Q direction and a shrink-
ing in x direction, due to the saddle focus behavior 
of the steady state. 

9. Di scuss ion 

The model system discussed here is a well known 
nerve conduction equat ion frequent ly treated in the 
literature under different aspects. To the best of our 
knowledge, the technique of Poincare ha l fmaps has 
not been applied to this class of problems before. 
The theory of ha l fmaps induced by three-dimen-
sional linear flows is yet to be worked out fully. In 
the present paper, we a t tempted to describe the case 
when the linear flow is of saddle-focus type. 

Poincare halfmaps, and the intersection curves 
of dynamical manifolds with the separat ing plane S, 
were studied numerically in [7, 18, 21]. Here the 
intersection curves are explicitly constructed in an 
analytical fashion for the first t ime. Thereby the 
canonical parameter space could be characterized 
analytically to some extent. The main pert inent 
result is that the curve CO2 = Q+ 1 in the Q, CO 
plane of the f ive-dimensional canonical pa ramete r 
space acts as a double boundary . It is a l imiting 
curve (as far as the actions of the h a l f m a p is con-
cerned) both for isolae and for ß -curves . 

Below that curve, only simple isolae are possible. 
Hence the only possibility for a chaotic solution to 
appear in this case is by means of the first "cutt ing 
open mechan i sm" of separat ion. This mechanism 
acts on all isolae as well as on some of the ß - cu rv es 
(characterized by an r0 close to rc). 

Above the same curve, ß - cu rves that are cut open 
by the ha l fmap d isappear but at the same t ime 
complicated isolae appear . The first cutting open 
mechanism (acting on all isolae) is still present. 
In addit ion, however, every complicated isola has a 
disconnected image. Thus a second separat ing 
mechanism (leading to a second cutting open point 
on a complicated isola) comes into play. Both 
cutting open mechanisms can give rise to chaotic 
solutions of the system. 

The other main result of the present paper is a 
proof for the appearance of chaotic solutions in the 
neighborhood of homocl inic trajectories in state 
space, for the present class of systems, provided 
Q> 1. This follows f rom the fact that Shil 'nilov's 
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theorem [14] is appl icable (see Section 5). A homo-
clinic trajectory (if it exists in conjunction with the 
second ha l fmap) necessarily passes through the 
homocl inoid point h. The "s imple cutting open 
mechan i sm" (the only one present for arbitrarily 
small values of r 0 , as is the case in a neighborhood 
of the homocl inoid point /?) is thus responsible for 
generating a countable number of Smale [22] horse-
shoes (cf. [23]). This means that even the simplest 
possible separat ing structure already supports an 
infinitly rich dynamical behavior in the present 
class of systems. 

The two example sets of parameter values present-
ed in [10] visualize the appearance of complicated 
isolae and the corresponding separat ion mechanism. 
Although in both cases the condit ion co2 > Q+ 1 is 
fulf i l led, only the first of the two chaotic attractors 
(the one with c = 3.5), also makes actual use of the 
second separat ing mechanism (leading to discon-
nected images of complicated isolae). In the second 
case (c = 9), only a ne ighborhood of a homoclinic 
orbit in state space is visited by the trajectory 
running inside the attractor, i.e., only a vicinity of 
the homocl inoid point h is m a d e use of by the 
overall Poincare map. This explains the rather 
s imple structure of this second attractor so that it 
could be described rather well in terms of a one-
dimensional map. 

To sum up, a Poincare h a l f m a p induced by a 
linear flow of saddle-focus type has the capabili ty 
of separat ing arbitrari ly close points and thus may 
lead to chaotic solutions of the system. While on 
some of the ß -cu rves only the simplest cutting open 
mechanism occurs, on isolae three different types 
are possible. 

