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Abstract With analytical representation for the pp scat-

tering amplitudes introduced and tested at lower energies,

a description of high precision is given of the dσ/dt data

at
√

s = 13 TeV for all values of the momentum transfer,

with explicit identification of the real and imaginary parts. In

both t and b coordinates the amplitudes have terms identified

as of non-perturbative and perturbative nature, with distinc-

tion of their influences in forward and large |t | ranges and

in central and peripheral regions respectively. In the forward

range, the role of the Coulomb-nuclear interference phase

is investigated. The energy dependence of the parameters of

the amplitudes are reviewed and updated, revealing a possi-

ble emergence of a peculiar behavior of elastic and inelastic

profiles in b-space for central collisions, which seems to be

enhanced quickly at higher energies. Some other models are

also briefly discussed in comparison, including the above

mentioned behavior in b-space.

1 Introduction

Totem Collaboration in LHC has produced two sets of data

data on elastic pp scattering at
√

s=13 TeV in separate pub-

lications [1–3], covering the following |t | ranges

– Set I – |t | = [0.000879−0.201041] GeV2, with N = 138

points [1] ;

– Set II – |t | = [0.0384 − 3.82873] GeV2, with N = 290

points [2].
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With respect to systematic errors, the two sets of measure-

ment are presented with very different features: errors of

about 5% for I and less than 1% (except for the first 11 points)

for Set II. The situation, illustrated in Fig. 1, influences the

analysis of the data. The very large systematic errors in Set

I indicates the necessity of special care on its use for the

determination of the forward scattering structure.

There are 56 points of small |t | in Set I, up to |t | =
0.037335 GeV2, where Set II starts, and thus there is a basis

of 56 + 290 = 346 data points to perform a global description

of the 13 TeV data. We also build a combined file merging the

points of the common range, with a total of 138 + 290 = 428

points that are used in an overall test.

The data of Set I have been studied [4] with forms of ampli-

tudes restricted to small |t | values. The treatment of this range

requires detailed account of the Coulomb-nuclear interfer-

ence, and it was shown that the model-independent determi-

nation of the amplitude in these representations is unreliable

with the present data alone, due to the small value of the ρ

parameter and to the assumption of a model for the treatment

of the Coulomb-nuclear interference phase that needs to be

tested at such high energies. In the forward direction the real

part contributes to only about 1% of the observed dσ/dt , and

it is necessary to have a well-inspired extraction of the imag-

inary part, requiring data of very regular behaviour, to allow

the determination of the properties of the real part, such as

the ρ parameter and the amplitude slope.

Putting all information together, we achieve a unified treat-

ment of 428 data points, identifying analytically the real

and imaginary parts (with 4 parameters each) of the com-

plex elastic amplitude, with remarkable values χ2 = 1.567

with statistical and systematic errors added in quadrature and

χ2 = 5.186 calculated with statistical errors only. Every-

where in the present text χ2 is a short for χ2/d.o. f.. The

graphical representation of this result is shown in Fig. 2. The
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Fig. 1 Systematic errors in data Set I [1] and Set II [2]. In the |t |
range with superposition (0.038400 ≤ |t | ≤ 0.201041) it seems that

in general the data in Set II may be considered as more reliable (1%

systematic errors), except for the first 11 points. Set I has 5% systematic

error bars

present treatment is similar to previous work that was very

effective at lower energies 1.8–1.96 TeV of Fermilab [5] and

7–8 TeV of LHC [6,7].

The large |t | range of Set II is coupled sensibly with

the (energy independent) tail of perturbative three-gluon

exchange observed at
√

s = 27.4 GeV [8], with 39 points

in the range 5.5 ≤ |t | ≤ 14.2 GeV2. The first identifica-

tion of the energy independence of the dσ/dt behaviour for

large |t | in pp elastic scattering was made in the compari-

son of data at
√

s = 19.6 and 27.4 GeV [9]. The theoreti-

cal explanation for the 1/|t |8 behaviour of dσ/dt for large

|t | in terms of the real three-gluon exchange amplitude was

given by Donnachie and Landshoff [10,11]. The universal-

ity is demonstrated for energies below
√

s = 62.5 GeV in

Fermilab and CERN/ISR measurements [12,13] (see figures

in these two papers), showing smooth connection between

the range of small and mid-|t | combining perturbative and

nonperturbative terms and the range of large |t | of FNAL

[8] measurements dominated by three-gluon exchange. The

role of the real amplitude in the large |t | sector of pp elastic

scattering is then confirmed.

The transition range from 2 to 5 GeV2 gives informa-

tion on the magnitude and sign of the real part of the

hadronic amplitude, that is dominant for large |t |. Unfor-

tunately the LHC pp measurements at 7 and 8 TeV [6,7] are

restricted to |t | less than 2 GeV2, and the connection between

mid and large |t | regions remained in the non-quantitative

level, although there is clear indication, as shown in Fig. 6
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Fig. 2 Analytical representation of all data points of Totem measure-

ments at 13 TeV [1,2], using 4 adjusted parameters [5–7,12] for each

of the real and imaginary parts. The total of 428 data points is described

with χ2 = 1.567 (statistical and systematic errors added in quadrature)

and χ2 = 5.186 (statistical errors only). Details are given in Sects. 2

and 3

of the 7 TeV paper [6], where the data at 52.8 GeV and

7 TeV are exhibited. At 13 TeV the measurements reach

almost |t | = 4 GeV2, allowing investigation in an impor-

tant extended range. Using the same representation described

above, with a proper connection between the 13 TeV and the

17.4 GeV data, we obtain an analytical form embracing 467

(= 428+39) data points, with χ2 = 1.731 and χ2 = 5.042

using total errors (combined statistical and systematic) and

pure statistical errors respectively.

The present work uses the amplitudes introduced in previ-

ous papers [5–7], expressed in both t and b coordinates, with

explicit forms for the real and imaginary amplitudes: the dis-

entanglement of the two parts is essential for the description

of the dynamics of the process. The superposition of non-

perturbative and perturbative terms in both real and imagi-

nary parts produces remarkable structure in the elastic dif-

ferential cross section that faithfully reproduces the data. In

the following this framework is referred to as KFK model.

In Sect. 2 we review the construction of the amplitudes

in the KFK model, inspired on the early applications of the

Stochastic Vacuum Model (SVM) to high-energy elastic scat-

tering. The b and t space coordinates are analytically related,

with terms representing perturbative and non-perturbative

dynamics.

In Sect. 3 we apply the KFK amplitudes to describe in

detail the forward, mid and large |t | ranges, obtaining a

unique solution valid with high precision for all |t |, as shown
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in Fig. 2. Separate attention is given to an extension of the rep-

resentation to the range of high |t | measured at 27.4 GeV [8]

and also to the small |t | range of Set I re-examining the role

of the Coulomb-nuclear interference phase [4]. In Sect. 4,

the properties of the amplitudes in |t |- and b- coordinates are

described and discussed in separate subsections. In Sect. 5

we insert the results of the present analysis at 13 TeV in the

previous study of energy dependence of the KFK framework,

updating description and predictions. There, we report a new

behaviour of the profile functions in b-space in the domain

of central collisions, which seems to be enhanced quickly

at high energies. This observation was not possible without

the present 13 TeV data. Section 6 compares our description

with other models and Sect. 7 presents remarks and critical

evaluation.

2 KFK model: analytical representation of the

amplitudes

The Stochastic Vacuum Model (SVM) is based on the func-

tional integral approach [14] to high energy scattering that

relates high energy scattering with nontrivial properties of

QCD vacuum [15,16]. The central element is the gauge

invariant Wegner–Wilson loop, and physical quantities are

obtained from the vacuum expectation values of the corre-

lations of two loops, defined in terms of coordinates in the

transverse collision plane. Assuming dominance of Gaussian

fluctuations in the field strengths, the calculation becomes

fully analytical. Observables are written in terms of physical

quantities: the value of the gluon condensate,that determines

the strength of this non-perturbative dynamics, and the cor-

relation length, that is the parameter of the loop-loop correla-

tion function that sets the scale for the geometric dependence

in b-space. These quantities have values fixed by hadronic

properties and by lattice calculations [20,21]. With analytic

continuation from Euclidean to Minkowski space [22] gauge-

invariant dipole-dipole scattering is constructed.

The amplitude of non-perturbative hadron–hadron scat-

tering in the eikonal approximation is factorized with the

product of the correlation of loops (representing elastic scat-

tering of two colour dipoles) and the factor with the dipole

contents in the light-cone wave functions of the colliding

hadrons [17–19]. The overlap of the loop-loop correlation

with the hadronic wave-functions of finite size leads to struc-

ture of profile function where the basic correlation parameter

becomes spread, appearing with effective value that depends

on the hadronic sizes and, in case of scattering amplitudes,

can also be modified by the collision energy. These effec-

tive representations of the correlations proper of the QCD

vacuum are not expected to be very different from the static

lattice determination.

