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Dynamic elastography methods—based on optical, ultrasonic, or magnetic resonance imaging—are

being developed for quantitatively mapping the shear viscoelastic properties of biological tissues,

which are often altered by disease and injury. These diagnostic imaging methods involve analysis

of shear wave motion in order to estimate or reconstruct the tissue’s shear viscoelastic properties.

Most reconstruction methods to date have assumed isotropic tissue properties. However, applica-

tion to tissues like skeletal muscle and brain white matter with aligned fibrous structure resulting in

local transverse isotropic mechanical properties would benefit from analysis that takes into consid-

eration anisotropy. A theoretical approach is developed for the elliptic shear wave pattern observed

in transverse isotropic materials subjected to axisymmetric excitation creating radially converging

shear waves normal to the fiber axis. This approach, utilizing Mathieu functions, is enabled via a

transformation to an elliptic coordinate system with isotropic properties and a ratio of minor and

major axes matching the ratio of shear wavelengths perpendicular and parallel to the plane of isot-

ropy in the transverse isotropic material. The approach is validated via numerical finite element

analysis case studies. This strategy of coordinate transformation to equivalent isotropic systems

could aid in analysis of other anisotropic tissue structures.VC 2018 Acoustical Society of America.

https://doi.org/10.1121/1.5064372

[GH] Pages: 2312–2323

I. INTRODUCTION

A. Background and motivation

Dynamic elastography methods—based on optical, ultra-

sonic, and magnetic resonance imaging modalities—are

being developed for quantitatively mapping the shear visco-

elastic properties of biological tissue, which are often altered

by disease and injury. Optical methods span from early work

using stroboscopy1 to more recent, higher resolution methods

using optical coherence tomography2,3 or laser Doppler vibr-

ometry4 to quantitatively map tissue viscoelastic properties at

or near the surface, such as the skin or cornea. Ultrasound

(US)-based elastography has been implemented a number of

different ways using continuous or transient excitation.5–9

Magnetic resonance elastography (MRE) was introduced in

1995.10 Optical methods have the advantage of high resolu-

tion but little penetration depth; US methods provide high

resolution for peripheral regions with limits on penetration

depth. MRE has the advantage of greater depth of penetra-

tion, even behind hard tissue obstacles such as the skull, and

the ability to encode oscillatory motion in all three dimen-

sions simultaneously;11 however, MRE is limited in resolu-

tion as compared to optical methods and is a more expensive

measurement to acquire compared to other modalities.

Regardless of imaging modality, dynamic elastography

methods share some common traits. They typically involve

mechanical stimulation followed by measurement and analy-

sis of resulting shear wave motion in order to estimate or

reconstruct the tissue’s shear viscoelastic properties. Most

initial studies have focused on larger organs, such as the

liver or brain, and often made an assumption of isotropic

tissue properties in their analysis.

However, application of dynamic elastography to tissues

with aligned fibrous structure resulting in local transverse

isotropic mechanical properties, such as can be found in

striated skeletal and cardiac muscle as well as brain white

matter, may benefit from analysis that takes into consider-

ation anisotropy of the tissue. Recognizing this, many groups

have pioneered research in this direction over the past few

decades, using US-based elastography,9,12–19 as well as mag-

netic resonance (MR) based elastography.20–32 Many of these

studies have tried to tackle the associated inversion problem.

Multiple configurations or a multi-directional shear wave

excitation source may be needed in order to generate and

measure shear wave motion that will be affected by its dis-

placement polarization direction and propagation direction in

an anisotropic material.

Inversion algorithms employed in most elastography

research studies have neglected finite boundary effects.

Suppression of boundary effects is attempted via directional

filtering of the propagating shear waves and removal of

compression waves by taking the curl of the displacement

measurements, which requires estimating multiple spatial

derivatives of the displacement field. Estimates in the near

vicinity of boundaries are also known to be erroneous and ita)Electronic mail: troyston@uic.edu
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is common practice to “erode” layers of pixels near bound-

aries or tissue interfaces.33–35 These image processing strate-

gies introduce approximations into the analysis and have

limited capability, particularly when boundary effects are sig-

nificant, creating multiple reflections and mode conversion.

