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Analytical solution for diverging elliptic shear
wave in bounded and unbounded transverse
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Abstract: A theoretical approach was recently introduced by Guidetti
and Royston [J. Acoust. Soc. Am. 144, 2312–2323 (2018)] for the radially
converging elliptic shear wave pattern in transverse isotropic materials
subjected to axisymmetric excitation normal to the fiber axis at the outer
boundary of the material. This approach is enabled via a transformation
to an elliptic coordinate system with isotropic properties. The approach is
extended to the case of diverging shear waves radiating from a cylindrical
rod that is axially oscillating perpendicular to the axis of isotropy and
parallel to the plane of isotropy.
VC 2019 Acoustical Society of America
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1. Introduction

Please refer to the authors’ recent publication in this journal1 for an extensive sum-
mary of the background and motivation for the coordinate transformation strategy
extended in the present article to the case of a radially diverging shear wave front
caused by an oscillating rod at the center.

Continuous oscillatory motion of a cylindrical rod along its axis generates
diverging shear waves in an unbounded medium or in one where back reflections from
boundaries are negligible or directionally filtered out, and can establish a standing
wave pattern in a bounded cylindrical region. This strategy has been applied in vivo
with complex organ and tissue boundaries2–4 and in vitro on tissue specimens or phan-
toms confined to cylindrical containers.5–8 Additionally, application of focused radia-
tion force of ultrasound (US), commonly used in US-based dynamic elastography
methods, may be roughly approximated as a rod-like source oscillating along its
axis.9–11 While a theoretical solution for the axisymmetric shear wave pattern that is
established in isotropic materials is easily obtained using Bessel functions, a solution
for the case of anisotropic materials that will produce a nonaxisymmetric shear wave
pattern is not as easily found. Specifically, to the best of the authors’ knowledge such a
closed form theoretical solution has not been presented and validated for the case of a
transverse isotropic material that is aligned with its plane of isotropy parallel to the
oscillating rod. Such a configuration should result in the generation of only slow shear
waves whose phase propagation speed will depend on the angle their direction of prop-
agation makes with the plane of isotropy.

A theoretical approach is proposed for the elliptic shear wave pattern observed
in transverse isotropic materials subjected to axisymmetric excitation parallel to the
plane of isotropy. Radially diverging waves driven by axial oscillation of a rigid cylin-
drical rod located at the center of a bounded cylindrical region or radiating into an
unbounded region are considered. The theoretical solutions are validated via numerical
finite element analysis (FEA) case studies.

2. Theory

Please refer to Sec. IIA of Ref. 1 for an introduction to the nomenclature and equa-
tions used for nearly incompressible isotropic linear viscoelastic material, and for an
orientation to the geometry considered in this study. In the present study the outer
boundary at r ¼ r0 is fixed and there is a rod of radius r ¼ ri along the central axis of
the cylindrical phantom as shown in Fig. 1. One means of creating steady state
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harmonic shear wave motion in the phantom material is to apply motion of amplitude
uzri in the z direction using this cylindrical rod: uz½r ¼ ri; t� ¼ Real½uzriejxt�. Henceforth,
the fact that the real part is of interest will be implicit.

For an isotropic and homogeneous material in such a configuration, the fol-
lowing theoretical solution governs steady state shear wave motion at any location
ri < r < r0:

uz r; t½ � ¼ uzri
J0 ksr½ � � bY0 ksr½ �
J0 ksri½ � � bY0 ksri½ � e

jxt; b ¼ J0 ksr0½ �
Y0 ksr0½ � : (1)

Here ks is the shear wave number. And for the case of radiating into an unbounded
medium ri < r with r0 ! 1, we have the following:

uz r; t½ � ¼ uzri
H 2ð Þ

0 ksr½ �
H 2ð Þ

0 ksri½ �
ejxt: (2)

Here J0 and Y0 are the zeroth-order Bessel functions of the first and second kind,
respectively. And H

ð2Þ
0 is the Hankel function of the second kind (or Bessel function of the

fourth kind), appropriate for outgoing (radially diverging) waves when using eþjxt. This
solution follows from the condition of axisymmetry established by the isotropic, homoge-
neous medium with symmetric (nonhomogeneous at ri and homogeneous at r0) boundary
conditions, thus eliminating higher order Bessel functions that will have h dependence.