Besides hadron–hadron scattering, the concept of the

loop-loop correlation was also applied to the non-perturbative

exclusive photo- and electroproduction of vector mesons

[19,23,24].

The KFK model writes analytical forms for the pp and

pp̄ elastic scattering amplitudes in t and b spaces, based

on previous experience with the Stochastic Vacuum Model

(SVM) [17], using a scale (correlation) length parameter and

the asymptotic (large b) behaviour of the profile function as

guiding ingredients.

KFK model introduced non-perturbative and perturbative

contributions [12,13], later assumed as necessary long and

short range terms in the loop-loop correlation [19]. The effec-

tive gluon mass introduced to control the infrared range in

the perturbative correlator enters in the overlap product with

the proton dipole content and appears in the profile function

in KFK through a simple Gaussian term as in Eq. (1).

The T-matrix element in SVM is purely imaginary, and

with missing real part dσ/dt cannot be calculated in the full

|t | range. KFK introduces a real part that is a mirror image

of the imaginary amplitude. The real part is dominant for

large |t |, and has crucial role in the dip-bump region of pp

elastic scattering around 0.4–0.5 GeV2 where the imaginary

part passes through zero. The sophisticated dip-bump struc-

ture in dσ/dt requires delicate property of the real part valid

in this range. Both parts must have perturbative and non-

perturbative terms, and must have zeros, signs and magni-

tudes following theoretical principles and reproducing obser-

vations [12,13]. The zero in the real part at small |t | predicted

by a theorem by Martin [25], is confirmed with the LHC data

[26]. while the imaginary part has a zero responsible for the

dip-bump structure in dσ/dt .

The analytical forms proposed for the non-perturbative

terms of the amplitudes are inspired in the behaviour of the

profile function for large b found in the calculation with

SVM [12,17], with a combined exponential-Yukawa depen-

dence. The Fourier transforms to t-space present features that

can effectively represent the data for all |t |. As b is not an

observable quantity, the construction is tested in |t | space,

and parameters are fixed by experiments. Accurate descrip-

tion of the data is obtained with four parameters in each part

of the complex amplitude.

The disentanglement of the two parts of the complex

amplitude is not at all trivial. The connection with the three-

gluon exchange contribution helps in the identification of the

sign and magnitude of the real part, and an additional term for

perturbative three-gluon exchange is introduced separately.

The KFK model has been investigated at several ener-

gies, and the energy dependence of the parameters comes

out smooth, with simple parametrization [5–7].
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2.1 Impact parameter representation

The amplitudes in the Stochastic Vacuum Model [17] are

originally constructed through b-space profile functions,

that give insight for geometric aspects of the collision,

playing role in the eikonal representation, where unitarity

constraints have interesting formulation. The dimensionless

(s, b) amplitudes of the pure nuclear interaction are written

in the form

T̃K (s, b) =
αK

2βK

e−b2/4βK + λK ψ̃K (s, b), (1)

with a Gaussian term meant to be of perturbative nature and

a characteristic non-perturbative shape function

ψ̃K (s, b) =
2e

γK −
√

γ 2
K +b2/a2

a2

√
γ 2

K + b2/a2

[
1 − e

γK −
√

γ 2
K +b2/a2

]
. (2)

The label K = R, I indicates either the real or the imaginary

part of the complex amplitude.

The quantity a, called correlation length, represents prop-

erties of the QCD vacuum, where it sets the scale for the

loop-loop correlation, with determination in static (Euclidean

space) lattice calculation [20] as 0.25–0.30 fm. After ana-

lytic continuation to Minkowski space and overlap with the

hadronic wave functions, the non-perturbative scale appears

in profile functions of hadron–hadron scattering, with effec-

tive value modified inside this range. In the present work for

pp scattering at 13 TeV we find the value

a2 = 2.1468 ± 0.0001 GeV−2 = (0.2891 ± 0.0002 fm)2.

(3)

The parameters αK (s), βK (s), λK (s) with units in GeV−2

and γK (s) dimensionless are functions of the energy. They

are determined for
√

s = 13 TeV with high precision in

Sect. 3, leading to explicit analytical expressions for the

imaginary and real amplitudes. The Gaussian form of the

first term in Eq. (1) corresponds to the perturbative part of the

loop-loop correlation introduced in developments of SVM,

following results suggested by lattice calculations. The sec-

ond term, referred to as shape function, corresponds to con-

tributions from non-perturbative loop-loop correlation func-

tion. It is zero at b = 0, ψ̃K (s, b = 0) = 0, and is normalized

as

1

2π

∫
d2b ψ̃K (b, s) = 1. (4)

Equation (1) represents a parametrized formulation of the

profile function based on the SVM proposal. The perturbative

and non-perturbative terms of the amplitudes are dominant

for small and large b respectively. For large b, correspond-

ing to peripheral collisions, the amplitudes fall down with a

exponential-Yukawa-like tail,

∼
1

b
e−b/b0 , (5)

that reflects the correlations of loops at large distances. This

asymptotic behaviour inspired the construction of the shape

function ψ̃K (s, b) for Eq. (1).

2.2 t-Space representation

In the classical limit the variable b is connected with the

impact parameter, but it is not directly observable, and the

treatment of data is made in (s, t) space. One advantage of

the shape function in KFK is that there is explicit analytic

Fourier transformation for the amplitudes in Eqs. (1, 2), so

that the scattering properties can be studied directly in both

frameworks.

In our normalization the elastic differential cross section

is written

dσ(s, t)

dt
= (h̄c)2[T 2

I (s, t) + T 2
R(s, t)]

=
dσ I (s, t)

dt
+

dσ R(s, t)

dt
, (6)

with TR(s, t) and TI (s, t) in GeV−2 units, and

(h̄c)2 = 0.389379 mb GeV2.

The complete amplitudes, contain the nuclear and the

Coulomb parts as

TR(s, t) = T N
R (s, t) +

√
π FC (t) cos(α�), (7)

and

TI (s, t) = T N
I (s, t) +

√
π FC (t) sin(α�), (8)

where α is the fine-structure constant, �(s, t) is the interfer-

ence phase (CNI) and FC (t) is related with the proton form

factor

FC (t) = (−/+)
2α

|t |
F2

proton(t), (9)

for the pp/pp̄ collisions. The proton form factor is taken as

Fproton(t) = [t0/(t0 + |t |)]2, (10)

where t0 = 0.71 GeV2.

We recall the new measurements of the proton radius [27]

and changes in the proton form factor [28]. These changes

in the electromagnetic and hadronic structure of the proton

may become important for the analysis of forward elastic

scattering, when their quality improves. As it has been proved

[4], this is not the case at the present, and we use the quantities

as written above.

The expressions T N
R (s, t) and T N

I (s, t) represent the

nuclear amplitudes for the terms written in Eq. (1). The non-

perturbative shape functions in t-space obtained by Fourier

123



Eur. Phys. J. C (2021) 81 :290 Page 5 of 21 290

transforms are written

ψK (γK (s), t)

= 2 eγK

[
e−γK

√
1+a2|t |

√
1 + a2|t |

− eγK
e−γK

√
4+a2|t |

√
4 + a2|t |

]
, (11)

with the property

ψK (γK (s), t = 0) = 1. (12)

Use is made of the integration formula

∫ ∞

0

J0(βu)
e−ρ

√
γ 2+u2

√
γ 2 + u2

u du =
e−γ

√
ρ2+β2

√
ρ2 + β2

. (13)

In addition to the Fourier transform of the perturbative part

in Eq. (1) we introduce in the real part a term Rggg (t) repre-

senting the perturbative three-gluon exchange [10–12] that

appears in the large |t | region, and the complete nuclear

amplitudes are then written

T N
K (s, t) → T N

K (s, t)

= αK (s)e−βK (s)|t | + λK (s)ψK (γK (s), t)

+δK ,R Rggg (t) , K = R, I, (14)

with K = R, I , and where the Kronecker delta symbol δK ,R

is introduced so that Rggg (t) contributes only to the real part.

Equations (11, 14) constitute the KFK model for the pp and

pp̄ elastic amplitudes in t space.

The limits of the amplitudes for small |t | give the total

cross section σ (optical theorem), the ratio ρ of the real to

imaginary amplitudes and the slopes BR,I at t = 0 through

σ(s) = (h̄c)2 4
√

π T N
I (s, t = 0)

= 4
√

π (h̄c)2 [αI (s) + λI (s)]
= 2.7606 [αI (s) + λI (s)] mb, (15)

ρ(s) =
T N

R (s, t = 0)

T N
I (s, t = 0)

=
αR(s) + λR(s)

αI (s) + λI (s)
(16)

and

BK (s) =
2

T N
K (s, t)

dT N
K (s, t)

dt

∣∣∣
t=0

=
2

αK (s) + λK (s)

×
[
αK (s)βK (s) +

1

8
λK (s)a2 (6γK (s) + 7)

]
.