Numerical finite element (FE) techniques have been

useful in evaluating and comparing inversion algorithms,

and in some cases have themselves been integrated into iter-

ative inversion algorithms.4,19,36–38 Typically, the FE simu-

lation provides a forward model to calculate displacements

based on assumed material parameters. These are then com-

pared to the measured displacements, and the material

parameters are iteratively updated based on differences

between simulation and experiment until suitable conver-

gence is reached. Other analytical and numerical simulation

strategies that are more computationally efficient than FE

algorithms have been developed for calculating direction-

dependent shear wave group and phase velocities and simu-

lating shear wave propagation (in the absence of significant

boundary effects), including in transversely isotropic elastic

or viscoelastic materials.9,39,40

Theoretical (analytical) solutions, when available, can

potentially provide greater insight, solution speed, and ease

in conducting parametric or iterative optimization studies, as

compared to more computationally-intensive numerical

methods. Theoretical solutions for the forward problem, even

for simplified ideal geometry, can be invaluable in evaluating

inversion methods that can then be applied to experimental

data on systems with non-ideal geometry. Theoretical solu-

tions for the shear wave field have been developed for simple

geometries with simplifying assumptions, such as neglecting

boundaries all together41 or assuming a semi-infinite half-

space.42 More recently, exact theoretical solutions have been

developed and validated for specific experimental configura-

tions for elastography measurements of isotropic materials in

a test tube or other cylindrically-shaped container.43–46 These

are useful in assessing the quality of numerical inversion

algorithms that can then be applied to more complex geome-

tries, including in vivo, where the theoretical solution is not

possible.

Continuous oscillatory motion of the test tube or cylin-

drical specimen holder along its axis sets up a standing shear

wave pattern within the test material. Radial convergence of

the shear wavefront counterbalances attenuation caused by

viscous losses in the material. Measurable shear wave

motion can thus be established throughout the entire speci-

men. Validation of a theoretical solution for an isotropic

homogeneous viscoelastic material43 has been followed by

validation of theoretical solutions for nonhomogeneous, but

still axisymmetric, composite test materials comprised of

concentric annular regions44 or a spherical region45 of differ-

ing material properties.

To the best of the authors’ knowledge, such a closed

form theoretical solution has not been presented and vali-

dated for the case of a transversely isotropic material. Thus,

a simple analytical means of validating newly-developed

inversion algorithms for anisotropic materials taking into

consideration boundary effects is lacking. Specifically, con-

sider that the material is oriented within the cylindrically-

shaped container with its fiber axis normal to the container

axis. Shear waves with motion normal to the fiber axis will

be generated, but will propagate at different angles relative

to the fibers, ranging from parallel to perpendicular.

Consequently, propagation speeds and wavelengths will vary

circumferentially, resulting in a nonaxisymmetric standing

shear wave pattern that can become quite complex and not at

all cylindrical.

B. Objectives

A theoretical approach is proposed for the shear wave

pattern observed in transversely isotropic materials subjected

to axisymmetric excitation normal (perpendicular) to the

axis of isotropy. Radially converging waves driven by axial

oscillation of a rigid cylindrical boundary are considered

(Fig. 1). The theoretical solution is validated via numerical

finite element analysis (FEA) studies.

II. THEORY

A. Equations for nearly incompressible transverse

isotropic linear viscoelastic material

Building upon Tweten et al.,29,30 we start with a linear

elastic incompressible, transversely isotropic (ITI) material

as our model for biological tissue with aligned fibrous struc-

ture subjected to deformation that is sufficiently small in

amplitude to justify the assumption of linearity. A linear

elastic ITI material may be fully described using three

parameters which can be a combination of two tensile mod-

uli, E?and Ek; and two shear moduli, l?and lk, where the

subscripts denote whether the principle direction is perpen-

dicular or parallel to the fiber direction. In other words,

E? and l? are in the direction perpendicular to the fibers

(parallel to the plane of isotropy), and Ek and lk are in the

direction parallel to the fibers (parallel to the axis of isot-

ropy). We define shear anisotropy / ¼ lk=l? � 1 and ten-

sile anisotropy f ¼ Ek=E? � 1. Note also that28

Ek ¼ l?ð4fþ 3Þ; thus, there are only three independent

parameters.

Consider a shear wave traveling in an ITI material with

an arbitrary propagation direction that is an angle h from the

fiber direction. The displacement of this shear wave can be

polarized into independent slow and fast shear wave compo-

nents. The polarization direction of the slow shear wave

occurs in the direction perpendicular to both the fiber direc-

tion and the propagation direction. If the fibers are in the y

direction and propagation is in the x–y plane, the polarization

will be in the z direction for the slow shear wave. Because

the slow shear wave does not stretch the fibers, the speed of

the slow shear wave cs only depends on the shear anisotropy

and is given by

c2s ¼
l?
q

1þ /cos2 h½ �
� �

: (1)

The corresponding slow shear wavelength ks at frequency f

in Hertz is given by ks ¼ cs=f and the corresponding wave-

number is ks ¼ 2p=ks. The ratio of the slow shear
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wavelength parallel to the fibers ksk to the slow shear wave-

length perpendicular to the fibers ks? is ksk=ks? ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

1þ /
p

.

