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ABSTRACT

Context. An equation of state (EoS) of dense nuclear matter is a prerequisite for studies of the structure and evolution of compact
stars. A unified EoS should describe the crust and the core of a neutron star using the same physical model. The Brussels-Montreal
group has recently derived a family of such EoSs based on the nuclear energy-density functional theory with generalized Skyrme
effective forces that have been fitted with great precision to essentially all the available mass data. At the same time, these forces were
constrained to reproduce microscopic calculations of homogeneous neutron matter based on realistic two- and three-nucleon forces.
Aims. We represent basic physical characteristics of the latest Brussels-Montreal EoS models by analytical expressions to facilitate
their inclusion in astrophysical simulations.
Methods. We consider three EoS models, which significantly differ by stiffness: BSk19, BSk20, and BSk21. For each of them we
constructed two versions of the EoS parametrization. In the first version, pressure P and gravitational mass density ρ are given as
functions of the baryon number density nb. In the second version, P, ρ, and nb are given as functions of pseudo-enthalpy, which
is useful for two-dimensional calculations of stationary rotating configurations of neutron stars. In addition to the EoS, we derived
analytical expressions for several related quantities that are required in neutron-star simulations: number fractions of electrons and
muons in the stellar core, nucleon numbers per nucleus in the inner crust, and equivalent radii and shape parameters of the nuclei in
the inner crust.
Results. We obtain analytical representations for the basic characteristics of the models of cold dense matter, which are most im-
portant for studies of neutron stars. We demonstrate the usability of our results by applying them to calculations of neutron-star
mass-radius relations, maximum and minimum masses, thresholds of direct Urca processes, and the electron conductivity in the
neutron-star crust.
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1. Introduction

The equation of state (EoS) of dense matter is crucial as input for
neutron-star structure calculations. Usually, neutron-star matter
is strongly degenerate, and therefore the EoS is barotropic (i.e.,
the pressure is temperature-independent), except for the outer-
most envelopes (a few meters thick).

A unified EoS is based on a single effective nuclear
Hamiltonian and is valid in all regions of the neutron-star inte-
rior. For unified EoSs, the transitions between the outer crust and
the inner crust, and between the inner and the core are treated
consistently using the same physical model (e.g., Douchin &
Haensel 2000; Pearson et al. 2012). Other (nonunified) EoSs
consist of crust and core segments obtained using different mod-
els. The crust-core interface there has no physical meaning, and
both segments are joined using an ad hoc matching procedure.

� Our analytical fitting expressions have been implemented in
Fortran subroutines that are publicly available at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A48
or at http://www.ioffe.ru/astro/NSG/BSk/

This generally leads to thermodynamic inconsistencies, which
can manifest themselves by the occurrence of spurious insta-
bilities in neutron-star dynamical simulations. Even if the tran-
sitions are treated using a unified approach, instabilities might
still arise due to numerical errors. In addition, realistic EoSs are
generally calculated only for specific densities and/or pressures.
These limitations can be circumvented by using analytical repre-
sentations of the EoSs. In this paper we construct analytical rep-
resentations of three recent unified EoSs for cold catalysed nu-
clear matter developed by the Brussels-Montreal group: BSk19,
BSk20, and BSk21 (Goriely et al. 2010; Pearson et al. 2011,
2012).

We follow the approach developed by Haensel & Potekhin
(2004), who constructed analytical representations for the previ-
ous unified EoS models FPS (Pandharipande & Ravenhall 1989)
and SLy4 (Douchin & Haensel 2001). In addition, we present
analytical parametrizations of the composition of the crust and
number fractions of leptons and nucleons in the core of a neutron
star. We adopt the “minimal model” (e.g., Haensel et al. 2007),
which means we assume the nucleon-lepton matter without ex-
otic particles.
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The composition of the neutron-star crust can depend on its
formation history. For example, if the star experienced accretion,
then the crust could be formed by the nuclear transformations
that accompany gradual density increase under the weight of the
newly accreted matter (Haensel & Zdunik 1990). It differs from
the matter in β-equilibrium (cold catalysed matter) that consti-
tutes the crust soon after the birth of a neutron star. Moreover, the
nonequilibrium composition of an accreted crust can also depend
on the composition of the ashes of accretion-induced thermonu-
clear burning (Haensel & Zdunik 2003). Here, however, we do
not consider these complications, but focus on the cold catalysed
matter.

In Sect. 2 we briefly review the nuclear models used to con-
struct the Brussels-Montreal EoSs, including a discussion of
constraints coming from nuclear physics experiments and many-
body calculations. In Sect. 3 we present a set of fully analytical
approximations to the EoSs in the crust and the core of a neutron
star. This set includes pressure P and baryon number density nb
as functions of gravitational mass density ρ, the inverse func-
tion ρ(nb), and a fit of ρ as a function of the pseudo-enthalpy,
which is a particularly convenient independent variable for sim-
ulations of rapidly rotating neutron stars (Bonazzola et al. 1993).
In Sect. 4 we give analytical approximations to number frac-
tions of electrons and muons in the core and the inner crust of
a neutron star as functions of nb. Based on the one-dimensional
approximation of the nuclear shapes suggested by Onsi et al.
(2008), we describe the shapes of the nuclei in the inner crust
as fully analytical functions of two arguments, the radial coor-
dinate in a Wigner-Seitz cell r and the mean baryon density nb.
We also present effective proton and neutron sizes of the nuclei
in the inner crust as analytical functions of nb. In Sect. 5 we
consider an application of the results to the calculation of elec-
tron conductivity in the stellar crust. The impact of the analytical
representation of the EoSs on neutron-star structure is studied in
Sect. 6. Concluding remarks are given in Sect. 7.

2. The unified Brussels-Montreal EoSs

The unified Brussels-Montreal EoSs that we consider here are
based on the nuclear energy-density functionals (EDFs), labeled
BSk19, BSk20, and BSk21, respectively. These EDFs were
derived from generalized Skyrme interactions, supplemented
with microscopic contact pairing interactions, a phenomenolog-
ical Wigner term and correction terms for the collective en-
ergy (Goriely et al. 2010; Chamel 2010). Calculating the nu-
clear energy with the Hartree-Fock-Bogoliubov (HFB) method,
the EDFs were fitted to the 2149 measured masses of atomic
nuclei with proton number Z ≥ 8 and neutron number N ≥ 8
from the 2003 Atomic Mass Evaluation (Audi et al. 2003) with a
root mean square (rms) deviation as low as 0.58 MeV. In making
these fits the Skyrme part of the EDFs were simultaneously con-
strained to fit the zero-temperature EoS of homogeneous neutron
matter (NeuM), as determined by many-body calculations with
realistic two- and three-nucleon forces. Actually, several realis-
tic calculations of the EoS of NeuM have been made, and while
they all agree fairly closely at nuclear and subnuclear densities,
at the much higher densities that can be encountered towards
the center of neutron stars they differ greatly in their stiffness,
and there are very few data, either observational or experimen-
tal, to distinguish between the different possibilities. It is in this
way that the three different functionals were constructed, as fol-
lows. The BSk19 EDF was constrained to the soft Friedman &
Pandharipande (1981) EoS obtained from the realistic Urbana
v14 nucleon-nucleon force with the three-body force TNI, the

Table 1. Properties of the Skyrme forces BSk19, BSk20, and BSk21
(Goriely et al. 2010). See text for details.