(17)

The tail term Rggg (t), producing a universal (not energy

dependent) |t |−8 form for large |t | in dσ/dt was studied in

the analysis of the experiments at CERN-ISR, CERN-SPS

[12], 1.8 TeV [7] and 7 TeV [5]. To restrict this contribution

to the large |t | region, we create a connection factor, writing

Rggg(t) ≡ ±
d1

t4
[1 − e−d2(t

2−d0)][1 − e−x|t |]d3 , (18)

where the last two factors cut-off this term smoothly in the

domain from 2 to 5.5 GeV2, and the signs ± refer to the

pp and pp̄ amplitudes respectively. The detailed form of the

factor in Eq. (18) must be adequate for the description of

the data for |t | values in the transition range connecting the

experimental points [8] at
√

s = 27.4 GeV. In Sect. 3, the

proposed parameters are

d0 = 9 GeV4, d1 = 0.563 ± 0.008 GeV6,

d2 = 0.16 ± 0.01 GeV−4, d3 = 48, x = 1 GeV−2. (19)

The peculiar form of Eq. (18) is explained in Sect. 3.1.

3 Description of the 13 TeV data

In this section we obtain the representation of the data of

Totem experiment at 13 TeV through the t-space amplitudes

of the KFK model written in Eqs. (11, 14, 18). Plots in Fig. 3

show separately forward, mid and full |t | ranges of the data

of Sets I and II, described by a unique solution, with the

parameters given in Table 1. Table 2 gives statistical quanti-

ties for different ranges of the data, obtained with the same

unique solution. Values of χ2 are given for calculations with

statistical errors and for total errors combining statistical and

systematic errors in quadrature. We also inform the χ2 value

for a combined set of the first 56 points of Set I with the

290 points of Set II (total 346 points), avoiding the super-

position of ranges. In the last line of Table 2 we inform the

χ2 result for a set of 467 points joining the 27.4 GeV data

[8], using the real amplitude that includes the Rggg term of

3-gluon exchange as in Eqs. (14, 18), while keeping fixed the

parameters of Table 1. The connection of the data of these

different energies is illustrated in Sect. 3.1. In Sect. 3.2 we

present specific results of an analysis for the forward data of

Set I.

Observable quantities and positions of the zeros are given

in Table 3.

3.1 Connection with measurements at
√

s = 27.4 GeV

The elastic scattering data for |t | larger than 5 GeV2 have

been shown to be independent of the energy in a large range

of
√

s from 20 GeV to 7 TeV [5,8,9,12]. The experiment

at
√

s = 27.4 GeV with 39 data points covering the wide

|t | range from 5.5 to 14.2 GeV2 [8], provides important ref-

erence for the study of pp at large scattering angles. The

property is demonstrated for energies below
√

s = 62.5 GeV

in Fermilab and CERN/ISR measurements [12] (see Figures

2, 3 and 10 in this paper), showing a smooth connection

between the mid-|t | range containing perturbative and non-

perturbative terms and the range of large |t | dominated by

perturbative three-gluon exchange.

123



290 Page 6 of 21 Eur. Phys. J. C (2021) 81 :290

10

102

0 0.05 0.1 0.15 0.2 0.25

|t| = 0.000879 - 0.249

260 pts

total errors χ2
 = 0.2737

stat. errors χ2
 = 4.852

10
-2

10
-1

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

|t| (GeV
2
)

d
σ

/d
t 

(m
b

/G
eV

2
)

√s = 13 TeV

152 pts

Set II  dip-bump range

|t| =  0.25643 - 1.15991

total errors χ2
 = 3.187

statistical errors χ2
 = 5.690

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10

102

103

0 0.5 1 1.5 2 2.5 3 3.5 4

|t| (GeV
2
)

d
σ

/d
t 

(m
b

/G
eV

2
)

pp √s = 13 TeV

Totem Sets  I + II

|t| = 0.000879 - 3.82873

428 pts

solid :

no tail term χ2
 = 1.567

dashed :

with tail term χ2
 = 1.642

0

200

400

600

800

1000

10
-3

10
-2

10
-1

|t| (GeV
2
)

d
σ

/d
t 

(m
b

/G
eV

2
)

Forward range

Set I - 138 pts

statistical errors

solid zero CNI phase
χ2

 = 1.455
dashed  nonzero phase
χ2

 = 2.144

Fig. 3 Representation in the KFK model of separate |t | ranges of Sets

I and II of Totem measurements at 13 TeV, with unique analytical form

and parameter values given in Table 1. c Shows in dashed line the dis-

placement due to the inclusion of the Rggg(t) term in the amplitude. In

Fig. 5 we show how this term implies the connection with the data of

large |t | at
√

s = 27.4 GeV. In the small- and mid-|t | ranges of plots a

and b the influence of the tail term is not relevant in the plots. In plot

d for small |t | we show lines for calculations with Coulomb-nuclear

interference phase φ included in the usual form (dashed line), and with

phase put as zero (solid line); numbers are given in Table 4

Table 1 Parameters of the amplitudes in the KFK model determined

with the 428 points of Totem measurements at 13 TeV. The QCD quan-

tity related to correlation function is a2 = 2.1468 ± 0.0001 GeV−2 =
(1.4652 GeV−1 ± 0.0002)2 = (0.2891 ± 0.0002 fm)2, where a is

called correlation length. The quantities γI and γR characteristic of the

non-perturbative shape functions in Eq. (11) are dimensionless, while

αK , βK and λK have units GeV−2. The index K means I, R. To have

all quantities with same dimensions GeV−2, we can use ηK = γK a2

instead of γK , as in Sect. 5

Imaginary amplitude Real amplitude

αI ( GeV−2) βI ( GeV−2) λI ( GeV−2) γI αR ( GeV−2) βR ( GeV−2) λR ( GeV−2) γR

15.701 ± 0.001 4.323 ± 0.001 24.709 ± 0.002 7.819 ± 0.0005 0.2922 ± 0.0005 1.540 ± 0.003 4.472 ± 0.003 7.503 ± 0.006
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The universality in the energy and the |t | dependence

of form 1/|t |8 in dσ/dt have been interpreted by Don-

nachie and Landshoff [10,11] as determined by the process

of exchange of three gluons. This contribution is represented

by the quantity Rggg(|t |) introduced in Eq. (14), receiving

a cut-off factor written in Eq. (18) designed to restrict the

1/|t |8 behaviour. The three-gluon contribution occurs in the

|t | range where the imaginary part is negligible, and the per-

turbative term αR exp(−βR |t |) is dominant. The transition

from 2 to 5 GeV2 is precious to inform features (signs, mag-

nitudes) of terms of the real scattering amplitude in the large

|t | region. These features are described in Sect. 4.

As an example, the structure of the real amplitude leads

to the argument that the difference in the dip regions of pp

and pp̄ scattering at 53 GeV [29] is due to the difference

in the signs of the three-gluon contributions in pp and pp̄

scattering, and not necessarily to the presence of an odderon

element [12], unless it is meant that three-gluon exchange is

the modern QCD name for odderon [30,31].

At high energies, there is not sufficient experimental infor-

mation for the investigation of the elastic amplitudes at high

|t |. LHC measurements at 7 and 8 TeV [6,7] are restricted

to less than |t | = 2 GeV2, and the connection between mid

and large |t | regions remains in the level of clear indication,

as shown in Fig. 6 of the 7 TeV paper [6], where the data for

52.8 GeV [32,33] and 7 TeV are exhibited together.

At 13 TeV the data are more extended in |t |, reaching

nearly 4 GeV2, allowing investigation of properties of the

amplitudes in the connection with FNAL data [8]. Then we

first choose the parameters for the Rggg(t) function, that is

shown Fig. 4, together with the corresponding cross section

in the range of the transition. In Fig. 5 we show the matching

of the Totem 13 TeV and ISR 52.806 GeV measurements

[32,33] with the data of FNAL measurements [8] at
√

s =
27.4 GeV.

Some points of high |t | of the Totem measurements show a

marked decrease in the values of dσ/dt , with large statistical

error bars, from 45 to 60%. These points deviate meaning-

fully from the proposed solution, and particularly they seem

not to accept easily the suggestion of connectivity with the

three-gluon tail. These are only few points of poor statis-

tics, but visually they have important influence, as shown

in Figs. 4 and 5. In our description, this range of dσ/dt is

dominated by the perturbative term in the real amplitude, and

serves as important test of the proposed disentanglement. In

Sect. 4 we show that the real part of the KFK amplitude is

positive for large |t |, and then the superposition with the also

positive three-gluon term should be constructive. If the real

part were negative, a dip could be formed. In the analysis of

the 1.8/1.96 GeV Fermilab [5] pp̄ data we predicted that such

dip would appear for large |t | (the three gluon term is nega-

tive in pp̄ ), but unfortunately the measurements do not reach

large enough |t |, and the prediction is not tested. Here in pp at

13 TeV, we do not have simple explanation for the decrease

of dσ/dt in the points of largest |t |. A connection function

producing the visual shape would not be natural. This ques-

tion obviously leads to the suggestion that the measurements

in the large |t | range should receive more attention.