On the other hand, for the case of the fast shear wave

whose polarization direction is perpendicular to the propaga-

tion direction but also perpendicular to the slow shear wave

polarization direction, and thus not perpendicular to the fiber

direction, we have the speed of the fast shear wave cf given by

c2f ¼
l?
q

1þ /cos2 2h½ � þ fsin2 2h½ �
� �

: (2)

The corresponding fast shear wavelength kf at frequency f in

Hertz is given by kf ¼ cf=f . Note that if f ¼ / then cf
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l?=qð1þ /Þ
p

or, in other words, kf ¼ ksk regardless of

h. If f 6¼ / the relationship is more complex. Please see the

Appendix for additional background.

With respect to propagation of shear waves over a broad

frequency range, soft biological tissue is not linear elastic,

but rather linear viscoelastic, experiencing rate-dependent

energy loss (dissipated as heat) as the wave propagates

through the material. Linear viscoelasticity can be accounted

for in the above formulation by defining l? ¼ l?R þ jl?I

and lk ¼ lkR þ jlkI, where j ¼
ffiffiffiffiffiffiffi

�1
p

and the real parts of

l?and lk denote the shear storage moduli and the imaginary

parts denote the shear loss moduli. Both shear storage and

loss moduli may be a function of frequency f , possibly gov-

erned by a rheological model that establishes their depen-

dence on frequency. With the introduction of complex

values for the shear modulus, the corresponding expression

for the slow shear wavelengths perpendicular and parallel to

the fibers become47

k? ¼ 1

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

q

l2?R þ l2?I

l?R þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2?R þ l2?I

p

s

; (3)

kk ¼
1

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

q

l2kR þ l2kI

lkR þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2kR þ l2kI

q

v

u

u

u

t

: (4)

B. Converging shear waves in a finite cylindrical
region

One means of creating steady state harmonic shear wave

motion is to apply motion of amplitude uzr0 in the z direction

over a cylindrical surface of radius r0 with axis aligned with

the z axis, as illustrated in Fig. 1,

uz r ¼ r0; t½ � ¼ Real uzr0e
jxt

� �

: (5)

Here and henceforth, the fact that the real part is of interest

will be implicit.

This type of vibratory excitation has been used in previ-

ous studies to create a shear wave field within an excised

biological specimen or tissue phantom material placed

within a cylindrical test tube.11,43–46,48–50 The tube itself is

harmonically driven along its axis. The inner wall of the test

tube serves as the nonhomogeneous displacement boundary

condition applied to the material within it.

For an isotropic and homogeneous material in the test

tube, the following theoretical solution governs steady state

shear wave motion at any location within the test tube,

r < r0:

uz r; t½ � ¼ uzr0
J0 ksr½ �
J0 ksr0½ � e

jxt: (6)

Here, J0 is the zeroth order Bessel function of the first kind.

This solution follows from the condition of axisymmetry

established by the isotropic, homogeneous medium confined

FIG. 1. (Color online) Transversely isotropic cylindrical sample with x–z

plane of isotropy (fibers in the y direction) subjected to a nonhomogeneous

boundary condition: harmonic displacement in the z direction of amplitude

uzr0 at frequency f ¼ x=2p on its curved boundary at r ¼ r0: (a) a three-

dimensional rendering with the x; y “viewing plane” indicated, which is the

plane used for Figs. 2 and 5; (b) viewed in x; y plane, which is a plane of

symmetry; fibers shown along the y axis, the axis of isotropy; (c) viewed in

x; y0 plane after transformation to an elliptic coordinate system fn; gg with

isotropic material properties.
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within a cylindrical geometry with an axisymmetric bound-

ary condition that eliminates higher order Bessel functions

that will have h dependence, and the need for a finite solu-

tion at the origin that eliminates Bessel functions of the sec-

ond kind.

In the case of transverse isotropy with the y axis as

the axis of isotropy, axisymmetry is destroyed and Eq. (6)

is no longer valid. Now consider a transformation to a

new Cartesian coordinate system, with y replaced by y0

¼ y=
ffiffiffiffiffiffiffiffiffiffiffiffi

1þ /
p

for a purely elastic case or for the case that the

ratio of shear loss to storage moduli are the same in parallel

and perpendicular directions: g ¼ l?I =l?R ¼ lkI =lkR . If

these ratios are not the same, for the more general viscoelas-

tic case we will divide y by the ratio of shear wavelength

along the fiber direction with respect to the shear wavelength

perpendicular to the fiber direction, where shear wavelength

perpendicular and parallel to the fiber direction are given by

Eqs. (3) and (4), respectively. Thus, for the general visco-

elastic case we have

y0 ¼ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2?R þ l2?I

l2kR þ l2kI

 !

lkR þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2kR þ l2kI

q

l?R þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2?R þ l2?I

p

0

@

1

A

v

u

u

u

t : (7)

Note, as shear wave speed is simply shear wavelength multi-

plied by the frequency of oscillation in Hertz, one gets the

same ratio if one were to use shear wave speed along the

fiber direction with respect to perpendicular to the fiber

direction, in place of wavelengths. In this new coordinate

system, shear waves propagating in the fx; y0g plane polar-

ized in the z direction will all propagate at the same phase

speed, with the same wavelength at a given frequency, inde-

pendent of the direction of propagation h. In the transformed

coordinate system, this shear wave behavior is isotropic.