BSk19 BSk20 BSk21

σ(matom) [MeV] 0.583 0.583 0.577
σ(Rch) [fm] 0.0283 0.0274 0.0270
av [MeV] −16.078 −16.080 −16.053
nb,0 [fm−3] 0.1596 0.1596 0.1582
Kv [MeV] 237.3 241.4 245.8
J [MeV] 30.0 30.0 30.0
L [MeV] 31.9 37.4 46.6
Kτ [MeV] −342.8 −317.1 −264.6
m∗s/m 0.80 0.80 0.80
m∗v/m 0.61 0.65 0.71
ncaus [fm−3] 1.45 0.98 0.99
NeuM FPa APRb LSc

References. (a) Friedman & Pandharipande (1981); (b) Akmal et al.
(1998); (c) Li & Schulze (2008).

BSk20 EDF was fitted to the Akmal et al. (1998) EoS labeled
“A18 + δv + UIX”, and the BSk21 EDF was adjusted to the stiff
EoS labeled “V18” in Li & Schulze (2008).

These NeuM constraints make the EDFs BSk19–21 suit-
able for application to the neutron-rich environments encoun-
tered in many different astrophysical situations, and our making
three different such EDFs available reflects the current lack of
knowledge of the high-density behavior of dense matter. In ad-
dition, these three EDFs were also constrained to reproduce sev-
eral other properties of homogeneous nuclear matter as obtained
from many-body calculations using realistic two- and three-
nucleon interactions; among those, the ratio of the isoscalar ef-
fective mass m∗s to bare nucleon mass m in symmetric nuclear
matter at saturation was set to the realistic value of 0.8, and
all three EDFs predict a neutron effective mass that is higher
than the proton effective mass in neutron-rich matter, as found
both experimentally and from microscopic calculations. Various
properties of the BSk19, BSk20, and BSk21 EDFs are summa-
rized in Table 1 (Goriely et al. 2010), namely: the rms deviations
to the 2149 measured atomic masses σ(matom) and to the 782
measured charge radii σ(Rch), the energy per nucleon of sym-
metric nuclear matter at saturation density av, the baryon num-
ber density at saturation nb,0, the incompressibility of symmetric
nuclear matter at saturation Kv (which was required to fall in
the experimental range 240 ± 10 MeV, according to Colò et al.
2004), the symmetry energy coefficient J and its slope L, the
isospin compressibility Kτ, the isoscalar and isovector effective
masses m∗s and m∗v relative to the bare nucleon mass m, and the
limiting baryonic density ncaus after which the EoSs of neutron-
star matter violate causality. The last line indicates the NeuM
EoS to which each EDF was fitted.

The Brussels-Montreal EDFs BSk19, BSk20, and BSk21
were used to compute the EoS of all regions of a neutron star.
Following the BPS model (Baym et al. 1971), the outer crust was
assumed to consist of fully ionized atoms arranged in a body-
centered cubic lattice at zero temperature. The EoSs of the outer
crust were calculated using either experimental atomic masses
when available or theoretical masses obtained from the HFB
mass models constructed with the BSk19, BSk20, and BSk21
EDFs, as appropriate (see Pearson et al. 2011, for details). For
the inner crust, where neutron-proton clusters coexist with free
neutrons, the kinetic-energy part of the appropriate EDF was cal-
culated using the semi-classical extended Thomas-Fermi method
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with proton quantum shell corrections added via the Strutinsky
integral theorem; neutron shell effects, which are known to be
much smaller, were neglected (see Pearson et al. 2012, for de-
tails). This method is a computationally very fast approxima-
tion to the full Hartree-Fock equations. In order to further reduce
the computations, nuclear clusters were assumed to be spherical,
and parametrized nucleon distributions were introduced. Finally,
the electrostatic energy was calculated using the Wigner-Seitz
approximation, and pairing effects were neglected. The overall
resulting errors in the EoS of the inner crust were found to be
about 5% at the neutron-drip point. The EoSs of the core, as-
sumed to consist of homogeneous β-equilibrated matter made
of nucleons and leptons (electrons and muons), were calculated
essentially analytically from the adopted EDF (Goriely et al.
2010).

In a recent paper, Dutra et al. (2012) analyzed 240 Skyrme
parametrizations, including BSk EDFs, by comparing their pre-
dicted properties of symmetric nuclear matter and pure NeuM to
some empirical constraints. On this basis, these authors rejected
BSk19–21 EDFs (along with all but five of the 240 parametriza-
tions that they considered). We now argue that this rejection is
unjustified. In the first place, BSk19–21 EDFs are claimed to be
incompatible with the constraint labeled “SM3” by Dutra et al.
(2012), a constraint on the EoS of symmetric nuclear matter ob-
tained from the analysis of particle-flow measurements in Au-Au
collisions (Danielewicz et al. 2002) that can be represented by a
band in the plot of pressure vs. density. Now the pressures cal-
culated with the EDFs BSk19−21 fall within this band over 80%
of the density range and never deviate by more than about 20%
from those inferred by Danielewicz et al. (2002) (see, e.g., Fig. 3
of Chamel et al. 2011). Nevertheless, Dutra et al. (2012) reject
these functionals on the grounds that the calculated EoSs do not
fall within the band of Danielewicz et al. (2002) over 95% of
the density range. This criterion is quite arbitrary, and without
any sound statistical foundation. In addition, it has to be noted
that the interpretation by Danielewicz et al. (2002) of the raw ex-
perimental data is subject to uncertainties of two different kinds
of model dependence: i) the transport model that determines the
particle flow in a given collision experiment; ii) extrapolation
from the charge-asymmetric Au +Au system ((N−Z)/A ≈ 20%)
to symmetric nuclear matter. As demonstrated by Gale et al.
(1990), the flow is generated during the early nonequilibrium
stages of the collision, whereas the interpretation in terms of the
EoS by Danielewicz et al. (2002) is an equilibrium version of
a simplified momentum-dependent interaction. Viewed in this
light, the deviations of the pressures obtained with BSk19–21
from the values of Danielewicz et al. (2002) are altogether in-
significant.

The EDFs BSk19-21 are also found to violate the NeuM
constraint “PNM2” by Dutra et al. (2012). However, this con-
straint was actually obtained by Danielewicz et al. (2002) from
the symmetric nuclear matter constraint “SM3” using a sim-
ple parametrization for the symmetry energy. For this reason,
the constraint “PNM2” is even less meaningful than the con-
straint “SM3”.

Dutra et al. (2012) also studied the density dependence of
the symmetry energy. In particular, they found that the coef-
ficient L obtained with BSk19 and BSk20 EDFs falls outside
the range of empirical values determined by Chen et al. (2010)
thus violating the constraints labeled “MIX2” and “MIX5”.
However, the situation regarding the symmetry energy still re-
mains a matter of debate, different experiments and/or theoreti-
cal calculations leading to different and sometimes contradicting
predictions, as shown e.g. in Fig. 12 of Lattimer (2012; see also

Fig. 1. Experimental constraints on the symmetry energy parameters
(see text for details), taken from Lattimer & Lim (2012). The dashed
line represents the constraint obtained from fitting experimental nuclear
masses using the Brussels-Montreal HFB models with a root-mean-
square deviation below 0.84 MeV (best fits are for J = 30 MeV). Star
symbols correspond to the models BSk19, BSk20, and BSk21.