Table 2 shows that the 24 points of with highest |t | in Set II

are described in our unique solution with comparatively large

χ2 values of about 10. This is a local feature, as these points

have low influence in the χ2 value for the 428 points. For a

local investigation, we observe that this range is dominated

by the perturbative real part, so that only the parameters αR

and βR require attention. Thus, with αR = 0.476±0.022 and

βR = 1.771±0.025 we obtain χ2 = 2.210 and χ2 = 2.484,

respectively using total and only statistical errors. This pre-

dicted local improvement in χ2 changing only two selected

parameters is consequence of the separation of the perturba-

tive and non-perturbative terms in the analytical form.

3.2 Specific representation of amplitudes for the 138 points

of Set I

As a side information (since the main concern of the present

work is with the unique global solution for all ranges), in

Table 4 we show the χ2 results for the 138 points of Set I

with freedom given to the λI and λR parameters, maintain-

ing all other quantities as written and used in Tables 1 and 2.

Only the non-perturbative magnitudes λI and λR are investi-

gated in this alternative examination because these terms are

dominant in the imaginary and real amplitudes for small |t |,
as shown in Sect. 4. Comparison is made of solutions with

and without inclusion of the Coulomb-nuclear interference

phase φ. The results in Table 4 may be compared with val-

ues obtained with simplified forms of amplitudes restricted

to the forward scattering range [4], namely with product of

exponential and linear factors as

TK (t) = TK (0) e(B0
K /2)t (1 − μK t), K = I, R. (20)

We again stress that the parametersσ ,ρ and slopes are model-

dependent quantities, related to specific analytical forms of

the amplitudes. The only experimental measurements are the

values of dσ/dt at angular positions defined by values of

|t |. In particular, for the value of ρ, it has been shown [4]

that the presently available data at small |t | does not allow

a conclusion about its value. Besides the insufficiency of

regular data in the very forward region, the theoretical basis

for the Coulomb-nuclear interference phase is uncertain.

We remark that both imaginary and real parts have zeros,

so that, besides exponential slopes at least linear factors in the

amplitudes are essential to represent the forward data realis-

tically as in Eq. (20). In KFK the factorization of the logarith-

mic derivative with a slope as in Eq. (17) leaves a remainder

that has a zero, but not a linear zero (actually the remaining
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Fig. 4 Connection of the low energy (
√

s = 27.4 GeV) points of large

|t | (5.5 ≤ |t || ≤ 14.2 GeV2) with Totem 13 TeV data. a Form pro-

posed for the amplitude Rggg(|t |) in Eq. (18) for three-gluon exchange

with a cut-off factor acting for |t | ≤ 4 GeV2. b Differential cross sec-

tion calculated including the Rggg(|t |) term (solid line) plotted together

with points of Totem measurements at 13 TeV (full circles) and the

points (open squares) at 27.4 GeV. The piece of dashed line pointing

downwards shows the action of the cut-off factor
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Fig. 5 a Analytical representation for all 467 data points: 138 points

of Set I [1] and 290 of Set II [2] from Totem measurements at 13 TeV,

plus 39 points at
√

s = 27.4 GeV from FNAL measurements [8]. The

global representation of 467 (138+290+39) points is constructed with

the unique solution given in Table 1 plus the Rggg(t) term as in Eq. (14),

with results χ2 = 1.731 (total statistical and systematic errors) and

χ2 = 5.042 (statistical errors), as shown in Table 2. The dashed lines

represent the analytical form for 13 TeV excluding the 3-gluon exchange

tail term. b Joint plot of data at 52.806 GeV [32,33] and Totem 13 TeV

data, with the analytic solutions obtained with the KFK model [6]. The

points have energy scales differing by more than 200, and still the data

in the large |t | region have similar magnitudes. The universality is con-

sistently present at ISR energies [12,13]
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Table 4 Values of parameters λI and λR and of χ2 (with statistical

errors only) obtained specifically for the 138 points of Set I, with all

other quantities (αK , βK , γK ) kept as given in Table 1 and used in

Table 2. We here give the values for fitting with Coulomb interference

phase φ put as zero, and for phase calculated as described before [4].

The χ2 values may be compared with χ2 = 1.455 (with CNI phase

zero) given in Table 2 and χ2 = 2.144 with CNI phase calculated with

proton form factor. We recall that in the detailed analysis of forward

data studying the influence of the CNI phase [4], reported values are

σ = 111.84 mb, ρ = 0.125 for φ = 0, and σ = 111.84 mb, ρ = 0.097

for φ 
= 0. The position Z
(1)
R of the first real zero (Martin’s Zero) is also

given, since it occurs in the forward range and is important theoretical

reference

CNI phase φ λI ( GeV−2) λR ( GeV−2) χ2 σ (mb) ρ BI ( GeV−2) BR ( GeV−2) Z
(1)
R ( GeV2)

Zero 24.772 ± 0.010 4.382 ± 0.115 1.126 111.73 ± 0.03 0.116 ± 0.001 21.06 26.37 0.201

φ(t) 24.836 ± 0.010 3.403 ± 0.130 1.121 111.91 ± 0.03 0.092 ± 0.001 21.08 25.96 0.213

factor has zero of higher order in a Taylor expansion), so

that BI and BR in Eq. (17) correspond to the effective slope

that includes the effect of a linear factor in the forward ampli-

tude. The effective slope in Eq. (20) comparable to Eq. (17) is

Beff
K = B0

K −2μK . It is also interesting to compare the value

of the first real zero Z
(1)
R of the KFK model in Table 3 with the

values obtained [4] with Eq. (20). With μR = −3.84 GeV−2,

the zero at |t | = −t = −1/μR = 0.26 GeV2 may be com-

pared with Z R = 0.20 GeV2 in Table 3.

4 Imaginary and real parts of the scattering amplitude

The analysis presented in Sect. 3 leads to a proposal for

the disentanglement of the real and imaginary parts, that is

obtained directly from the data. In this section we discuss the

properties of the amplitudes and their terms, in both t and b

coordinates.

4.1 Amplitudes in t-space

Figure 6 shows the amplitudes, detailing small and large |t |
ranges. Similarly to lower energies, the imaginary and real

parts have one and two zeros respectively. In the plot for

large |t |, the contribution of the the Rggg tail term is also

shown, appearing as a deviation in the real amplitude visible

for |t | ≥ 3 GeV2.

The separate perturbative and nonperturbative parts of the

imaginary and real amplitudes are shown in Fig. 7. The quan-

tities. TI (pert) = αI e−βI |t | and TI (nonpert) = λI ψI (γI , t)

are strong and with opposite signs in the dip-bump region,

with a cancellation at Z I = 0.46 GeV2, causing the dip. The

existence of these two terms in TI is most important for the

construction of the representation. The cancellation leaves

room for the influence of the real amplitude that modulates

the shape of the dip-bump structure. TR (nonpert) dominates

(in magnitude) over TR (pert) in the dip-bump region, but

if falls to zero more rapidly, while the perturbative real part

lasts longer in |t |. For |t | larger than ∼ 3 GeV2 only the per-

turbative real part TR (pert)(t) remains active, with positive

sign.

As a general view, we observe that forward scattering

emphasizes non-perturbative dynamics, while large |t | scat-

tering is dominated by perturbative terms in the real ampli-

tude. The real part becomes negligible for |t | = 0, as ρ

decreases with the energy.

The magnitudes of all terms in the amplitudes vary enor-

mously from the bump to the region |t | = 3–4 GeV2 reached

by the present data. The structure in the large |t | range that

we try to access through the connection with the three-gluon

exchange is important for the construction of a global picture

for pp elastic scattering. This construction is confirmed by

other models, as illustrated in Fig. 14.

4.2 Amplitudes in b-space

The b-space dimensionless amplitudes T̃I (b) and T̃R(b) of

Eqs. (1, 2) are shown in Fig. 8a, b, where we observe that

there are no zeros. In general T̃I (b) is about 10 times larger

than T̃R(b), and it is impressive that the Fourier transforms of

both have importance in the structure of the observed dσ/dt ,

with a dominance of the real part for large |t |. The function

T̃I (b) is monotonically decreasing in b, while T̃R(b) has a

maximum at b = 4.339 GeV−1 with numerical value 0.131.

At b = 0 we have

T̃I (b = 0) = αI /2βI = 1.81598 =
√

π + 0.04353

that is slightly larger than
√

π = 1.7725 and

T̃R(b = 0) = αR/2βR = 0.09487.

At

b = broot = 1.47393 GeV−1

we have

T̃I (broot) =
√

π = 1.7725 and T̃R(broot) = 0.10009.