In the case of transverse isotropy with the y axis parallel to the axis of isotropy
(along the fiber axis), axisymmetry is destroyed and Eqs. (1) and (2) are no longer
valid. Now consider a transformation to a new Cartesian coordinate system, with y
replaced by y0 ¼ y=

ffiffiffiffiffiffiffiffiffiffiffiffi

1þ /
p

for a purely elastic case or for the case that the ratio of
shear loss to storage moduli is the same in parallel and perpendicular directions:
g ¼ l?I=l?R ¼ lkI=lkR. Here, shear anisotropy / ¼ lkR=l?R � 1. For the more gen-
eral viscoelastic case when these ratios are not the same we will divide y by the ratio
of shear wavelength along the fiber direction (parallel to the axis of isotropy) with
respect to the shear wavelength perpendicular to the fiber direction (parallel to the
plane of isotropy).

In this new coordinate system, shear waves propagating in the fx; y0g plane
polarized in the z direction will all propagate at the same phase speed, with the same
wavelength at a given frequency, independent of the direction of propagation h. In the
transformed coordinate system, this shear wave behavior is isotropic. However, the
same length distortion must be applied to the cylindrical boundary conditions at r ¼ ri
and r ¼ r0, which are now elliptic boundary conditions in the fx; y0g coordinate sys-
tem. Specifically, in order to create isotropy, for the case of elasticity and viscoelastic-
ity with constant g, we are distorting space as a function of h by reducing length by a
factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ / cos2½h�
p

where h denotes the angle of propagation with respect to the
fiber axis. This is exactly an elliptic coordinate system.

Fig. 1. (Color online) Transverse isotropic cylindrical sample with x-z plane of isotropy (fibers in the y direc-
tion) subjected to a nonhomogeneous boundary condition: harmonic displacement in the z direction of ampli-
tude uzri at frequency f ¼ x=2p on its curved cylindrical inner boundary at r ¼ ri with the external curved
boundary fixed (zero displacement) viewed in the x; y0 plane after transformation to elliptic coordinate system
fn; gg for (a) radially diverging waves and (b) converging waves with isotropic material properties.

Martina Guidetti and Thomas J. Royston: JASA Express Letters https://doi.org/10.1121/1.5088028 Published Online 24 January 2019

EL60 J. Acoust. Soc. Am. 145 (1), January 2019 Martina Guidetti and Thomas J. Royston

https://doi.org/10.1121/1.5088028


We cannot satisfy the necessary distortion condition at both r ¼ ri and r ¼ r0
simultaneously with a simple transformation to one elliptic coordinate system. For the
unbound case with r0 ! 1, this is not a limitation, as we need only satisfy the distortion
condition at r ¼ ri. For the bounded condition, we will work sequentially, first solving the
unbounded diverging response using ri to establish our new elliptic coordinate system,
and then calculating the converging bounded reflection using r0 to establish another elliptic
coordinate system, summing these responses to satisfy the condition that uz½r0; t� ¼ 0:

Shear wave motion propagating in the fx; y0g plane with z polarization can be
expressed in terms of angular and radial Mathieu functions12,13 via a separation of var-
iables approach to the governing partial differential equation, in a way analogous to
how sinusoidal and Bessel functions are used to construct shear wave motion subject
to a cylindrical boundary condition.14 For the case of an unbounded medium we will
consider a finite dimension rod at the origin of radius ri and transform to elliptic coor-
dinates fn; gg such that x ¼ Fcosh½n� cos ½g� and y0 ¼ Fsinh½n� sin ½g�, where F ¼ ri=
cosh½ni� ¼ ðri=