Tsang et al. 2012; Goriely et al. 2010, Sect. IIIB). Different
Skyrme EDFs can thus be selected depending on the experi-
ments or many-body calculations. For example, the values of L
obtained with BSk19–21 EDFs are all compatible with the range
of values L = 55 ± 25 MeV deduced by Centelles et al. (2009)
and Warda et al. (2009) from measurements of the neutron-skin
thickness in nuclei. The L coefficients obtained with BSk20 and
BSk21 are also in agreement with the values 36 MeV< L <
55 MeV found by Steiner & Gandolfi (2012) combining quan-
tum Monte Carlo calculations with neutron-star mass and radius
measurements. Incidentally, this latter constraint would rule out
three of the only five functionals that survive the analysis of
Dutra et al. (2012). Various other constraints on J and L obtained
from the analysis of different experiments (Tsang et al. 2012;
Lattimer & Lim 2012) have been summarized in Fig. 1. The fig-
ure shows the constraint deduced by Tsang et al. (2009) from
heavy-ion collisions (HIC), that derived by Chen et al. (2010)
from measurement of the neutron skin thickness in tin isotopes,
and that obtained from the analysis of giant dipole resonance
(GDR; Trippa et al. 2008; Lattimer & Lim 2012) and the elec-
tric dipole polarizability (Piekarewicz et al. 2012) in 208Pb. For
comparison, the constraint obtained from our HFB nuclear mass
models BSk9−26 (Goriely et al. 2013; Pearson et al. 2009, and
references therein) as well as unpublished ones are also shown.
Values of J and L have also been extracted from pygmy dipole
resonances (Carbone et al. 2010) and isobaric analogue states
(Danielewicz & Lee 2009). However, we have not included them
in the figure because of large experimental and theoretical un-
certainties (see, e.g., Reinhard & Nazarewicz 2010; Daoutidis &
Goriely 2011). The HFB mass model not only agrees with GDR,
neutron skin and dipole polarizability data, but also provides rel-
atively strict constraints on the J an L values.

Dutra et al. (2012) also point out that the values of Kτ ob-
tained for the EDFs BSk19, BSk20, and BSk21 are incompatible
with the range −760 MeV < Kτ < −372 MeV that they extract
from experimental data using a liquid-drop like approach (the
constraint labeled “MIX3”). On the other hand, the values of Kτ
obtained with BSk19, BSk20, and BSk21 are all compatible with
the range of values −370 ± 120 MeV inferred from isospin dif-
fusion in heavy-ion collisions by Chen et al. (2009). Just as for
the L coefficient, the uncertainties in Kτ still remain very large
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(see e.g. Sect. IIIC in Goriely et al. 2010, for a thorough discus-
sion).

Thus the rejection of BSk19–21 EDFs by Dutra et al. (2012)
is ungrounded. On the contrary, these EDFs are well adapted to
a unified treatment of all parts of neutron stars: the outer crust,
the inner crust and the core. The relevance of these EDFs to the
core of neutron stars arises not only from their fit to the EoS
of NeuM but also from the good agreement between their pre-
dicted EoS of symmetric nuclear matter and realistic calcula-
tions, which implies that they take correct account of the pres-
ence of protons. Since these EDFs were fitted to nuclear masses,
they also take account of inhomogeneities, and thus are appro-
priate for the calculation of the inner crust of neutron stars. As
for the outer crust, its properties are determined entirely by the
mass tables that have been generated for the appropriate EDFs
by Pearson et al. (2011).

3. Analytical representations of the EoS

3.1. Preliminary remarks

The first law of thermodynamics for a barotropic EoS implies
the relation (see, e.g., Haensel & Proszynski 1982) P(nb) =
n2

bc2d(ρ/nb)/dnb, which can be also used in the integral forms:

ρ(nb)
nb
=
ρs

ns
+

∫ nb

ns

P(n′b)

n′b
2c2

dn′b, ln

(
nb

ns

)
=

∫ ρ

ρs

c2 dρ′

P(ρ′) + ρ′c2
, (1)

where ρs and ns are the values of ρ and nb at the neutron-star sur-
face. In the present paper we put ρs equal to the density of 56Fe
at zero pressure and zero temperature, ρs = 7.86 g cm−3. One of
the advantages of an analytical representation of the EoS is that
it allows one to fulfill the relations (1) precisely.

There are three qualitatively different domains of the inte-
rior of a neutron star: the outer crust, which consists of elec-
trons and atomic nuclei; the inner crust, which consists of elec-
trons, neutron-proton clusters, and “free” neutrons; and the core,
which contains electrons, neutrons, protons, muons, and possi-
bly other particles (see, e.g., Haensel et al. 2007, for review and
references). In addition, there can be density discontinuities at
the interfaces between layers containing different nuclei in the
crust. An approximation of the EoS by a fully analytical func-
tion neglects these small discontinuities. However, the different
character of the EoS in the three major domains is reflected by
the complexity of our fit, which consists of several fractional-
polynomial parts, matched together with the use of the function
(ex + 1)−1.

For ρ < 106 g cm−3 the BSk EoSs are inadequate, primar-
ily because atoms are not completely ionized, and thermal ef-
fects become non-negligible. The temperature dependence can
be roughly described as (Haensel & Potekhin 2004) P = Pfit+P0,
where Pfit is given by the fitting function presented below, and
P0 = A(T ) ρ provides a low-density continuation. For exam-
ple, if the outer envelope consists of fully ionized iron, then
A(T ) ≈ 4×107 T K−1 (cm/s)2. Partial ionization decreases A(T ):
for example, at T = 107 K the best interpolation to the OPAL
EoS (Rogers et al. 1996) is given by A = 3.5× 1014 (cm/s)2 (that
is, 14% smaller than for the fully ionized ideal gas).

We constructed analytical parametrizations for pressure P,
gravitational mass density ρ, and baryon number density nb as
functions of ρ, nb, or pseudo-enthalpy

H =
∫ P

0

dP′

ρ(P′) c2 + P′
· (2)

Table 2. Parameters of Eq. (3).

i ai

BSk19 BSk20 BSk21

1 3.916 4.078 4.857
2 7.701 7.587 6.981
3 0.00858 0.00839 0.00706
4 0.22114 0.21695 0.19351
5 3.269 3.614 4.085
6 11.964 11.942 12.065
7 13.349 13.751 10.521
8 1.3683 1.3373 1.5905
9 3.254 3.606 4.104
10 −12.953 −22.996 −28.726
11 0.9237 1.6229 2.0845
12 6.20 4.88 4.89
13 14.383 14.274 14.302
14 16.693 23.560 22.881
15 −1.0514 −1.5564 −1.7690
16 2.486 2.095 0.989
17 15.362 15.294 15.313
18 0.085 0.084 0.091
19 6.23 6.36 4.68
20 11.68 11.67 11.65
21 −0.029 −0.042 −0.086
22 20.1 14.8 10.0
23 14.19 14.18 14.15

The latter quantity is a convenient variable for models of rotating
stars in General Relativity (see Stergioulas 2003, for review).

3.2. Pressure as a function of density

We introduce the variables ξ = log(ρ/g cm−3) and ζ =
log(P/dyn cm−2). Here and hereafter, log denotes log10, while
the natural logarithm is denoted by ln. Our parametrization of
P(ρ) reads

ζ =
a1 + a2ξ + a3ξ

3

1 + a4 ξ

{
exp

[
a5(ξ − a6)

]
+ 1

}−1

+(a7 + a8ξ)
{
exp

[
a9(a6 − ξ)] + 1

}−1

+(a10 + a11ξ)
{
exp

[
a12(a13 − ξ)] + 1

}−1

+(a14 + a15ξ)
{
exp

[
a16(a17 − ξ)] + 1

}−1

+
a18

1 + [a19 (ξ − a20)]2
+

a21

1 + [a22 (ξ − a23)]2
· (3)

The parameters ai are given in Table 2. The typical fit error of P
is ≈1% for ξ � 6. The maximum error is 3.7% at ξ = 9.51;
it is determined by the jumps at the interfaces between layers
containing different nuclides in the tabulated EoS. The fit (3)
smoothly interpolates across these jumps.