As seen in Fig. 8, the non-perturbative terms T̃K (nonpert) =
λK ψ̃K (b), K = I, R, dominate the amplitudes for large

b, while T̃I (nonpert) dominates over TI (t) in the forward

peak, where non-perturbative and perturbative magnitudes
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Fig. 6 |t | dependence of the real and imaginary parts of the pp elastic

amplitude at
√

s = 13 TeV, showing one zero at Z I = 0.46 GeV2 for

TI (t), and zeros at Z
(1)
R = 0.200 GeV2 and Z

(2)
R = 1.180 GeV2 for

TR(t). The inset uses log scale to exhibit the slopes at |t | = 0, demon-

strating the early deviation of the amplitudes from the linear behaviour,

each amplitude bending towards its zero. For large |t | the negative imag-

inary amplitude (dotted line) becomes negligible, and there is strong

dominance (in magnitude) by the positive real part (dashed line). For

|t | above ∼ 3 GeV2 the three-gluon exchange contribution added to the

real part (solid line) raises dσ/dt , forcing the behaviour observed at√
s = 27.4 GeV and conjectured to be universal. The continuity in the

inclusion of the three-gluon exchange term is shown in Fig. 5
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Fig. 7 Perturbative and non-perturbative contributions in TI (t) and

TR(t). In the figure we call TK (pert) = αK e−βK |t |, TK (nonpert) =
λK ψK (γK , t), (with K = I, R), and TR(perttail) = TR(pert)+Rggg(t).

It is important to observe that λI /αI ≈ 25/15 and λR/αR ≈ 15, so that

the forward direction is dominated by the non-perturbative term, par-

ticularly so in the real amplitude (thus the evaluation of the ρ parameter

is mainly a non-perturbative affair). After the bump, TI (pert) is negli-

gible compared to TI (nonpert), which becomes negligible compared to

TR(pert) for |t | ≥ 3 GeV2. For large |t |, only TR(pert) (or TR(perttail)

) survives
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are in the ratio λI /αI ∼ 25/15, with a ratio ∼ 25/9 in the

contributions to the total cross section. It is remarkable that

forward elastic scattering is mainly a peripheral process of

non-perturbative nature.

In terms of the T̃K (s, b) amplitudes, the elastic, total and

inelastic cross sections are written respectively

σel(s) =
(h̄c)2

π

∫
d2b |T̃ (s, b)|2 ≡

∫
d2b

dσ̃el(s, b)

d2b
,

(21)

σ(s) =
2

√
π

(h̄c)2

∫
d2b T̃I (s, b) ≡

∫
d2b

dσ̃tot(s, b)

d2b
,

(22)

and

σinel = σ − σel = (h̄c)2
∫

d2b

(
2

√
π

T̃I (s, b) −
1

π
|T̃ (s, b)|2

)

≡
∫

d2b
dσ̃inel(s, b)

d2b
. (23)

The values of the integrated cross sections are σel = 31.096

mb, σ = 111.557 mb, σinel = 80.461 mb, with ratio

σel/σ = 0.28. The differential cross sections in b-space

shown in Fig. 8c give a hint of the proton hadronic inter-

action structure in the transverse collision plane with smooth

monotonous b-dependence.

Unitarity imposes that σel ≤ σ . With a classical point

of view, a hypothesis that the inequality is valid for all b is

written

T̃I (s, b)2 + T̃R(s, b)2 ≤ 2
√

π T̃I (s, b), ∀ s, b (24)

or

T̃R(s, b)2 + (T̃I (s, b) −
√

π)2 ≤ π, ∀ s, b. (25)

This relation, called b-space unitarity, is satisfied by our

amplitudes.

The eikonal function χ (s, b) for a given s is introduced

through

i
√

π (1 − eiχ(b)) ≡ T̃ (b) = T̃R(b) + i T̃I (b), (26)

with

χ(b) = χR(b) + iχI (b). (27)

Separating real and imaginary parts

1 − cos χR e−χI =
1

√
π

T̃I (b) (28)

and

sin χR e−χI =
1

√
π

T̃R(b) (29)

we obtain

χI (b) = −
1

2
log

[
1

π

(
T̃R(b)2 + (T̃I (b) −

√
π)2

)]
. (30)

so that the b-unitarity condition in Eq. (25) reads simply

χI (s, b) ≥ 0, ∀s, b. (31)

With monotonic behavior of the scattering amplitudes, our

solutions are restricted to the branch where χR ≥ 0. We

need special care to write the expression for χR , because it

enters the second quadrant for small b. At the point b =
broot where T̃I (broot) =

√
π , cos χR becomes zero, and it is

negative between b = 0 and b = broot. To have continuity,

avoiding that a calculator produces a positive value in the

fourth quadrant, we must write the function arctan with two

arguments. In the form used by the Wolfram Mathematica

software, we write

χR(b) = arctan[(
√

π − T̃I (b)), T̃R(b)]
=

π

2
− arctan[T̃R(b),

√
π − T̃I (b)]. (32)

In terms of the eikonal function, we have

dσ̃el(s, b)

d2b
= 1 − 2 cos χR e−χI + e−2χI , (33)

dσ̃ (s, b)

d2b
= 2

(
1 − cos χR e−χI

)
, (34)

dσ̃inel(s, b)

d2b
= 1 − e−2χI . (35)

These expressions are plotted in Fig. 8, and the explicit repre-

sentation for cos χR and the expression in Eq. (30) for χI (b)

are plotted in Fig. 9.

The function χI (b) is not monotonically decreasing, start-

ing with χI (0) = 2.83208, and presenting a maximum at

bmax = 1.2700 GeV−1 with value χ(bmax) = 2.8818. This

property is not observed in our previous analyses at lower

energies
√

s ≤ 7 TeV, where χI is always monotonically

decreasing function in b. To detail this peculiar behaviour,

and illustrate the effect of the real part, we point out that from

Eqs. (28, 29) together with Eq. (31) we have

0 ≤ χI (b) ≤ −
1

2
log

(
T̃R(b)2

π

)
≡ bound(b). (36)

The expression bound(b) is plotted in dotted line in Fig. 9a.

At b = broot = 1.47393 GeV−1, where T̃I (b) −
√

π =
0, χI (b) touches bound(b). Everywhere else, the inequal-

ity holds. This happens even at the maximum bmax of

χI (b), where bound(bmax) = 2.8895 is slightly larger than

χI (bmax)=2.8818.

It is interesting that the differential inelastic cross section

dσ̃inel/d2b in Fig. 8c is almost fully saturated (≃ 1) in the

central collision region up to b < 4 GeV−1 ≈ 0.8 fm. This

can be seen also from the behavior of χI (b) in Fig. 9, where

for b < 4, it is χ
I

> 1.5 so that exp
(
−2χ

I

)
≤ 0.05. In the

classical picture, from the central to approximately the half

overlap impact parameter, the pp system behaves as com-

pletely absorptive, leading to particle production channels.

We note, however, that this does not mean that the elastic
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Fig. 8 a, b Amplitudes in b-space. The quantities labelled in the fig-

ures are T̃K (pert) = (αK /2βK )e−b2/4βK , T̃K (nonpert) = λK ψ̃K (b),

with ψ̃K (b) given in Eq. (2), and T̃K = T̃K (pert)+ T̃K (nonpert). Notice

the difference in the scales of the plots of T̃I and T̃R . The perturbative

terms dominate the central region of b ≤ 2 GeV−1 ∼ 0.4 fm while

the non-perturbative terms are strongly dominating for large b. In c the

plots of differential cross sections of Eqs. (21, 22, 23) give hints about

the structure of the interaction as observed in the transverse collision

plane

differential cross section dσ̃el/d2b is null, due to the wave

nature of the scattering. The diffractive wave as the reflection

of inelastic scattering contributes to the elastic channel with

almost the same magnitude as the inelastic one inelastic one

even for the extreme case of a black disk.

On the other hand, at this energy, we note that the elastic

scattering profile at b = 0 is rather large, exceeding the

inelastic profile, which was never observed in our previous

analyses. Furthermore, we also observe for the first time,

a small decrease the inelastic profile near b = 0 (almost

invisible in Fig. 8, as direct reflection of the behavior of χI

shown in Fig. 9). We will return to this point later.

As claimed in previous studies, in the very peripheral col-

lisions (at this energy, b ≥ 8 GeV−1 ≃ 1.6 fm), contribu-

tions from elastic processes become negligible and inelastic

processes are dominant.

Physically speaking, this part can be associated to diffrac-

tive particle production mechanism. In b-space, this consti-

tutes a rather diffused surface structure with a long tail in

dσ̃inel/d2b. We may associate such processes (forward scat-

tering) with those from the excitation of the vacuum through

the non-perturbative processes. In [7] we argue that the exis-

tence of such a long tail in dσ̃inel/d2b and vanishingly small

values of dσ̃el/d2b for large b, say > 9 GeV−1, can be con-

sidered as responsible for the ratio, σ̃inel/σ̃ being significantly
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constraint of Eq. (36); b χR(b) is in the second quadrant for

small b, with χR(0) = 2.0010 , and cos χR(0) = −0.4170; at

b = broot = 1.4739 GeV−1, we have χR(broot) = π/2 and

cos χR(broot) = 0

larger than that of a black-disk limit, namely 1/2. There,

assuming the geometric scaling property for dσ̃inel/d2b, we

extrapolated this ratio to 13 TeV, predicting the value

(σ̃inel/σ̃ )extrapolation = 0.7428,

while the present analysis gives

(σ̃inel/σ̃ )Totem = 0.7212,

which is 3% smaller, but yet definitely far from the black disk

limit.