However, the same length distortion must be applied to the

cylindrical boundary condition at r ¼ r0, which is now an

elliptic boundary condition at n ¼ n0 in the fx; y0g coordinate

system. Specifically, in order to create isotropy, for the case

of elasticity or constant g, we are distorting space as a func-

tion of h by reducing length by a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ / cos ½h�2
q

where h denotes the direction with respect to the fiber axis.

This is exactly an elliptic coordinate system.

Thus, this can be transformed to elliptic coordinates fn; gg
such that x ¼ F cosh½n� cos ½g�, and y0 ¼ F sinh½n� sin ½g�
where F ¼ r0=cosh½n0� ¼ r0=

ffiffiffiffi

/
p

= sinh½n0�, 0 � g � 2p, 0

� n � n0. The coordinates fn; gg and the distance from the

origin to each focal point, F, are indicated in Fig. 1(c). The non-

homogeneous boundary condition replacing Eq. (5) is

uz n ¼ n0; t½ � ¼ uzr0e
jxt: (8)

Shear wave motion propagating in the fx; y0g plane with z

polarization can be expressed in terms of angular and radial

Mathieu functions51,52 via a separation of variables approach

to the governing partial differential equation, in a way analo-

gous to how sinusoidal and Bessel functions are used to con-

struct shear wave motion subject to a cylindrical boundary

condition.53 The imposed displacement on the elliptic

boundary allows only for Mathieu functions that have even

parity with periodicity of p radians. Unlike in the case of

cylindrical coordinates, there is no single member of the

Mathieu function set that can satisfy the imposed boundary

condition. Rather, an infinite summation of functions is

needed such that

uz n; g½ �
uz n0; g½ � ¼ 2

X

1

n¼0

A2n
0 q½ �

Je2n n; q½ �
Je2n n0; q½ � ce2n g; q½ �; (9)

where we have from Eq. 28.11.3 of Ref. 54,

1 ¼ 2
X

1

n¼0

A2n
0 q½ �ce2n g; q½ �: (10)

Here, Je2n½n; q� and ce2n½g; q� are the even parity radial

(modified) and angular Mathieu functions of the first kind,

respectively, of periodicity p radians. And, n0 ¼ arc tan h½1=
ffiffiffiffi

/
p

�, q ¼ ðFk=2Þ2, and k ¼ x
ffiffiffiffiffiffiffiffiffiffiffi

q=l?
p

. Here, q is known as a

Mathieu parameter and its value and that of F increase with

the degree of shear anisotropy /. For the isotropic case, both

are zero and the angular and radial Mathieu functions col-

lapse to sinusoidal and Bessel functions, respectively,

exactly matching isotropic theory. Coefficients A2n
0 ½q� for

n¼ 0, 1, 2,… can be approximated by solving the following

eigenvalue problem, which will have n¼ 1,…,N solutions

for the eigenvalue a with n¼ 1,…,N corresponding eigen-

vectors of length N:55

�a q 0 0 0 0 � � �
2q 22 � a q 0 0 0 � � �
0 q 42 � a q 0 0 � � �
0 0 q 62 � a q 0 � � �
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.

.

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

A2n
0

A2n
2

A2n
4

A2n
6

.

.

.

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

¼ 0:

(11)

Note, while Eq. (11) asymptotically yields the exact solution

for positive real-valued q, for the case of complex-valued q

with a positive real part, as is ours since l is complex-

valued, there is some error in the approximation; the impact

of this is reviewed in the results and discussion sections

below.

While the summations in Eqs. (9) and (10) are infinite,

as n increases, the magnitude of A2n
0 ½q� significantly

decreases such that the summation can be truncated. In the

results presented in Sec. III, N¼ 10 eigenvectors were calcu-

lated and the presented results are based on summing Eq. (9)

to this value. It was confirmed that increasing N further had

a negligible effect.

III. NUMERICALVALIDATION CASE STUDIES

The theoretical approach described in Sec. II was imple-

mented for specific case studies in MATLAB Version 16 a

(Mathworks Inc., Natick, MA) utilizing a free downloadable

Mathieu function toolbox.55 To validate the theoretical
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approach, predictions from it were compared to those from

computational FEA.

The case study configuration is based on an experimen-

tal setup used by our group and others to conduct MRE on

biological tissue and phantom material specimens, utilizing

geometrically focused (radially converging) shear wave

excitation.11,43–46,48–50 Geometry and material property val-

ues, which are typical of soft biological tissue and tissue

phantoms (for the case g ¼ 0:15) are provided in Table I.