Compared to Eq. (14) of Haensel & Potekhin (2004), Eq. (3)
contains additional terms in the last line with coefficients
a18–a23. These terms improve the fit near the boundaries be-
tween the outer and inner crust and between the crust and the
core, where the slope of P(ρ) sharply changes. In SLy4 the anal-
ogous changes were less abrupt. In the case of BSk models, how-
ever, the residuals of the fit without these additional terms may
reach about 10% (Fantina et al. 2012).

In Fig. 2 we compare the EoSs BSk19, BSk20, and BSk21
with their analytical representations. Symbols on the upper panel
show the data, and lines show the fit. For comparison, the addi-
tional dotted line represents SLy4 EoS according to the fit of
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Fig. 2. Comparison of the data and fits for the pressure as a func-
tion of mass density for the EoS models BSk19, BSk20, and BSk21.
Upper panel: rarefied tabular data (symbols) and the fit (3) (lines);
lower panel: relative difference between the data and fit. Filled dots and
dashed lines: BSk19; open circles and dot-dashed lines: BSk20; filled
triangles and solid lines: BSk21. For comparison, the dotted line in the
upper panel reproduces the fit to the EoS SLy4 (Haensel & Potekhin
2004).

Haensel & Potekhin (2004). In order to make the differences
between different EoSs visible, we plot the function ζ − 1.4ξ
(cf. Fig. 4 of Haensel & Potekhin 2004). The data points in the
figure are rarefied, i.e., we show only a small fraction of all nu-
merical data used for the fitting. The lower panel of Fig. 2 shows
the difference between the tabulated and fitted EoSs and thus il-
lustrates the accuracy of Eq. (3).

3.3. Mass density versus number density

In some applications, it may be convenient to use nb as inde-
pendent variable, and treat ρ and P as functions of nb. For this
purpose we construct a fit to the deviation from the linear law
ρ = nbmu, where mu = 1.66 × 10−24 g is the atomic mass unit:

Δρ ≡ ρ

nbmu
− 1. (4)

In view of the relation (see, e.g., Haensel & Potekhin 2004)

H = ln (h/hs), (5)

where h = (ρc2 + P)/nb is the zero-T enthalpy per baryon and hs
is the value of h at the stellar surface, Δρ must be consistent with
Eq. (3). In order to fulfill Eq. (5) as closely as possible, we first
calculate H(ρ) using Eqs. (2) and (3), and then refine the values
of nb using Eq. (5). Our fit to the result is

Δρ = (1 − f1)
b1nb2 + b3

√
n

(1 + b4n)2
+ f1

n
b5 + b6nb7

, (6)

Table 3. Parameters of Eq. (6).

i bi

BSk19 BSk20 BSk21

1 0.259 0.632 3.85
2 2.30 2.71 3.19
3 0.0339 0.0352 0.0436
4 0.1527 0.383 1.99
5 1.085 × 10−5 1.087 × 10−5 1.075 × 10−5

6 3.50 3.51 3.44
7 0.6165 0.6167 0.6154
8 3.487 3.4815 3.531

Table 4. Parameters of Eq. (7).

i ci

BSk19 BSk20 BSk21

1 0.378 0.152 0.085
2 1.28 1.02 0.802
3 17.20 10.26 16.35
4 3.844 3.691 3.634
5 3.778 2.586 2.931
6 1.071 × 10−5 1.067 × 10−5 1.050 × 10−5

7 3.287 3.255 3.187
8 0.6130 0.6123 0.6110
9 12.0741 12.0570 12.0190

where f1 ≡ [
exp(1.1 log n + b8) + 1

]−1, n = nb/fm−3, and param-
eters bi are given in Table 3. The typical error of Eq. (6) for Δρ
is (1–2)%, and the maximum relative error of 4.2% is at the low
end of the fitted density range, min(ρ) = 106 g cm−3 (but at such
low densities Δρ is itself negligible).

The inverse fit nb(ρ) is given by the formula

ρ̃

n
= 1 + (1 − f2)

c1ρ̃
c2 + c3ρ̃

c4

(1 + c5ρ̃)3
+

ρ̃

c6 + c7 ρ̃c8
f2, (7)

where f2 ≡ [
exp(ξ − c9) + 1

]−1, the dimensionless argument is
defined as ρ̃ ≡ (ρ/mu) fm3 = ρ/(1.66 × 1015 g cm−3), and pa-
rameters ci are given in Table 4. As well as Eq. (6), the fit (7)
also minimizes Δρ, and its residuals are similar: the average er-
ror is less than 2%, and the maximum relative error is 3.8% at
the lower end of the fitted density range.

3.4. Density as a function of pseudo-enthalpy

As noted in Sect. 3.1, analytical expressions of ρ and P as func-
tions of the pseudo-enthalpy H are expected to be useful for
numerical simulations of rotating stars. In order to achieve the
maximal consistency of our parametrizations, we first calculate
H(ρ) using Eqs. (2) and (3), and then parametrize the result
(cf. Sect. 3.3). The best fit reads

ξ =

[
2.367 +

21.84 η0.1843

1 + 0.7η

]
f3

+
d1 + d2 log η + (d3 + d4 log η)(d5η)d10

1 + d6η + (d5η)d10
(1 − f3)

+d7
{
exp

[
d8(d9 − log η)

]
+ 1

}−1, (8)

where η ≡ eH − 1, f3 ≡ [
exp (84 log η + 167.2) + 1

]−1, and the
parameters di are given in Table 5.
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Table 5. Parameters of Eq. (8).

i di

BSk19 BSk20 BSk21

1 93.650 81.631 63.150
2 36.893 31.583 23.484
3 15.450 15.310 15.226
4 0.672 0.594 0.571
5 61.240 58.890 54.174
6 68.97 56.74 37.15
7 0.292 0.449 0.596
8 5.2 4.5 3.6
9 0.48 0.58 0.51
10 6.8 7.5 10.4

A comparison of the fit and the data is presented in Fig. 3.
The typical fit error of ρ is about 1% in the interval 6 × 10−5 �
η � 4, which corresponds to the considered mass density
range 106 g cm−3 � ρ � 1016 g cm−3. The maximum fit errors of
(3−5)% occur, as expected, near physical discontinuities, where
the slope of the function ξ(η) quickly changes: at η ∼ 0.01,
where the fit goes smoothly through a break at the neutron-drip
point, and at η ∼ 0.03−0.1, near the crust-core interface.

4. Particle number fractions and density
distributions

The physical input for numerical simulations of neutron-star
thermal evolution includes the heat capacity, neutrino emissiv-
ity, and thermal conductivity tensors in the crust and the core
(see Yakovlev & Pethick 2004; Page et al. 2006, for reviews).
The evolution of the magnetic field is coupled to the thermal
evolution and depends on the electrical conductivity tensor (e.g.,
Pons et al. 2009, and references therein). For calculation of these
quantities, it is important to know the nucleon distributions in the
crust and the composition of the core.

4.1. Nucleons and leptons in the core

The core of a neutron star contains free neutrons, protons, elec-
trons, and muons, whose number fractions relative to the total
number of nucleons are, respectively, 1 − Yp, Yp, Ye, and Yμ.
The condition of electric neutrality requires that Yp = Ye + Yμ.
For Ye and Yμ, shown in Fig. 4, we obtained the following fitting
expression:

Ye,μ =
q(e,μ)

1 + q(e,μ)
2 n + q(e,μ)

3 n4

1 + q(e,μ)
4 n3/2 + q(e,μ)

5 n4
exp

(
−q(e,μ)

6 n5
)
, (9)

where n = nb/fm−3, and parameters q(e,μ)
i are given in Table 6.