5 Energy dependence

The KFK model represented by Eqs. (1, 2), or alternatively

Eq. (14) in |t | space, has been used in the description of dσ/dt

data at several energies, and its properties and predictions in

both |t | and b spaces were studied also for cosmic ray showers

[34].

Data of pp elastic scattering covering regularly from small

to large |t | are available in the ISR range (up to 63 GeV), and

at 7 and 13 TeV in LHC Totem measurements. The com-

prehensive analysis of all dσ/dt data then available (up to√
s = 7 TeV) was made [7] with a study of the energy depen-

dence of the KFK parameters, including predictions for 13

and 14 TeV.

The 13 TeV data are more precise and cover wider |t |
range than the 7 TeV data, allowing realistic determination

of the amplitudes in KFK model. This is the purpose and the

achievement of the present work. The results obtained lead

to revision and extension of the previous analysis, and the

updated revision is presented in this section.

We stress that KFK provides a framework that is particu-

larly important for a study of the real part, that is elusive in

the forward region, becoming influent at mid |t | and dom-

inant after about 3 GeV2. Due to the small value of ρ, the

interplay of the electromagnetic and real part of the nuclear

amplitude is very delicate. A detailed analysis of the forward

data at 8 TeV [35], accounting for the role of the real part of

the hadronic amplitude in the CNI contribution, has demon-

strated the importance of the hadronic model in the deter-

mination of the forward scattering parameters, leading to the

values ρ = 0.12±0.03 and σ = 102.9±2.3. Particularly the

ρ value, small compared to 0.14 of COMPETE preference,

anticipated the tendency that was later confirmed in measure-

ments at 13 TeV. The ρ value at 8 TeV affects the revision of

parameters presented in this section, particularly leading to

ρ = 0.115±0.001 at 7 TeV, with very good χ2. The decisive

influence of the hadronic amplitudes in the study of the phase

in the Coulomb-Nuclear Interference, with consequences in

the evaluation of ρ and σ , was also demonstrated at 13 TeV

[4].

Table 5 shows the optimal values of the model parameters

for
√

s = 52.806 GeV, chosen as representative of the ISR

range, together with the results of 7 TeV and 13 TeV. The

table introduces an alternative notation, defining quantities

ηK through

ηK = γK a2 (37)
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Table 5 Parameters of the amplitudes in the KFK model determined at

the energies 52.806 GeV, 7 TeV and 13 TeV. For uniformity, the table

uses the alternative parameters ηK = a2γK with units GeV−2 instead

of the dimensionless γK . Notice values of a2 for different energies.

For 0.0528 TeV the data reaches |t | = 10 GeV2 and the three-gluon

exchange term is included

√
s

TeV

a2

GeV−2
N χ2 σ (mb) ρ αI

GeV−2
βI

GeV−2
λI

GeV−2
ηI

GeV−2
αR

GeV−2
βR

GeV−2
λR

GeV−2
ηR

GeV−2

0.0528 1.39 97 0.9251 42.54 0.078 5.958 2.348 9.451 10.5778 0.0710 1.144 1.131 11.794

7 2.00 165 0.2957 98.75 0.115 13.730 4.100 22.040 16.3000 0.2572 1.405 3.856 15.576

13 2.1468 428 1.567 111.56 0.118 15.701 4.323 24.709 16.7858 0.2922 1.540 4.472 16.107

that have the same GeV−2 units as the other six quantities

αK , βK , λK , used instead of the dimensionless γK used in

the text and in previous work.

Using the forms ηK instead of γK , the non-perturbative

shape functions are written

ψ̃K (s, b) =
2e

(
ηK −

√
η2

K
+b2a2

)
/a2

√
η2

K
+ b2a2

⎡
⎣1 − e

(
ηK −

√
η2

K
+b2a2

)
/a2

⎤
⎦ .

(38)

Consequently, in t-space the shape function obtained by

Fourier Transform is written

ψK (γK (s), t)

= 2 eηK /a2

⎡
⎣ e−(ηK /a2)

√
1+a2|t |

√
1 + a2|t |

− eηK /a2 e−(ηK /a2)
√

4+a2|t |
√

4 + a2|t |

⎤
⎦ .

(39)

Using these sets of values, we updated the energy dependence

of the KFK parameter values [7] as

αI = 8.97889 + 1.87838 log
√

s + 0.289432 log2
√

s

(40)

βI = 3.40059 + 0.35881 log
√

s + 0.000315 log2
√

s

(41)

λI = 15.22340 + 2.88969 log
√

s + 0.3152 log2
√

s

(42)

αR = 0.16377 + 0.04144 log
√

s + 0.003365 log2
√

s

(43)

βR = 1.13041 + 0.083146 log
√

s + 0.029841 log2
√

s

(44)

λR = 2.31722 + 0.63662 log
√

s + 0.079324 log2
√

s

(45)

ηI = 13.79950 + 1.13219 log
√

s + 0.012510 log2
√

s

(46)

ηR = 13.98229 + 0.78910 log
√

s + 0.015369 log
√

s

(47)

0

5

10

15

20

25

0 2 4 6 8 10 12 14

√s (TeV)

 p
a

ra
m

et
er

s 
o

f 
th

e 
a
m

p
li

tu
d

es
 (

G
eV

-2
)

α
I

β
I

λ
I

β
I

α
R

β
Rλ

R

λ
R

η
I

η
R

Fig. 10 Energy dependence of the KFK parameters, obtained by direct

analysis of dσ/dt data at ISR energies, and at LHC energies 7 and

13 TeV. The dots mark the values of the parameters at reference values

52.8 GeV, 7 TeV and 13 TeV, as given in Table 5

with
√

s in TeV and units GeV−2 for all quantities. These

forms as functions of the energy are shown in Fig. 10.

In the table we notice that the correlation length squared

a2, serving as scale for the gluon correlations in the trans-

verse collision plane for the nonperturbative term, has regu-

lar energy dependence, staying close to the value obtained in

static lattice calculation. The KFK amplitudes for dσ/dt are

sensitive to these values, and a representation appropriate for

interpolation is

a2 = 1.64036 + 0.145122 log
√

s + 0.0204 log2 √
s GeV−2. (48)

The total cross section reads

σ = 2.7606(αI + λI )

= 66.8129 + 13.1627 log
√

s + 1.6691 log2
√

s mb,

(49)
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Fig. 11 Energy dependence of the slopes of the real and imaginary

amplitudes

and we recall that ρ = (αR + λR)/(αI + λI ) is given by

Eq. (16).

The slopes of the amplitudes, shown in Fig. 11, can be

represented by simple forms

BI = 17.270 + 1.457 log
√

s + 0.006 log2
√

s

BR = 22.457 + 1.356 log
√

s + 0.070 log2
√

s (50)

with units GeV−2. The structure of the forward amplitude

with different slopes BI and BR is crucial in the analysis of

the CNI range for determination of σ and ρ. The stronger real

slope BR indicates the presence of the close zero predicted

by Martin’s theorem.

It is interesting to observe the energy dependence of prop-

erties of the amplitudes in b-space [7,34]. Figure 9 shows that

at 13 TeV the elastic differential cross section at b = 0 is

larger than the inelastic quantity, while at lower energies the

inverse is true. According to our description, the ratio elas-

tic/inelastic at b = 0 increases with the energy, with values

0.56, 0.90, 1.06 for 52.8 GeV, 7 TeV and 13 TeV respectively.

The energy dependences are determined with dσ/dt data that

have a wide coverage in t and permit to obtain the parameter

values with excellent precision for each given energy up to

13 TeV. However, the forms have limited local validity, like

Taylor expansions in log
√

s up to second order, and are not

adequate for extrapolation to very high energies. Neverthe-

less, it is tempting to compare the predictions resulting from

the present analysis to, for example, a cosmic ray energy

scale, as
√

s = 50 TeV.

The above mentioned ratio elastic/inelastic at b = 0

increases as high as 1.56, while Eq. (49) predicts σ = 143.85

mb at 50 TeV, that is consistent with the estimated values of

sigma(pA) data [34]. Values of some derived quantities are

shown in Table 6.

Figure 12 shows the elastic, inelastic and total differential

cross sections in b-space for 13 and 50 TeV. In view of the

study of properties of the terms of the amplitudes in Sect. 4.2

we learn that this increase of the elastic cross section at b = 0

is mainly due to the perturbative terms. However, we must

remark that the range around b = 0 is reduced in the bdb

integration, and that the inelastic cross section dominates

for larger b, so that the integrated inelastic is larger than the

integrated elastic at all energies. The ratios are given in Table

6.