The theoretical solution assumes the cylinder has infinite

height along its principle axis in the z direction. However, in

the FE model, it is 20mm in height, with the upper and

lower surfaces having free boundary conditions. These finite

boundary conditions coupled with the nonhomogeneous

boundary condition of vertical oscillatory motion uzr0e
jxt on

the outer curved boundary of the cylinder result in standing

Rayleigh-Lamb (RL) waves.50,56 However, with the given

dimensions and wavelengths, the differences between these

RL waves and shear waves in the infinite height cylinder are

expected to be small, though non-negligible, except in the

vicinity of RL wave resonant frequencies under lightly

damped cases.

A numerical FE study using harmonic analysis (steady

state response equivalent to a particular solution in the fre-

quency domain) was conducted using COMSOL

Mulitphysics Version 5.3 (COMSOL, Burlington, MA) soft-

ware. The automatically meshed model contained 46 724

vertices, 267 162 quadratic tetrahedral elements (0.004 to

0.4mm in size), 9152 triangular elements, 328 edge ele-

ments, and 8 vertex elements. The minimum and average

element quality were 0.176 and 0.662, respectively. The ele-

ment volume ratio was 0.0565 and the mesh volume was

1004mm3. (Mesh resolution was decided upon when further

increases had a negligible effect on the solution.) Typical

computation times for the single frequency harmonic analy-

sis were about 30 min using a 64-bit operating system, x64

based processor, Intel
VR
Xeon

VR
CPU E5-2609 0 with a clock

speed of 2.40GHz, and 256 GB RAM. The theoretical

TABLE I. Geometrical and material parameter values for case studies.

Parameter Nomenclature Value(s)

Cylinder radius r0 4mm

Shear storage modulus in

plane of isotropy

l?R 2.77 kPa

Ratio of shear loss to

storage moduli

g ¼ l?I =l?R ¼ lkI =lkR 0.01 or 0.15

Shear anisotropy / 0.1 or 1

Density q 1000 kg=m3

Frequency f 1 kHz

FIG. 2. (Color online) Normalized z direction displacement ðuzr=uzr0 Þ on the x–y plane for the case / ¼ 1 and g ¼ 0:01 using the theoretical model [(a) in

phase, (b) 90 degrees out of phase] and the FE model [(c) in phase, (d) 90 degrees out of phase]. See supplementary material (Ref. 57).
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approach used to calculate the results presented below took

about a second in MATLAB.

According to Sec. II, for the given configuration that only

excites slow shear waves, the value of f is not relevant. FE

simulations using different values of f from 0 to 2 confirmed

this. Also, while the theory described in Sec. II assumes

incompressibility, the FE simulations did not make this

assumption. Rather, the material was modeled using the bulk

modulus of water j ¼ 2:15GPa. As the bulk modulus is

nearly six orders of magnitude greater than the shear moduli,

the Poisson’s ratio � will be nearly equal to but less than 0.5.

The orthotropic elasticity matrix K using Voigt notation and

nomenclature from Schmidt et al.,28 but taking the fiber orien-

tation to be parallel to the y axis, in COMSOL is

K ¼

jþ l?
4

3
þ 4

9
f

� �

j� l?
2

3
þ 8

9
f

� �

j� l?
2

3
� 4

9
f

� �

0 0 0

j� l?
2

3
þ 8

9
f

� �

jþ l?
4

3
þ 16

9
f

� �

j� l?
2

3
þ 8

9
f

� �

0 0 0

j� l?
2

3
� 4

9
f

� �

j� l?
2

3
þ 8

9
f

� �

jþ l?
4

3
þ 4

9
f

� �

0 0 0

0 0 0 l? 1þ /ð Þ 0 0

0 0 0 0 l? 0

0 0 0 0 0 l? 1þ /ð Þ

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

: (12)

FIG. 3. Normalized z direction displacement ðuzr=uzr0 Þ for the case / ¼ 1:0
and g ¼ 0:01 using the theoretical model (solid line) and the FE model

(dashed line): (a) along the y (fiber) axis in phase: Dy ¼ 26%; (b) along the

y (fiber) axis 90 degrees out of phase: Dy ¼ 16%; (c) along the x axis in

phase: Dx ¼ 28% (d) along the x axis 90 degrees out of phase: Dx ¼ 12%.

FIG. 4. Normalized z direction displacement ðuzr=uzr0 Þ for the case / ¼ 0:1
and g ¼ 0:01 using the theoretical model (solid line) and the FE model

(dashed line): (a) along the y (fiber) axis in phase: Dy ¼ 22%; (b) along the

y (fiber) axis 90 degrees out of phase: Dy ¼ 17%; (c) along the x axis in

phase: Dx ¼ 16%; (d) along the x axis 90 degrees out of phase: Dy ¼ 15%.
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In Fig. 2, we see a comparison of the theoretical and FE

solutions for the normalized z displacement of Eq. (9) on an

axial slice (x–y plane) in phase and (90 degrees) out of phase

with the displacement excitation for the material parameter

values in Table I for the case g ¼ 0:01 and / ¼ 1. For the

FE model, the slice location is at the mid-height level

(10mm). The complex standing wave patterns do not look

like simple cylindrical or elliptically converging waves due

to interference and multiple reflections at the finite

boundaries.