Whenever Eq. (9) gives a negative value, it must be replaced
by zero. At the densities in the core, this can occur for muons,
when the muon chemical potential is smaller than the electron
rest energy. The fit residuals are typically (1−3)× 10−4 with a
maximum of 7 × 10−4. Here, unlike in the preceding section,
we quote absolute (not fractional) errors, because the fractional
error loses its sense for a quantity that may be zero, as Yμ. The
deviations of the fit from the data are displayed in the bottom
panel of Fig. 4.

As well known, fractional abundances of leptons in the
neutron-star core directly affect the thermal evolution of a neu-
tron star at the neutrino cooling stage (e.g., Yakovlev & Pethick
2004; Page et al. 2006). In the region of a neutron-star core

Fig. 3. Mass density as a function of pseudo-enthalpy. Upper panel:
rarefied data to be fitted, calculated by integration according to Eqs. (2)
and (3) (symbols), compared with the fit (8) (lines). Lower panel: frac-
tional difference between the data and fit. The symbols and line styles
for BSk19, BSk20, and BSk21 are the same as in Fig. 2.

where the Fermi momenta of protons (pFp), neutrons (pFn), and
electrons (pFe) satisfy the triangle inequality |pFp − pFe| < pFn <
pFp + pFe, the direct Urca (durca) process of neutrino emis-
sion overpowers the more common modified Urca process and
greatly accelerates the cooling of the star (Lattimer et al. 1991;
Haensel 1995). As discussed by Chamel et al. (2011), the tri-
angle inequality is never satisfied in the BSk19 model, but the
models BSk20 and BSk21 allow it at sufficiently high densities
nb > ndurca. The fitting expressions (9) allow us to reproduce the
thresholds ndurca = 1.49 fm−3 for BSk20 and ndurca = 0.45 fm−3

for BSk21 (Chamel et al. 2011) with discrepancies of 0.08%
and 0.3%, respectively.

4.2. Nucleon numbers in the crust

The outer crust consists of separate shells of different isotopes.
The nuclear mass numbers A and charge numbers Z are constant
within each shell and differ from one shell to another. The nu-
clei are embedded in the sea of degenerate electrons. Layers of
diffusive mixing between adjacent shells are very narrow (see
Hameury et al. 1983) and, therefore, unimportant for most ap-
plications. In particular, Pearson et al. (2011) have presented ta-
bles of Z and A in the outer crust for the models BSk19, BSk20,
and BSk21.

In the case of the inner crust, the EoS of Pearson et al.
(2012) is based on the TETFSI (temperature-dependent ex-
tended Thomas-Fermi Strutinsky integral) method of Onsi
et al. (2008). This is a semi-classical approximation to the

A48, page 6 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321697&pdf_id=3


A. Y. Potekhin et al.: Analytical equations of state for neutron-star matter

Fig. 4. Upper panel: number fractions of electrons Ye (solid lines) and
muons Yμ (dashed lines) in the core of a neutron star, relative to the num-
ber of nucleons, as functions of nucleon number density nb for the three
EoSs indicated near the curves. Lower panel: differences between the
fit (9) and numerically computed tables for Ye and Yμ, plotted against nb.
The vertical dotted lines show the position of the boundary between the
crust and the core (ncc in Table 7).

Table 6. Parameters of Eq. (9).

i BSk19 BSk20 BSk21

q(e)
i

1 −0.0157 −0.0078 0.00575
2 0.9063 0.745 0.4983
3 0 0.508 9.673
4 26.97 22.888 6.31
5 106.5 0.449 38.364
6 4.82 0.00323 0

q(μ)
i

1 −0.0315 −0.0364 −0.0365
2 0.25 0.2748 0.247
3 0 0.2603 11.49
4 12.42 12.99 24.55
5 72.4 0.0767 48.544
6 19.5 0.00413 0

HFB method, with proton shell corrections added perturbatively.
A spherical Wigner-Seitz cell is assumed, with the neutron and
proton density distributions parametrized according to

nq(r) = n0q fq(r) + nout,q, (10)

where r is the distance to the center of the Wigner-Seitz cell,
q = n for neutrons and q = p for protons, nout,q represents a

constant background term, while fq(r) is a damped version of
the usual Fermi profile. Specifically, we write it as

fq(r) =

[
1 + Dq(r) exp

(
r −Cq

aq

)]−1

, (11)

where Cq is the width of fq(r) at half maximum and aq is the
diffuseness parameter, while Dq(r) is a damping factor given by

Dq(r) = exp

⎧⎪⎪⎨⎪⎪⎩
(
Cq − RWS

r − RWS

)2

− 1

⎫⎪⎪⎬⎪⎪⎭ , (12)

where RWS is the Wigner-Seitz cell radius The purpose of this
factor is to ensure that fq(r) and all its derivatives will vanish
at the surface of the cell, a necessary condition for the validity
of the semi-classical approximations that underlie the TETFSI
method.

But whether we include this damping factor, or set it equal
to unity, leaving us with a simple Fermi profile, the parametriza-
tion of Eq. (10) eliminates an arbitrary separation into liquid and
gaseous phases within the Wigner-Seitz cell, and, strictly speak-
ing, makes it illegitimate to draw a distinction between a “neu-
tron gas” and “nuclei”. Nevertheless, if we denote by N′ the total
number of neutrons in the cell at a given density, it is convenient
to define the number of cluster neutrons as

N = N′ − nout,nVWS, (13)

where VWS = 4πR3
WS/3 is the volume of the Wigner-Seitz cell,

with a similar expression for the number of cluster protons Z.
Actually, almost everywhere in the inner crust nout,p = 0, so that
Z = Z′, the total number of protons in the cell. However, near the
transition to the core some protons tend to spread over the entire
cell, so that Z < Z′. This spreading corresponds to a smooth
(second or higher order) phase transition between the crust and
the core suggested by Pearson et al. (2012).

It turns out that for all three models considered here the num-
ber of protons Z′ in the Wigner-Seitz cell is equal to 40 for all
densities. However, the number of neutrons N′ in the cell varies
considerably with density, and, in fact, will be nonintegral in
general since it is taken in the TETFSI method as one of the vari-
ables with respect to which the energy is minimized. The notion
of a fractional number of neutrons per cell corresponds to the
physical reality of delocalized neutrons. On the other hand, since
the TETFSI method calculates proton (but not neutron) shell ef-
fects, Z′ cannot be allowed to become nonintegral, even when
the protons become delocalized.

With N, Z, and A′ = N′+Z′ varying smoothly with nb, we ob-
tained the following parametrizations over the inner crust (note
that Z′ = 40 everywhere):

A − Z =
p1 + p2 log x + (p3 log x)3.5

1 + (p4 log x)p5

[
1 − (nb/ncc)

p0
]
, (14)

Z = Z′ exp
(
−(nb/ncc)p′′1

) [
1 − (nb/ncc)p′′0

]
, (15)

A′ =
p′1 + p′2 log x + p′3(log x)2

1 + (p′4 log x)4
(1 + p′5x)

[
1 − (p′6x)2

]
, (16)

Here, x = nb/nd, nd is the baryon number density at the neutron-
drip point, and ncc is the density of the transition to the homoge-
neous core. The parameters pi, p′i , p′′i are listed in Table 7 along
with the densities nd and ncc. The square brackets with the large
power indices p0 in Eq. (14) and p′′0 in Eq. (15) ensure the quick
decrease of A and Z to zero in a narrow density interval at the
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Table 7. Fitting parameters for Eqs. (14)−(16).