ffiffiffiffiffiffiffiffiffiffiffiffi

1þ /
p

Þ=sinh½ni� 0 � g � 2p, ni � n. The coordinates fn; gg and the dis-
tance from the origin to each focal point, F, are indicated in Fig. 1(a). The nonhomo-

geneous inner radius boundary condition is uz½n ¼ ni; t� ¼ uzrie
jxt. The imposed uniform

displacement on the elliptic inner boundary at n ¼ ni allows only for Mathieu func-
tions that have even parity with periodicity of p radians. Unlike in the case of cylindri-
cal coordinates, there is no single member of the Mathieu function set that can satisfy
this imposed nonhomogeneous symmetric inner boundary condition. The response for
the outgoing wave, uzH ½n; g�, is given by

uzH n; g½ �
uzH ni; g½ � ¼ 2

X

1

n¼0

A2n
0 q½ �

He2n n; q½ �
He2n ni; q½ � ce2n g; q½ �; (3)

where He2n½n; q� is the radial (modified) even parity Hankel–Mathieu function of the
second kind (also known as a radial Mathieu function of the fourth kind) and
ce2n½z; q� is the angular even parity Mathieu function, all of periodicity p radians. And
ni ¼ arctanh½1=

ffiffiffiffiffiffiffiffiffiffiffiffi

1þ /
p

�, q ¼ ðFk=2Þ2, and k ¼ x
ffiffiffiffiffiffiffiffi

q=l
p

. Here q is known as a Mathieu
parameter and its value and that of F increase with the degree of shear anisotropy /.
For the isotropic case, both are zero and the angular and radial Hankel–Mathieu func-
tions collapse to sinusoidal and Hankel functions, respectively, exactly matching isotro-
pic theory. Equation (3) satisfies the inner boundary condition because we have from
Eq. (28.11.3) of Wolf15 the following:

1 ¼ 2
X

1

n¼0

A2n
0 q½ �ce2n g; q½ �: (4)

The coefficients A2n
2m½q� for n¼ 0, 1, 2,… and m¼ 0, 1, 2,…. can be approxi-

mated based on solving an eigenvalue problem, which will have n¼ 1,…,N solutions
for the eigenvalue a with n¼ 1,…,N corresponding eigenvectors of length N.16

Equation (3) can be used to calculate the steady state response of the outgoing
wave at a distance r ¼ r0 at any angle h by solving uzH ½n; g� at values of n and g that
correspond to r ¼ r0 for 0 � h � 2p. These values will vary with h but will have even
parity with periodicity of p radians over the range 0 � h � 2p. To identify the com-
plete steady state solution a zero boundary condition at r ¼ r0 is needed. This will be
achieved by adding a reflected radially converging wave uzJ ½n; g� with a nonhomoge-
neous boundary condition at r ¼ r0 that is exactly the same amplitude but opposite in
sign. The process of calculating this reflected radially converging wave is as follows.

We now transform to a new set of elliptic coordinates fn; gg such that x

¼ Fcosh½n� cos ½g� and y0 ¼ Fsinh½n� sin ½g�, where F¼r0=cosh½n0�¼ðr0=
ffiffiffiffiffiffiffiffiffiffi

1þ/
p

Þ=sinh½n0�,
0�g�2p, n�n0 [Fig. 1(b)]. The nonhomogeneous boundary condition at n¼n0, which
has even parity with periodicity of p radians over the range 0�h�2p can be expressed
in terms of a Fourier series as follows, where a2m can be complex-valued to capture
the in-phase and out-of-phase response:

uzH n0; g½ � ¼
X

1

m¼0

a2m cos 2mg½ �: (5)

Furthermore, from Eq. (28.11.4) of Wolf15 we have that

cos 2mg½ � ¼
X

1

n¼0

A2n
2m q½ �ce2n g; q½ �: (6)

Martina Guidetti and Thomas J. Royston: JASA Express Letters https://doi.org/10.1121/1.5088028 Published Online 24 January 2019

J. Acoust. Soc. Am. 145 (1), January 2019 Martina Guidetti and Thomas J. Royston EL61

https://doi.org/10.1121/1.5088028


Given this, the reflected converging response uzJ ½n; g� can be expressed as

uzJ n; g½ � ¼ �
X

1

m¼0

a2m
X

1

n¼0

A2n
2m q½ �

Je2n n; q½ �
Je2n n0; q½ � ce2n g; q½ �

 !