It goes without saying that the "potentially chaos-
produc ing" mechanisms, described above for a 
single h a l f m a p P, of course only become manifestly 
chaos-producing if the second h a l f m a p P does not 
precisely undo the separat ion of nearby points 
(which is infinitly unlikely), and if, moreover, the 
regions inside S~ in which the separations appear 
are mapped back to themselves by the second half-
map. Some examples where this occurs in piece-
wise-linear cont inuous systems were discussed 
numerically by several authors [10, 18, 24], An 
analytical negative criterion (stating that no chaotic 
solutions can occur if the intersection of the "separ-
ating region" with its image under the whole Poin-
care m a p P is empty) has also been found [25]. 

To conclude, the occurrence of chaos in a piece-
wise-linear equa t ion for a one-dimensional excitable 
medium can be explained for a whole class of 
systems by means of analytically described separ-
ating mechanisms. 

Appendix 

Let us first point to two general propert ies of 
intersection curves. 

(1) If /'] < r2, then the intersection curve F ( /y ) lies 
completely inside the region of 5 bounded by 
r (r2) and 27. 

(2) Every isola is the boundary of a convex region 
in S. 

For the proofs see [17]. 

Proof of the Theorem (Section 7). All isolae are 
situated inside the Cartesian leaf, thus it will suff ice 
to show that this curve does not intersect W for 
values of x greater than xy if co2< g+ 1. 

As the Car tes ian point xy is si tuated on IF, by 
convexity there cannot occur any fu r ther intersection 
point for x values greater than x c if the slope of the 
relevant branch of F (rc) at this point is less or equal 
to zero (in a v, w representat ion of S). It will be 
shown specifically that for co2 = g + 1 the Cartesian 
leaf is tangential to (uniquely touches) W in the 
Cartesian point x c . 

On the Car tes ian leaf F ( r c ) , we obtain for the 
relevant b ranch (the one with negative c values) the 
analytical expression for £ (x): 

Z(x) = -]/r(x;rc)2-n(x)2 (A.1) 

with 

and 

r(x;rc) = rc 

\/Q 

n(x) = (ö-x)/2, 

as was found earlier (60). This yields for the w com-
ponent of the points of this branch of the Cartesian 
leaf: 

w (x) = - QX + 2 Re [(1 + i co) {rj (x) + i c (x) ) ] . (A.2) 

We have to show that the slope of w ( x ) vanishes at 
xy for co2 = Q + 1. Faking the derivative of vv(.x) 
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wi th respec t to .Y we o b t a i n Insert ing th is in to (A.3) y ie lds 

d 
w ( Y ) = — Q + 2 I — rj (A) — co — £ (x) (A.3) d 

\ d-Y d.Y / —— W (A-c) = - ( ( ? + l ) + c o | / o + 1 

= . e - 1 + 2 w . 2 r ( . v : r c ) r - ( . v : r c ) + 7 ( . v ) " / 
2 C(A-) ' = - ( 0 + l ) \ 1 i /o + 1 / * ( A 5 ) 

T h i s l eads fo r .Y = .VC to an u n d e f i n e d express ion (of 
t he f o r m " 0 / 0 " ) in t he th i rd t e rm. It is conven ien t to T h e r e f o r e fo r co2 < 1 t he d e r i v a t i v e of w ( x ) is 
inves t iga te t he b e h a v i o r of (<;')2 r a t he r t h a n tha t nega t ive at xc. H e n c e t h e r e l avan t b r a n c h of t he 
of c'\ Ca r t e s i an leaf r (rc) a n d t hus all i so lae c o n t a i n e d l 

l i m _~[r(x-rc) r ' r ) + y ^ ( x ) ] inside th is leaf a r e s i t u a t e d c o m p l e t e l y ins ide 

l i m < T ( X ) 2 = 
2 _ x - ^ d x ^ ^ o f S ~ . Q .E .D . 

l im -j— [r (x ; rc)2 — rj (x)2] 
.Y —> xc d x 

r(x;rc)2 

q2X2 ^ 4 

( 0 + 1) 

= h m " 2' 2
f (e + 2) - — 
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