BSk19 BSk20 BSk21

i pi

0 8.40 9.30 10.8
1 93.0 92.8 92.3
2 11.90 12.95 13.80
3 1.490 1.493 1.625
4 0.334 0.354 0.3874
5 5.05 7.57 13.8

i p′i
1 134.7 134.7 132.6
2 183.7 188.2 187.6
3 308.7 275.6 229.2
4 0.3814 0.4346 0.5202
5 −5.8 × 10−4 0.00163 0.00637
6 4.9 × 10−4 0.00149 0.00151

i p′′i
0 16 20 27
1 19 19 17

nd 2.63464 × 10−4 2.62873 × 10−4 2.57541 × 10−4

ncc 0.0885 0.0854 0.0809

Notes. The last two lines list the number densities of baryons at the neu-
tron drip point, nd, and at the crust/core boundary, ncc (in fm−3) (Pearson
et al. 2012).

transition from the crust to the core; they almost do not affect the
fits in the bulk of the crust.

In the upper panel of Fig. 5 we show the numbers A′, A,
and Z as functions of nb in the outer and inner crust of a neutron
star. In the lower panel we show the rms radius of the charge dis-
tribution, Rch. The values obtained in the models BSk19, BSk20,
and BSk21 are compared with the smooth-composition (SC)
model (Appendix B.2 of Haensel et al. 2007; see the next sec-
tion). The vertical dotted lines mark the position of the neutron-
drip point, which separates the inner and outer crust, and the
transition from the crust to the core. In the inner crust, the fitted
values (lines) are compared with the numerical results (symbols)
for the BSk models. The numerical data are rarefied, in order to
avoid crowding of the symbols. The agreement between the data
and the fits are typically within a fraction of percent, except for a
vicinity of the boundary with the core. Near the latter boundary,
at 0.065 fm−3 � nb < ncc, the neutron and proton distributions
become rather flat (see Fig. 6 below), which hampers an accurate
determination of the shape parameters. Therefore the numerical
data suffer a significant scatter in this density interval, but the
fits show an acceptable qualitative agreement with them. In the
outer crust (at nb < nd) we use the elemental composition A
and Z from Pearson et al. (2011) and Rch from bruslib1. From
Fig. 5 we see that the SC model predicts a considerable jump of
A′ at the neutron-drip point, while in the BSk models A′ is almost
continuous. The latter continuity is equivalent to the equality of
RWS at both sides of the drip boundary.

4.3. Nuclear shapes and sizes in the crust

In applications one sometimes needs a more detailed infor-
mation about microscopic distributions of nucleons than given
by the numbers A, A′, Z, and Z′ considered in Sect. 4.2. For

1 The Brussels Nuclear Library for Astrophysics Application,
http://www.astro.ulb.ac.be/bruslib/

Fig. 5. Effective nuclear parameters in the neutron-star crust, according
to different models, as functions of baryon number density nb in the
crust of a neutron star. Top panel: nuclear mass number A (the middle
group of curves), the number of protons in a cluster Z (the lower curves),
and the effective Wigner-Seitz cell mass number A′ (the upper curves).
Bottom panel: rms charge radius of the nucleus. The results are shown
for the models BSk19 (dashed lines and filled dots), BSk20 (dot-dashed
lines and open circles), BSk21 (solid lines and filled triangles), and, for
comparison, the smooth-composition model (the dotted curves). The
left vertical dotted line shows the position of the boundary between the
inner and outer crust, nb = nd (to the left of this line A′ = A). The right
vertical dotted lines mark ncc, the interface between the crust and the
core, in the BSk models. Between these boundaries, the curves represent
analytical fits, and the symbols show some of the numerical data.

example, cross sections of scattering of charged particles de-
pend on the charge distribution in a nucleus. Previous calcula-
tions of neutrino bremsstrahlung (e.g., Kaminker et al. 1999)
and electron heat conduction (e.g., Gnedin et al. 2001) in the
crust of a neutron star employed nuclear form factors provided
by the SC model based on the parametrization (10) with fq(r) =
[1− (r/rmax,q)bq ]3 (Oyamatsu 1993). Note that nout,p is effectively
zero, and nout,n = (A′ − A)/VWS. Kaminker et al. (1999) fitted
RWS, n0q, rmax,q, and bq as functions of nb by interpolating the
Oyamatsu (1993) values of these parameters through the inner
crust and making use of the Haensel & Pichon (1994) data for
the outer crust.

In Fig. 6 we show neutron and proton density distributions
near the center of a Wigner-Seitz cell as given by Pearson et al.
(2012), i.e., as described by Eqs. (11) and (12) for the mod-
els BSk19, BSk20, and BSk21. The four panels correspond
to four different values of the mean baryon density nb in the
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Fig. 6. Neutron (nn) and proton (np) density profiles at the values of the
average baryon density nb = 3 × 10−4 fm−3 (near the top of the inner
crust), 0.01 fm−3, 0.06 fm−3, and 0.075 fm−3 (near the bottom of the
inner crust), according to the models BSk19, BSk20, and BSk21. The
SC model (Haensel et al. 2007) is also shown for comparison.

inner crust. The neutron and proton density profiles predicted
by the SC model are also shown for comparison. We present the
parameters Cq, aq, and n0q that enter Eqs. (10) and (11) as func-
tions of n = nb/fm−3,

y =
s1 + s2 ns3

1 − (s4 n)3
, (17)

where y = Cp, ap, Cn, or an, with numerical parameters si listed
in Table 8. The decreasing denominator ensures the accelerated
increase of the size and diffuseness of the nuclei when the den-
sity approaches that of the uniform nuclear matter near the crust-
core interface. The values of n0q are related to the other fitted
parameters via

4π n0q

∫ RWS

0
fq(r) r2 dr =

{
A − Z for q = n,

Z for q = p. (18)

Nevertheless we find it convenient for applications to have sep-
arate simple fits

n0p =

⎛⎜⎜⎜⎜⎜⎜⎝q(p)
1 −

q(p)
2 n

q(p)
3 + nq(p)

4

⎞⎟⎟⎟⎟⎟⎟⎠
[
1 − (nb/ncc)

9
]
, (19)

n0n =
(
q(n)

1 + q(n)
2

√
n − q(n)

3 n
) [

1 − (nb/ncc)16
]
, (20)

with parameters q(p)
i and q(n)

i listed in Table 9. The agreement
between the data and the fits are typically ∼1% or better, except
for a bottom crust layer, as explained in the previous section.

5. Conductivity in the neutron-star crust

As an example of application of our fitting formulae, we con-
sider the electron conductivities in the crust of a neutron star.