: (7)

Here, Je2n½n; q� is the radial (modified) even parity Mathieu function of the first kind
and ce2n½z; q� is the angular even parity Mathieu function, all of periodicity p radians.
And n0 ¼ arctanh½1=

ffiffiffiffiffiffiffiffiffiffiffiffi

1þ /
p

�, q ¼ ðFk=2Þ2, and k ¼ x
ffiffiffiffiffiffiffiffi

q=l
p

. Thus, the complete
steady state response is

uz n; g½ � ¼ uzH n; g½ � þ uzJ n; g½ �: (8)

However, note that uzJ ½n; g� neglects the boundary condition created by the
rod of radius ri at the center. And, in fact, an additional outgoing reflection may need
to be added to Eq. (8) to address this, and so forth, until reflections become negligible
due to viscous attenuation of the response. The effect of this is explored in numerical
simulations in Sec. 3.

Finally, while the summations in equations above are infinite, as n increases
the magnitude of A2n

2m½q� significantly decreases such that the summation in n can be
truncated. Likewise, Fourier series informs us that, as m increases, the magnitude of
the terms will also approach zero and the summation in m can be truncated. In the
results presented in Sec. 3 N ¼ M ¼ 8 were used. Increasing N or M further had a
negligible effect.

3. Numerical validation case studies

The analytical approach described in Sec. 2 was implemented for specific case studies
in MATLAB Version 16a (Mathworks Inc., Natick, MA) utilizing a free downloadable
Mathieu function toolbox.16 To validate the theoretical approach, predictions from it
were compared to those from computational FEA.

The case study configuration is based on an experimental setup used by other
groups to conduct Magnetic Resonance Elastography (MRE) on biological tissue and
phantom material specimens, utilizing geometrically spreading (radially diverging) shear
wave excitation, as summarized in Sec. 1. Geometry and physiologically-relevant material
property values for the cases are provided in Table 1 and are consistent with values used
in another study of geometrically focused (radially converging) wavefronts.1 The theoreti-
cal solution assumes the cylinder has infinite height along its principle axis in the z direc-
tion. However, in the finite element (FE) model it is 20mm in height, with the upper and
lower surfaces having free boundary conditions. These finite boundary conditions coupled
with the nonhomogeneous boundary condition of vertical oscillatory motion uzrie

jxt along
the z axis result in standing Rayleigh–Lamb (RL) waves.17,18 However, with the given
dimensions, level of viscosity, and wavelengths the differences between these RL waves
and shear waves in the infinite height cylinder are expected to be small.

Numerical FE studies using harmonic analysis were conducted using
COMSOL Multiphysics Version 5.3a (COMSOL, Burlington, MA) software. The
automatically meshed FE model contained 46 646 vertices, 266 724 quadratic tetrahe-
dral elements (0.004 to 0.4mm size), 9156 triangular elements, 379 edge elements, and
10 vertex elements. The minimum and average element quality was 0.19 and 0.66,
respectively. The element volume ratio was 0.05325 and the mesh volume was
1004mm3. (Mesh resolution was decided upon when further increases had a negligible
effect on the solution.) The outer curved boundary is fixed and a harmonic displace-
ment is applied along the central axis, simulating a rod of infinitesimal radius oscillat-
ing axially in the center of the phantom.

Table 1. Geometrical and material parameter values for case study.