In Figs. 3 and 4, line profiles of the theoretical and FE

solutions within the slice in Fig. 2 and along the x and y

axes are plotted for g ¼ 0:01 and the cases of

/ ¼ 1 and 0:1, respectively, providing a more direct visual

comparison of the theoretical and numerical FE results.

The case of / ¼ 0:1 is included to show that even a small

amount of anisotropy can significantly affect the response.

The percent difference along the x or y axis, Dx% or Dy%,

between theoretical and FE solutions is calculated for plots

shown in Figs. 3 and 4 by taking the mean of the absolute

values of the differences in the displacement profiles

divided by the root mean square of the theoretical displace-

ment profile. That is,

Dx%¼ 100

NFEA

X

NFEA

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uzTheory xi;y¼ 0½ ��uzFEA xi;y¼ 0½ �
� �2

1

NFEA

X

NFEA

i¼1

uzTheory xi;y¼ 0½ �
� �2

v

u

u

u

u

u

t

;
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Dy%¼ 100
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u

u

u

u

u

t
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(13b)

where i ¼ 1; …; NFEA are 300 equally spaced points along

the x or y axis from �r0 toþ r0 for which the vertical dis-

placement, uzFEA½x ¼ 0; yi� or uzFEA½xi; y ¼ 0�, is obtained

from COMSOL and compared to theoretical solutions,

uzTheory½x ¼ 0; yi� or uzTheory½xi; y ¼ 0�, at those exact same

points. Differences are divided by the root-mean-square

(rms) of the theoretical solution instead of the theoretical

solution at that point so as not to amplify differences at loca-

tions where uzTheory is equal or nearly equal to zero. These

percent differences are provided in the figure captions.

FIG. 5. (Color online) Normalized z direction displacement ðuzr=uzr0 Þ on the x–y plane for the case / ¼ 1 and g ¼ 0:15 using the theoretical model [(a) in

phase, (b) 90 degrees out of phase] and the FE model [(c) in phase, (d) 90 degrees out of phase]. See supplementary material (Ref. 57).
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In Fig. 5, the same comparison is made as in Fig. 2,

except for the case / ¼ 1 and g ¼ 0:15, which is a level of

viscosity more akin to soft biological tissue. Likewise, in

Figs. 6 and 7, the same line profile comparisons are made as

in Figs. 3 and 4 except for g ¼ 0:15 and the cases

/ ¼ 1 and 0:1, respectively. While there is general agree-

ment in standing wave pattern shapes between theory and

numerical FEA, differences exist that are quantified on a per-

centage basis for each comparison and provided in the figure

captions.

IV. DISCUSSION

In all cases, there is expected to be some small level of

error in the numerical FE simulation; it is an approximation.

Additionally, neglecting the effect of finite boundaries on

the top and bottom of the cylindrical finite element phantom

introduces error into the theoretical solution. Both of these

sources of error are thought to be independent of anisotropy

but could depend on level of damping (viscosity). Finite

boundaries, which produce reflections and mode conversion,

will generally have a more pronounced effect when damping

is less, as wave energy travels further and thus has more

opportunities for interaction with boundaries. To quantify

the combined effect of error in both the FE and theoretical

approaches independent of anisotropy, the case studies of

Sec. III with g ¼ 0:01 and 0:15, but with / ¼ 0 (isotropic

case) were conducted. Plots similar to those shown in Figs. 3

or 4 and 6 or 7 are provided in Figs. 8 and 9. Percent differ-

ences between the FE and theoretical solutions were calcu-

lated exactly the same way, with the theoretical solution of

Eq. (9) now exactly matching Eq. (6). In the isotropic case,

normalized z direction displacement ðuzr=uzr0Þ is identical

along both the x and y axes (Dx ¼ Dy ¼ Dr); so, only plots

along one axis are shown and percent differences are

reported in the figure captions, both in phase and out of

phase with the excitation.

Aside from the out of phase comparison for non-

physiological (low) damping, these percent differences are

small, providing confidence in both the FE model and theo-

retical approach for the case of physiologically relevant

damping.23,28,31,58–61 It is hypothesized that the percent dif-

ference for the low damping isotropic case may be worse

FIG. 6. Normalized z direction displacement ðuzr=uzr0 Þ for the case / ¼ 1:0
and g ¼ 0:15 using the theoretical model (solid line) and the FE model

(dashed line): (a) along the y (fiber) axis in phase: Dy ¼ 6:0%; (b) along the

y (fiber) axis 90 degrees out of phase: Dy ¼ 9:6%; (c) along the x axis in

phase: Dx ¼ 41%; (d) along the x axis 90 degrees out of phase: Dx ¼ 31%.