Table 8. Parameters si of Eq. (17) for Cq and aq.

i BSk19 BSk20 BSk21 BSk19 BSk20 BSk21

si(Cp) si(ap)

1 5.500 5.493 5.457 0.4377 0.4353 0.4316
2 11.7 12.8 14.2 4.360 4.440 4.704
3 0.643 0.636 0.601 1 1 1
4 472 484 566 1084 1154 1253

si(Cn) si(an)

1 5.714 5.714 5.728 0.639 0.632 0.636
2 14.05 16.3 22.2 1.461 1.98 5.32
3 0.642 0.645 0.663 0.457 0.514 0.739
4 182 175 144 1137 1122 624

Table 9. Parameters of Eqs. (19) and (20).

q(p)
i q(n)

i

i BSk19 BSk20 BSk21 BSk19 BSk20 BSk21

1 0.05509 0.05382 0.05273 0.10336 0.10283 0.10085
2 0.1589 0.1400 0.1107 0.0772 0.0825 0.0942
3 0 0.01715 0.02218 1.129 1.189 1.279
4 0.4917 0.566 0.6872 – – –

Table 10. Parameters si of Eq. (17) for xnuc and xnuc,n.

si(xnuc) si(xnuc,n)

i BSk19 BSk20 BSk21 BSk19 BSk20 BSk21

1 0.1120 0.1094 0.1045 0.122 0.119 0.114
2 2.06 2.04 2.09 2.27 2.30 2.56
3 0.633 0.613 0.586 0.618 0.603 0.595
4 507 509 513 193 182 107

Practical formulae for calculation of the electron electrical and
thermal conductivities of fully ionized plasmas have been devel-
oped by Potekhin et al. (1999) in the approximation of pointlike
nuclei (see references therein for earlier works) and extended
by Gnedin et al. (2001) to the case where the finite nuclear size
cannot be neglected. The latter authors considered different nu-
clear shape models and concluded that their effect on electrical
conductivity σ is mainly governed by the ratio xnuc = Reff/RWS,
where Reff =

√
5/3 Rch is the effective radius of the uniformly

charged sphere that has the same rms radius of the charge dis-
tribution, Rch, as the considered nucleus. The same parameter
xnuc determines the effect of nuclear form factors on the thermal
conductivity κ, except at low temperatures where quantum lat-
tice effects violate the Wiedemann-Franz relation in a nontrivial
way (Gnedin et al. 2001). Under the assumption that the charge
distribution is proportional to the proton distribution,

x2
nuc =

5
3

∫ RWS

0
fp(r) r4 dr

R2
WS

∫ RWS

0
fp(r) r2 dr

, (21)

we obtained a direct fit to this quantity, which facilitates calcu-
lation of the conductivities. In addition, we calculated and fitted
the analogous size parameter xnuc,n = Reff,n/RWS for the neu-
tron distribution fn(r). The fitting was done for the quantities
obtained from Eqs. (21) and (11) with calculated (not fitted) val-
ues of Cq, aq, and RWS at each density. The fits have the form
of Eq. (17) with the parameters listed in Table 10. The residuals
are similar, with maxima of several percent near the end of the
nb range and an order of magnitude smaller typical values.
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Fig. 7. Electrical conductivity σ of the neutron-star crust with nuclear
parameters given by the models BSk19 (dashed lines), BSk20 (dot-
dashed lines), BSk21 (solid lines), and the smooth-composition (SC)
model (dotted curves) as functions of mass density ρ for T = 108 K,
108.5 K, and 109 K. The vertical dotted lines show the boundaries nd

and ncc of the inner crust according to the three BSk models (Table 7).

Figure 7 displays electrical conductivities σ calculated with
the fitted A′, A, Z, and xnuc at temperatures and densities char-
acteristic of the outer and inner crusts of neutron stars. Here,
the calculations are performed for a body-centered cubic lattice
of the nuclei without impurities. The crystalline structure of the
crust is favored by recent results of molecular-dynamics simula-
tions (Hughto et a. 2011) and supported by comparison of obser-
vations of X-ray transients in quiescence with simulations of the
cooling of their crust (Shternin et al. 2007; Cackett et al. 2010).
We have removed switching from Umklapp to normal processes
of electron-phonon scattering at low T from the previously de-
veloped code (Gnedin et al. 2001), since Chugunov (2012) has
shown that the normal processes have no effect under the condi-
tions in a neutron-star crust. Figure 7 shows that the BSk models
predict typically 1.5−2 times higher conductivity σ in the in-
ner crust, than the SC model. On the other hand, this difference
in σ can be removed by allowing a modest impurity parameter
Zimp = 〈(Z − 〈Z〉)2〉1/2 ∼ 3. The difference between the BSk
and SC models increases near the bottom of the crust, where the
BSk models (unlike SC) provide a continuous transition to the
uniform nuclear matter in the stellar core. The conductivity is
also almost continuous at the neutron drip density in the BSk
models, at contrast to the SC model where it abruptly decreases
at the drip point.

Similarly, we have used the analytical fits for calculating
thermal conductivity κ. It has to be noted that electron con-
duction is probably the main mechanism of heat transport in
the entire neutron-star crust despite the existence of compet-
ing transport channels. Radiative conduction is negligible at the
crust densities (Potekhin & Yakovlev 2001; Pérez-Azorin et al.
2006), the heat transport by phonons is generally weaker than
the electron transport (Pérez-Azorin et al. 2006; Chugunov &
Haensel 2007), and the heat transport by superfluid neutrons in

the inner crust (Bisnovatyi-Kogan & Romanova 1982; Aguilera
et al. 2009) may be suppressed because of the strong coupling
of the neutron superfluid to the nuclei due to nondissipative
entrainment effects (Chamel 2012). We have found that the dif-
ference between the BSk and SC models for the electron heat
conductivity κ is smaller than the corresponding difference forσ.
The smaller difference is explained by the large contribution of
the electron-electron scattering into the thermal resistivity of the
inner crust (Shternin & Yakovlev 2006).

6. Neutron star configurations

In order to estimate the errors introduced in the fitting formu-
lae described in Sect. 3 on global neutron-star properties, we
have computed the mass and radius of a neutron star from the
tabulated EoSs and their analytical representations. For a non-
rotating neutron star, we integrated the Tolman-Oppenheimer-
Volkoff (TOV) equation from the center, with the central mass
density ρc as a free parameter, outward to ρs, using the fourth-
order Runge-Kutta method with an adaptive step and controlled
accuracy. We avoided an affixment of an integration step to the
calculated points using either linear or cubic spline interpolation
in the tabulated EoSs. The neutron-star masses M obtained using
these two types of interpolation agree to ∼10−4 M�. The radii R
agree typically to ∼0.1%, if M � 0.3 M�.

Figure 8 shows the mass-radius relation of nonrotating neu-
tron stars for the EoSs BSk19, BSk20, and BSk21. The neutron-
star configurations obtained with the original EoSs and with their
analytical representations are drawn as dots and lines respec-
tively. The maximum neutron-star masses are Mmax = 1.86 M�
at ρc = 3.48 × 1015 g cm−3 for BSk19, Mmax = 2.16 M� at
ρc = 2.69 × 1015 g cm−3 for BSk20, and Mmax = 2.27 M� at
ρc = 2.27 × 1015 g cm−3 for BSk21, in close agreement with
Chamel et al. (2011) and Fantina et al. (2012). The differences
between Mmax obtained using the original data and the fit are
about 0.09%, 0.09%, and 0.17%, and the differences for cor-
responding ρc values are about 0.03%, 0.02%, and 0.7%, re-
spectively. At higher ρc the condition of hydrostatic stability
dM/dρc is violated; the unstable configurations are shown by
the dotted parts of the curves to the left of the maxima in Fig. 8.
The crosses in Fig. 8 correspond to the largest values of ρc for
which dP/dρ < c2 (2.18 × 1015 g cm−3 for BSk19 and BSk20,
and 2.73 × 1015 g cm−3 for BSk21). At higher densities the EoS
becomes superluminal. The fit (3) and its first derivative de-
termine these densities with accuracies within 2%. The corre-
sponding stellar masses determined from the fit and from the
tables agree to ∼0.1%. Note that the EoS BSk20 becomes su-
perluminal before the limit of hydrostatic stability is reached.
Configurations with higher ρc, corresponding to 2.14 M� < M <
Mmax and shown by the dashed curve in Fig. 8, cannot be fully
trusted (see, e.g., Haensel et al. 2007, Sect. 5.15, for a discus-
sion)

The minimum neutron-star masses are 0.093 M�, 0.090 M�,
and 0.087 M� for the models BSk19, BSk20, and BSk21, with
discrepancies between the original data and the fit ∼0.7%, 0.1%,
and 0.03%, respectively. The radii of neutron stars with the mass
of 1.4 M� are R = 10.74 km, 11.74 km, and 12.57 km, with
discrepancies between the original data and the fit of ∼0.1%,
∼0.02%, and ∼0.2%. The discrepancies in the circumferential
radii (R = 11.5 km, 11.9 km, and 12.4 km) of neutron stars with
M = 0.5 M� are also smaller than 0.2% for all three EoSs.