In Fig. 12 we observe that the inelastic differential cross

section is never saturated (namely it is always smaller than

1, with the eikonal χI larger than zero), while the elastic and

total quantities are strongly enhanced in the region close to

b = 0. For very central collisions, with the impact parameter

smaller than the nucleon geometric size, inelastic processes at

50 TeV are visibly suppressed compared to the 13 TeV case.

To be more precise, such suppressions of inelastic profile near

b = 0 already started in the 13 TeV data, although not being

quite visible in the figure. However from the behavior of χI

in Fig. 9 near b = 0, together with Eq. (35), it is clear that

the inelastic profile has a minimum at b = 0. as mentioned in

the previous section. The ratio elastic/inelastic cross sections

at b = 0 increases fast because the elastic part increases and

simultaneously the inelastic part decreases. For much higher

energies, this tendency is more enhanced.

The concept of the impact parameter b is classical and can-

not be associated with a real physical observable in micro-

scopic systems. Nevertheless, the present results suggest an

image that, at ultra high energies, the two colliding protons

tend to behave as two thin, inter-penetrable hard disks so that

the process becomes elastic scattering dominant, decreasing

the inelastic channel. This seems to occur in the b-domain

corresponding to the proton radius (b < Rproton ≈ 0.85 fm).

Such image may require the existence of some non-causal

transverse correlation between the whole colliding protons,

for example similar to the exclusion principle. It will be

interesting to compare the elastic differential cross section

for small b in pp and pp̄ collisions. If no such enhancement

appears in pp̄, a simple idea of exclusion principle may be

compatible, although sometimes the differences of scattering

amplitudes in pp and pp̄ are considered as signal of odderon

existence. For larger b our model indicates that the cloud of

vacuum fluctuations around the proton dominates the pro-

cess, contributing to the inelastic (particle production) chan-

nels.

These considerations show that precise data on the scat-

tering amplitude for different values of
√

s and with wide

|t | range are necessary for the understanding of the structure
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Table 6 Quantities derived from the energy dependence expressed by

the interpolation equations (47). The quantities Z I , Z
(1)
R and Z

(2)
R are

the locations (|t | values) of the zeros of the imaginary and real ampli-

tudes, that are important in the dip-bump structure. The integrated cross

sections do not show tendency for black disk collision

√
s (TeV) Z I ( GeV2 ) Z

(1)
R ( GeV2) Z

(2)
R ( GeV2) ρ σtot (mb) σel (mb) σinel (mb) σel/σinel σel/σtot |t |dip ( GeV2) hdip (mb/ GeV2)

7 0.479 0.209 1.144 0.115 98.75 25.37 73.38 0.346 0.257 0.487 0.012

13 0.460 0.200 1.180 0.118 111.56 31.10 80.46 0.386 0.279 0.470 0.026

20 0.453 0.195 1.218 0.120 121.22 35.56 85.66 0.415 0.293 0.460 0.032

50 0.428 0.183 1.345 0.123 143.85 47.59 96.26 0.494 0.331 0.442 0.051

Fig. 12 Differential cross sections in b-space at energies 13 and

50 TeV. At b = 0 the ratio of differential cross sections elastic/inelastic

increases from 1.06 at 13 TeV to 1.56 at 50 TeV. As the energy increases,

the interaction at the center of the proton becomes increasingly elastic.

On the other hand, the integrated cross section is dominantly inelastic,

as its range is more extended and the value is favored by the b factor in

the integration. For more clarity, the figure is repeated in log scale

of proton and of the surrounding QCD field in the collision

region.

6 Other models

The present paper is mainly dedicated to the analysis of the |t |
dependence of pp elastic scattering measured at 13 TeV, char-

acterized by unique statistical quality and wide |t | coverage.

These data brought surprises and opportunities for theoreti-

cal models. Several well established frameworks revised their

assumptions and results. The response of the proton in the

scattering process may change because Lorentz contraction

puts the partons closer, and correlations (and even exclusion

principle) act differently as energy increases.

In the present work KFK model gives high precision repre-

sentation for all data with identification of the real and imag-

inary amplitudes, and shows χ2 values for separate ranges

with a unique solution, both with statistical and with com-

bined statistical and systematic errors. Although consistent

and detailed, the significance of the results depends on the

analytical forms used, and it is important to compare our cal-

culations with the results obtained in different frameworks,

trying to learn about the meaning of each one.

Comprehensive and competent reviews are available, dis-

cussing several aspects of pp elastic scattering, in both s and

t variables [36,37]. In this section we mention some specific

calculations that deal with aspects related with the present

work.

6.1 Pomeron models

Models based on Regge formalism are traditional in studies

of hadronic scattering, giving connection between the s and

t variables in forward scattering for many hadronic systems

in terms of kinematical forms called Regge trajectories.

To describe the observed curvature in the diffractive peak

of pp scattering, the main Pomeron trajectories must become

non-linear, and modulated forms with adjustable parameters

are proposed. To extend the use of Regge models up to the

dip, the hadronic amplitude must have a zero, and terms of

negative sign must be included in the framework. Thus the

contribution of the exchange of two Pomerons [38,39] is

introduced, with formalism and parameters adjusted to locate

the dips and estimate their heights. We are not aware that this

has been achieved with good accuracy, but the conclusion of
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these two papers is that at 13 TeV there is not evidence for

an Odderon contribution in this framework. In an alternative

approach [40], without two-pomeron exchanges, Pomeron

and Odderon terms are added on equal foot, both with double

poles and independent parameters. The very forward CNI

range is not treated, but the description of the dip/bump region

at 13 TeV is satisfactory (χ2 value for this specific range is

not informed), up to |t | ≈ 2.0 GeV2.

We emphasize that in this Regge framework, as also in

some other models, the data for large |t | (say |t | ≥ 2.5 GeV2)

range are not properly represented. This is evidence of the

absence of knowledge of the transition from soft to hard

dynamics, possibly with perturbative three-gluon exchange

influencing the tail region and shows the need for more mea-

surements.

Corresponding to these two approaches, namely two-

pomeron exchange (also multi-pomeron exchanges) and

added odderon exchange, the additional terms with negative

sign leading to dip and bump, are accounted for equivalently

in the non-perturbative shape functions of KFK, that guaran-

tee these properties of the amplitudes.

A more recent work [41] explores the Regge framework,

introducing the traditional soft Pomeron with nonlinear tra-

jectory and the hard Pomeron with stronger slope. These

quantities are added in an eikonal approximation. The param-

eters adjusted to include the 13 TeV data allow a good repre-

sentation of the pp data for 7 TeV and 13 TeV, particularly for

large |t |, and the authors inform that the hard Pomeron pole is

crucial in this aspect. No Odderon presence is claimed here.

The |t | space amplitudes of in this calculation are similar the

KFK amplitudes.

Broilo, Luna and Menon [42] studied the energy depen-

dence of σ(s) and ρ(s) including the 13 TeV data in the sta-

tistical analysis of all data from
√

s = 5 GeV reported by the

Particle Data Group (PDG), investigating comparatively the

contributions of powers and/or logarithms in the Pomeron

exchange terms [42]. The conclusion favors the choice of

the parametrization with log s and log2 s in σ(s), excluding

power forms. At 13 TeV the parametrization leads to σ(s)

= 107.2 mb, that disagrees with the calculations based on

dσ/dt , whereas leads to ρ = 0.1185 that agrees with KFK

value for zero Coulomb interference phase.

Unfortunately, the determination of the |t | = 0 quanti-

ties such as σ(s) and ρ(s) based purely on the bare data of

PDG is not secure, because this inclusive data basis has not

been not submitted to a selection and evaluation of consis-

tency and quality [43]. Values of σ and ρ are not quantities

directly measured, but rather are model dependent calcula-

tions, requiring identification of the imaginary and real parts

of the amplitude, and in many cases the dσ/dt measurements

are not sufficient in range and quality for these calculations.

6.2 Martin’s formula for the real part

With basis on general principles of quantum field theory,

Martin obtained a formula [44] connecting the real and imag-

inary parts of the complex amplitude of pp/pp̄ elastic scatter-

ing. In principle the relation was established under restrictive

conditions, as proximity of the asymptotic Froissart bound

and limitation to the very forward range. The formula, that

refers to the even component of crossing symmetry, includes

also a scaling property incorporating energy dependence in

the relation. The scaling property connecting s and t has been

explored in several instances [45–47], describing properties

of the real and imaginary amplitudes in the forward range.

Without considering Martin’s formula as a theorem with

strict constraints, the relation was considered as a sugges-

tion [48] for properties of the real part of the full |t | range

data of Fermilab and ISR experiments in the energy range√
s = 19.4–62.5 GeV. The imaginary and real parts are fit-

ted together, using a total of 12 parameters for each energy,

with representations for real and imaginary parts connected

by the formula. The numerical study includes also the 39

points of Faissler et al. measurements [8] at 27.4 GeV, con-

sidered as universally valid for the energy range investigated.