FIG. 7. Normalized z direction displacement ðuzr=uzr0 Þ for the case / ¼ 0:1
and g ¼ 0:15 using the theoretical model (solid line) and the FE model

(dashed line): (a) along the y (fiber) axis in phase: Dy ¼ 6:3%; (b) along the

y (fiber) axis 90 degrees out of phase: Dy ¼ 2:5%; (c) along the x axis in

phase: Dx ¼ 29%; (d) along the x axis 90 degrees out of phase: Dx ¼ 7:4%.
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than in any of the anisotropic cases because axisymmetry

amplifies the focusing effect of the radially converging

wavefront, which then will interact with the finite boundaries

to a greater extent. Moreover, the high out of phase response

predicted by FEA for g ¼ 0:01, which caused the 109% dif-

ference, is likely due to resonance near a natural frequency

of the finite boundary system, directly dependent on the cyl-

inder’s finite height. (Shifting the frequency for the isotropic

case to 950Hz or 1010Hz reduced this difference to 15%

and 8.1%, respectively.) There are Rayleigh-Lamb wave res-

onances (standing wave patterns) dependent on the cylinder

height and not considered in the theoretical solution.

Actually, in the isotropic case with axisymmetry, there will

be pairs of degenerate modes with repeated natural frequen-

cies. Introducing anisotropy will both split and shift the natu-

ral frequencies. In the vicinity of the natural frequency,

when damping is low, the response is amplified.62

Now referring to the anisotropic cases and the elliptic-

based theory, for the case of physiological (significant)

damping (g ¼ 0:15), there is agreement between theory and

FE simulation that is better than the non-physiological (low)

damping case for small anisotropy (/ ¼ 0:01), but worse

than the low damping case when there is increased anisot-

ropy (/ ¼ 1). As noted above, increased damping reduces

finite boundary effects (top and bottom of cylinder) and thus

brings the FE solution and theory closer together. However,

increased damping combined with increased anisotropy

amplifies a current limitation of the elliptic-based theoretical

solution. As damping and anisotropy increase the imaginary

part of the Mathieu parameter, q becomes larger, thus

increasing error in the algorithm used to calculate the

Mathieu function coefficients A2n
0 ½q� used in Eqs. (9)–(11).

This is the reason for the abrupt discontinuities in slope

observed in Figs. 6(c) and 7(c) (which in turn causes Dx% to

exceed Dy%). Additionally, as the imaginary part of q

increases the algorithm becomes less able to find a series of

coefficient values to exactly satisfy Eq. (10). This resulted in

an inability to satisfy the axisymmetric boundary condition

on the curved outer surface of the cylinder, which worsened

with increasing /. In Figs. 10 and 11, the calculated dis-

placement at r ¼ r0 is shown both in and out of phase for the

cases depicted in Figs. 2 (g ¼ 0:01) and 5 (g ¼ 0:15),
respectively. In these plots, it is also evident that, unlike the

zeroth order Bessel function of the first kind J0½ksr� that sin-
glehandedly satisfies the nonhomogeneous axisymmetric

boundary condition, for the elliptic case per Eq. (9), it is nec-

essary to have a weighted sum of multiple higher order

Mathieu functions.

In documentation provided with the MATLAB functions

that were adapted for this study,55 it is noted that the algo-

rithm is for positive and real values of q. However, since q is

proportional to the square of the shear wavenumber, which

in turn is proportional to the reciprocal of the square root of

the shear modulus l, in the present application, Mathieu

FIG. 9. Normalized z direction displacement ðuzr=uzr0 Þ for the case / ¼ 0

and g ¼ 0:15 using the theoretical model (solid line) and the FE model

(dashed line): (a) along a diameter in phase: Dr ¼ 1:74%; (b) along a diame-

ter 90 degrees out of phase: Dr ¼ 0:8%. (Dashed line difficult to see because

of close match).

FIG. 10. Normalized z direction displacement ðuzr=uzr0 Þ on the outer bound-

ary of the cylinder at r ¼ r0 for h from 0 to 2p radians for the case / ¼ 1

and g ¼ 0:01 using the theoretical model [(a) in phase, (b) 90 degrees out of

phase]. The solid line is the solution of the summation in Eq. (9) using

n¼ 0,…, 9. The dashed line is the first term only (n¼ 0).