As mentioned in Sect. 4.1 the triangle condition for the
durca processes can be fulfilled for BSk20 and BSk21 mod-
els at nb > ndurca. The threshold ndurca cannot be reached in
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Fig. 8. Top rows: gravitational mass (in solar masses) versus circumferential radius of nonrotating neutron stars for the EoSs BSk19-20-21 (dots)
and their analytical representations from Eq. (3) (lines). The solid and dotted parts of the lines correspond to the hydrostatically stable and unstable
configurations, respectively. The dashed segment in the middle panel corresponds to superluminal EoS at the stellar center. The crosses mark the
threshold beyond which the EoS becomes superluminal. The middle and bottom rows show respectively a zoom around the maximum neutron-star
mass and the low mass region where the discrepancies are the largest.

a stable neutron star in frames of the model BSk20, but it is
reached for neutron stars with M > 1.59 M� in the model BSk21.
The latter mass value, first obtained by Chamel et al. (2011),
is reproduced by the present fit with a discrepancy of 0.3%.
Chamel et al. (2011) noted that all three EoSs are compatible
with the constraint that no durca process should occur in neutron
stars with masses 1−1.5 M� (Klähn et al. 2006). On the other
hand, according to the analysis of Yakovlev et al. (2008), the sit-
uation where the most massive neutron stars with nucleon super-
fluidity in the core experience enhanced cooling due to the durca
processes appears in a better agreement with observations than
the complete absence of such processes in any stars. Thus the
model BSk21 may bring the cooling theory in a better agreement
with observations than the other models. The fitting formulae
presented above facilitate the checks of this kind. In this respect,
it is worth noting that the effective nucleon masses m∗n and m∗p,
which are needed for cooling simulations, are readily obtained in
analytical form from Eq. (A.10) of Chamel et al. (2009), using
the appropriate parameter set given in Goriely et al. (2010).

Similarly, we have analyzed the structure of a neutron
star rotating at a frequency of 716 Hz, equal to the fre-
quency of PSR J1748−2446ad, the fastest-spinning pulsar
known (Hessels et al. 2006). For this purpose we used the
Lorene/Codes/Nrotstar/nrotstar code from the public li-
brary lorene2. We have generated tables of the analytical EoSs

2 Langage Objet pour la Relativité Numérique, http://www.
lorene.obspm.fr/

from Eq. (8) and used them as an input in the nrotstar code.
The results obtained using the original EoSs and their analytical
representations are shown in Fig. 9. Here we plot only the sta-
ble stellar configurations that are described by subluminal EoSs.
The relative differences in the maximum neutron-star masses
are of similar magnitudes to those found for static neutron
stars, namely ∼0.03%, ∼0.08% and ∼0.2% for the EoSs BSk19,
BSk20, and BSk21. The errors in the radii of 1 M� neutron stars
are ∼0.1%, ∼0.09%, and ∼0.5%, respectively.

All in all, the discrepancies lie far below the observational
uncertainties and therefore they do not affect the comparison
with observational data. In computing the neutron star con-
figurations, we have checked the violations of the general-
relativistic virial identities GRV2 (Bonazzola 1973; Bonazzola
& Gourgoulhon 1994) and GRV3 (Gourgoulhon & Bonazzola
1994). The absolute deviations lie between 10−3 and 10−6 thus
confirming the high precision of the analytical representation of
the EoSs.

7. Conclusions

We constructed analytical representations, in terms of the contin-
uous and differentiable functions of a single chosen variable, of
three recently developed equations of state BSk19, BSk20, and
BSk21 (Pearson et al. 2011, 2012). We considered two choices
of the independent variable. The first one is the mass density ρ.
Then Eq. (3) gives function P(ρ), which fits the numerical EoS
tables at 106 g cm−3 < ρ � 2 × 1016 g cm−3 with a typical
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Fig. 9. Top panels: gravitational mass (in solar masses) versus circumferential radius of rotating neutron stars (rotation frequency 716 Hz) for the
EoSs BSk19-20-21 (dots) and their analytical representations from Eq. (8) (solid lines). The middle and bottom panels show respectively a zoom
around the maximum neutron-star mass and the low mass region where the discrepancies are the largest.

error of ∼1%. The baryon number density nb can be calculated
from Eq. (1) to satisfy exactly the first law of thermodynamics.
Alternatively, nb can be evaluated using our fit (7). A variant is
to choose nb as an independent variable and calculate ρ(nb) from
the fit (6) and P(ρ(nb)) from Eq. (3). Then, if necessary, ρ can be
corrected using the first integral relation in Eq. (1).

Differentiation of P(ρ) then yields analytical representations
of the adiabatic index

Γ =
nb

P
dP
dnb
=

[
1 +

P
ρc2

]
ρ

P
dP
dρ
, (22)

which is included in the computer code that realizes the fit.
Different regions of neutron-star interior are characterized by
distinct behavior of Γ as discussed, e.g., in Haensel & Potekhin
(2004). This behavior remains qualitatively the same for differ-
ent EoSs, but quantitative differences can be significant, as illus-
trated in Fig. 10.

The other choice of the independent variable is the pseudo-
enthalpy H, Eq. (2). This choice is particularly advantageous for
simulations of neutron-star dynamics. We represented the EoSs
by the continuous and differentiable functions P(H), ρ(H), and
n(H), where ρ(H) is given by Eq. (8) with typical accuracy∼1%,
while P(H) and nb(H) are calculated from the functions P(ρ) and
nb(ρ), respectively.

We also obtained analytical representations of number frac-
tions of neutrons, protons, electrons and muons in the inner crust
and the core, and nuclear shape parameters in the inner crust
of a neutron star as functions of nb. These results can be used,
e.g., for neutron-star cooling simulations. As an application, we

10 11 12 13 14 15 16
log ρ  [g cm

-3
]

0

1
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Γ
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BSk20
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Fig. 10. Adiabatic index Γ for SLy4 and BSk EoSs.

calculate electron conductivities in the crust with the use of the
BSk models. Compared to the results of the smooth-composition
model (Gnedin et al. 2001), we find that the BSk models yield
appreciably higher electrical conductivities in the inner crust of
a neutron star.

Finally, we estimated the errors introduced in the fitting for-
mulae on global neutron-star properties and showed that they lie
far below the observational uncertainties and therefore they do

A48, page 12 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321697&pdf_id=9
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321697&pdf_id=10


A. Y. Potekhin et al.: Analytical equations of state for neutron-star matter

not affect the comparison of theoretical models with observa-
tional data.

The present work is mainly aimed at astrophysicists as they
do not have to perform nuclear physics calculations for simula-
tions of neutron-star structure and evolution. When required, the
same method of constructing analytical approximations can be
applied to other EoSs (see, e.g., Haensel et al. 2007 and Lattimer
2012, for references).
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