The original Martin’s real-part formula [44] was used with-

out the full scaling property, namely it is applied separately

for each energy investigated, with determination of the best

parameters at each energy. The fittings of the ISR data show

imaginary part with one zero and real parts with two zeros,

just as we obtain in KFK model.

The equation to be used is

TR(s, t) =
TR(s, 0)

TI (s, 0)

d

dt

[
t TI (s, t)

]
. (51)

Obviously TR(s, 0)/TI (s, 0) = ρ, but this quantity is not

predicted by the formula, that specifically predicts the |t |
dependence of the ratio TR(s, t)/TR(s, 0) once the imaginary

part TI (s, t) is given.

To reproduce this study with the 13 TeV data testing the

KFK model, we do not fit freely the imaginary and real parts,

but rather take TI (t) as known and obtain a prediction for the

real part by Martin’s formula. We then write

T Martin
R (t)

T Martin
R (0)

=
d

dt

[
t

TI (t)

TI (0)

]
(52)

where TI (t) is the KFK proposal treated in Sect. 3. In Fig. 13

we show KFK real amplitude normalized to one at the origin,

namely we plot TR(|t |)/TR(0) from KFK (solid line) and

T Martin
R (t)/T Martin

R (0) from Martin’s formula in Eq. (52), with

the given imaginary ratio TI (t)/TI (0). The important point

for the KFK model is the confirmation of the properties of the

amplitudes: one zero for TI (s, t) and two zeros for TR(s, t),

with the real part dominant over the imaginary part after the
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Fig. 13 Martin’s Real Part Formula. a |t | dependence of the real part

of elastic amplitude calculated with Martin’s Formula T Martin
R (t) using

the imaginary part TI (t) of KFK model, compared with TR(t), both nor-

malized to 1 at |t | = 0; b large |t | behaviour of TR(|t |) and TI (|t |) of

KFK calculation compared with the prediction T Martin
R (|t |) from Mar-

tin’s Formula using same TI (|t |); the real amplitudes are positive in

both cases, with magnitudes dominant (slightly in the case of Martin’s

Formula) over the negative imaginary part

bump. The comparative plots in Fig. 13 show that differences

in positions and shapes.

6.3 BSW and Selyugin’s HEGS models

The model proposed by Bourrely, Soffer and Wu (called

BSW model) [49] gives explicitly the full s, t dependence

of the elastic amplitudes and is appropriate for the compari-

son with the calculations in KFK. The structure of the pp and

pp̄ interactions studied by Selyugin [50–52], based on the

analysis of different sets of Parton Distribution Functions

and introducing t-dependence in the Generalized Parton Dis-

tributions, called HEGS model by the author, gives good

representation of dσ/dt data for large energy range, pre-

dicting the LHC experiment at 13 TeV. Figure 14 shows the

dependences of the amplitudes predicted by these two mod-

els for 13 and 14 TeV several years before the experiments.

The similarity of both BSW and HEGS models with present

KFK calculations in the forms of the amplitudes reinforces

the expectation of the present work, that aims at a realistic

identification of the terms of the complex elastic amplitude.

6.4 Models on the space structure of the proton

Recently, Csörgo, Pasechnik and Ster [53,54] introduced the

statistical analysis of Lévy imaging method to extract the

information of the colliding proton structure in a model-

independent way and quantify its inelasticity profile in b

space, obtaining dσinel/db as function of b. Comparing

the results for different energies, they claim that a possi-

ble emergence of the “proton hollowness” (or equivalently

“black-ring”) effect at 13 TeV. Note that their inelastic pro-

file function dσinel/db is practically identical with our results

shown in Fig. 12. The claimed “hollowness” is also found

in our dσinel/db, although its location and intensity are

smaller. In terms of their parameters H = exp(−2χI (0))

and h = H − exp(−2χI (bpeak)), where bpeak is the position

where χI becomes maximum, we have

bpeak ≃ 0.24 fm, H ≃ 0.00346, h ≃ 0.00033,

compared to the corresponding values in [53,54]

bpeak ≃ 0.4 fm, H ≃ 0.0085, h ≃ 0.0058.

As shown in Fig. 12, our analysis predicts that at 50 TeV this

“hollowness” becomes much more enhanced.

Similar conjecture of the existence of a layer-structure in

the proton, revealed in pp scattering at high energies, based on

the observation that there is a range of nearly linear behaviour

in dσ/dt , is discussed by Dremin [55] (and references therein

for related work). In contrast to the above mentioned [53,54]

approach, this work deals with the elastic profile. The author

claims that the enhancement of elastic component for large

|t | indicates a hard internal layer in the proton structure. This

observation also qualitatively agrees with our results, where

the elastic profile at 13 TeV shows a significant enhancement

near b = 0. As mentioned before, our prediction for 50 GeV

shows much more clearly the “hard core” structure of the

elastic profile function for central collisions. Unfortunately,

a direct quantitative comparison of this work [55] with our

result is not available.
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Fig. 14 Scattering amplitudes TR(t) and TI (t) in comparison with

other models: KFK solution of Eqs. (11, 14) and Table 1 in solid line,

BSW model [49] in dashed line and Selyugin’s HEGS model [50–52]

in dotted line. The solutions are similar, with zeros similar positions,

and with dominance of the real part (with positive sign) for large |t |

6.5 Phillips–Barger potential model

A paper by Gonçalves and Silva [56] uses the formula for the

complex amplitude based on the Phillips–Barger potential

model [47,57]

AP B(t) = i

[
1

(1 − t/t0)4

√
Ae(Bt/2) + eiφ

√
CeDt/2

]
(53)

to parametrize dσ/dt at several energies for the full |t | range.

With six free parameters, the 13 TeV data (398 points) are

fitted with χ2 = 6.30 with statistical errors only. This value

looks similar to our value 5.186 for 428 points in Table 2. The

real part in the amplitude in Eq. (53) has a pure exponential

form, without zero, and is very small in magnitude for all |t |,
with a value at the origin ρ = 0.02. We understand the the

treatment of the real part in the framework of this model is

not simple [47].

In most models the range of transition from |t | ≈
2.5 GeV2 to the perturbative tail stays somewhat outside their

treatments, indicating need of special investigation of this

region, and also of more precise measurements.

7 Final comments

Elastic scattering is described by one single complex func-

tion depending on two kinetic variables and it is natural to

expect that investigations may lead to explicit and hope-

fully realistic (compatible with data and with any model

independent information) expressions for both parts of this

function, as is attempted in the present work. Besides the

|t | amplitudes extracted from data in direct analytical form,

the impact parameter representation is also explicitly given

together with their eikonal representation, so that unitarity

can be studied and controlled, in addition to providing phys-

ically intuitive images. We believe that the regularity in the

energy dependence previously studied [7] and reviewed in

Sect. 5 adds reliability to our proposal.

Characteristic features of the disentanglement of the

amplitudes here proposed are the two zeros of the real part,

and the single zero of the imaginary part, and this structure

is reproduced by different models and frameworks, as men-

tioned in Sect. 6. Interesting support in this respect comes

from the qualitative agreement of the real part in KFK with

the prediction from Martin’s Real Part Formula shown in

Fig. 13, with the zeros and the dominant positive real part

for large |t |. Since very precise representation of the data is

obtained in this work, the results suggest bridges between

experiments and amplitudes that may serve as reference for

other models.

The interplay of the imaginary and real amplitudes at mid

values of |t | is responsible for the dip-bump structure of the

differential cross section. For large |t | the perturbative term

of the real part is dominant, while at small |t | the imaginary

non-perturbative term is stronger, occupying about 75 % of

the cross section.

The Yukawa-like behaviour for large b of the profile func-

tion derived from the loop-loop interaction in the Stochastic

Vacuum Model, that is incorporated in the input amplitudes

of KFK, is present in treatments of the pp interaction through

Wilson loop correlation functions.

In the present analysis, we also studied the possible energy

dependence of the model parameters and updated the earlier

version [7]. One new finding is that at b = 0, the elastic scat-

tering profile, dσ/dbelas increases with the incident energy

very quickly beyond 13 TeV, whereas the inelastic profile

decreases. These properties are also reported in [55] and

[53,54], respectively. The dominance of elastic process at

b = 0 with quick energy variation predicted here, together

with the increasing suppression (“hollowness”) of inelastic

channel, certainly introduces a new clue for the role of proton

structure in very high energy collisions. Intuitively speaking,

at very high energies, the central collision of proton-proton

behaves as under a hard-core elastic potential scattering, with

hard-core repulsion due to Pauli’s exclusion principle. If so,

naturally we expect that such behavior will not appear simi-

larly in pp̄ scattering.

Finally we remark that in KFK model, the parameters

of the real and imaginary parts of the elastic amplitude are

treated independently. We refer exclusively to the −t > 0

half-plane, so that we cannot guarantee that final amplitude

is analytic when s and t are extended to the complex domain.
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This concern would impose further constraints, particularly

in extrapolation to higher energies.

Questions of analyticity and crossing symmetry, with

explicit inclusion of energy dependence, as in frameworks

exploring scaling properties [46], require further study.
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