FIG. 8. Normalized z direction displacement ðuzr=uzr0 Þ for the case / ¼ 0

and g ¼ 0:01 using the theoretical model (solid line) and the FE model

(dashed line): (a) along a diameter in phase: Dr ¼ 3:54%; (b) along a diame-

ter 90 degrees out of phase: Dr ¼ 109%.
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parameter q will be complex-valued, since l is complex-

valued. Mathieu functions are defined and can be determined

for complex-valued q, at least asymptotically.54 However, a

reliable algorithm for the values needed in the present study

has not yet been found or developed by the authors.

Thus, on the one hand, the elastic case will result in

real-valued q, which one might think would improve the the-

oretical solution. On the other hand, the purely elastic case

in the FE model may allow for Rayleigh-Lamb standing

wave patterns (resonant responses) to dominate depending

on how close one is to a natural frequency, which is not cap-

tured by the proposed theory. Nonetheless, this new theoreti-

cal approach, even with the issue of complex-valued q, does

well for physiologically relevant damping values such as

g ¼ 0:15. Even with the differences noted in particular in

Figs. 6(c), 6(d), and 7(c), the overall shape of the standing

wave pattern, which is not at all simply circular or elliptic, is

captured when comparing Figs. 5(a) and 5(b) to 5(c) and

5(d), respectively. In addition, even in the case of 109%

error when g ¼ 0:01, the standing wave pattern is captured;

it is a matter of amplitude difference [Fig. 8(b)].

V. CONCLUSION

A theoretical solution is developed for the standing

shear wave pattern observed in a transverse isotropic mate-

rial subjected to axisymmetric excitation normal to the fiber

axis on a finite cylindrical boundary. The theoretical solu-

tion, utilizing Mathieu functions, is enabled via a transfor-

mation to an elliptic coordinate system with isotropic

properties and a ratio of minor and major axes that matches

the ratio of shear wavelengths perpendicular and parallel to

the plane of isotropy in the transverse isotropic material.

Numerical FEA case studies both validate the theoretical

approach and reveal a limitation not of the approach, but

rather its implementation in the present article. The algo-

rithm used to calculate Mathieu function values is only

strictly valid for real-valued shear wave numbers. This

corresponds to the purely elastic (and fictitious) condition.

An algorithm valid for complex-valued Mathieu parameter q

is needed to generate Mathieu functions for complex-valued

shear wavenumbers, which are necessary for viscoelastic

modeling. This and exploration of Rayleigh-Lamb wave the-

ory in elliptic coordinates are left for future studies.

The novel strategy introduced in this study of coordinate

transformation to convert an anisotropic problem into an iso-

tropic one, albeit with more complex boundary conditions,

could be expanded to analysis of other anisotropic tissue

structures and experimental configurations and geometries.

Also left for future development is the possibility of an

inversion algorithm directly based on this coordinate trans-

formation strategy. Nonetheless, the theoretical solution for

the forward problem provided here, which was shown to be

accurate for physiologically relevant transverse isotropic vis-

coelastic material properties, provides a rapid means of

assessing the validity of other inversion algorithms by pro-

viding the ability to rapidly calculate the response of any

transverse isotropic material with finite boundaries that cre-

ate multiple reflections and standing wave patterns.
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APPENDIX

For elastic, plane waves traveling in a nearly incom-

pressible, transversely isotropic (NITI) material, the assumed

plane wave solution, u½x; t� ¼ u0mejðxt�kn�xÞ, satisfies the

equation of motion

$ � r ¼ q
@2
u

@t2
; (A1)

where r is a second order Cauchy stress tensor, $ � r is its

divergence, q is the material density, u is the displacement

vector, and t is time.28 Also, the vectors m and n refer to the

polarization direction of the displacement and the propagation

direction, respectively. The elasticity tensor K of the NITI

material model, in Voigt notation, relates stress r to strain �,

r ¼
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; (A2)

where K was given in Eq. (12). Substitution of the assumed

solution into the equation of motion results in an eigenvalue

problem, with three solutions k ¼ qc2, which in the limit as

j ! 1 are

k1 ¼ qc2s ¼ l?ð1þ /cos2 h½ �Þ; (A3)

FIG. 11. Normalized z direction displacement ðuzr=uzr0 Þ on the outer bound-

ary of the cylinder at r ¼ r0 for h from 0 to 2p radians for the case / ¼ 1

and g ¼ 0:15 using the theoretical model [(a) in phase, (b) 90 degrees out of

phase]. The solid line is the solution of the summation in Eq. (9) using

n¼ 0,…, 9. The dashed line is the first term only (n¼ 0).
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k2 ¼ qc2f ¼ l?ð1þ /cos2 2h½ � þ fsin2 2h½ �Þ; (A4)

k3 ¼ qc2p ! 1; (A5)

where cs and cf are the slow and fast shear wave phase

speeds, respectively, and cp is the longitudinal wave phase

speed. The phase speeds approach these approximations

closely for finite values of bulk modulus, j, representative of

soft biological tissue (within 1%–2% for j � 100l).29
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