Parameter Nomenclature Value(s)

Cylinder outer radius r0 4mm

Cylinder inner radius ri 0 (0.02) mm

Shear storage modulus in plane of isotropy l?R 2.77 kPa

Ratio of shear loss to storage moduli g ¼ l?I

l?R

¼
lkI
lkR

0.15

Shear anisotropy / 1

Density q 1000
kg

m3

Frequency f 1 kHz
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Typical computation times for the single frequency harmonic analysis of this
model was about 40min using 64-bit operating system, �64 based processor, Intel

VR

Xeon
VR

CPU E5-2609 0 with a clock speed of 2.40GHz, and 256 GB RAM. Further
description of the FE method used in this study can be found in Ref. 1. The analytical
approach used to calculate the results presented below took about a second in MATLAB.

In Fig. 2 we see a comparison of the theoretical and FE solutions for the z
displacement on an axial slice (x-y plane) with the displacement excitation for the
material parameter values in Table 1. (For the theoretical solution we set
ri ¼ 0:02 mm, which was comparable to element dimensions used in the FE model).
Specifically, in Figs. 2(a) and 2(b) we see the in-phase and out-of-phase (with respect
to the excitation) responses, respectively, for the diverging solution uzH , based on Eq.
(3). In Figs. 2(c) and 2(d) we see the in-phase and out-of-phase responses, respectively,
for the complete solution uz, based on Eq. (8). The steady state (harmonic analysis)
FE solution, in-phase and out-of-phase, is shown in Figs. 2(e) and 2(f), respectively. In

Fig. 2. (Color online) Normalized z direction displacement ðuzr=uzri Þ on the x-y plane using the unbounded the-
oretical model [(a): in-phase, (b): 90� out-of-phase], using the bounded theoretical model [(c): in-phase, (d): 90�

out-of-phase], and the transverse isotropic bounded FE numerical model [(e): in-phase, (f): 90� out-of-phase].
(See Ref. 19 for the supplementary material.)
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Figs. 3(a) and 3(b) the value of the diverging solution uzH on the boundary r0 ¼ 4mm,
which was “zeroed out” by introduction of uzJ , is presented.

For the FE model the slice location is at the mid-height level (10mm). In Fig.
4 line profiles of the complete theoretical and FE solutions within the slice in Fig. 2
and along the x and y axes, in-phase and out-of-phase, are plotted to provide a more
direct comparison of the complete theoretical and numerical FE results. The percent
difference along the x or y axis, Dx% or Dy%, between theoretical and FE solutions is
calculated for plots shown in Fig. 4 by taking the mean of the absolute values of the
differences in the displacement profiles divided by the root-mean-square of the theoreti-
cal displacement profile.1 These percent differences are provided in the figure captions.

4. Discussion

In all cases, there is expected to be some small level of error in the numerical FE simu-
lation; it is an approximation. Additionally, neglecting the effect of finite boundaries
on the top and bottom of the cylindrical phantom introduces a small amount of error
into the theoretical solution. Both of these sources of error are thought to be indepen-
dent of anisotropy. To quantify the combined effect of error in both the FE and theo-
retical approach independent of anisotropy, the case study of Sec. 3 but with / ¼ 0
(isotropic case) was conducted. Percent differences between the FE and theoretical
solutions were calculated the same way, with the theoretical solution now based on
Eq. (1). Percent differences, in-phase and out-of-phase, were less than 2.5% and pro-
vide a target limit for accuracy in the anisotropic case.

For the anisotropic cases with / ¼ 1, the primary source of additional error is
believed to be the fact that the reflected wave, uzJ ½n; g�, does not account for the pre-
scribed boundary condition at the center created by the rod. This is evident in the mis-
match seen in the vicinity of x or y¼ 0 in Fig. 4. As noted below Eq. (8), this could be
accounted for by adding an additional outgoing reflection to the overall solution in
Eq. (8), in the same way the initial reflection uzJ ½n; g� was added to have the overall
solution match the zero boundary condition at r0: Parametric studies (not shown) with
both increased and decreased damping also supported this assessment in that, with
decreased damping the error was greater, but with increased damping the error was
reduced, as the reflected wave is further attenuated by the time it reaches the center of
the cylinder.

The value used for damping, a ratio of shear loss to storage modulus of 0.15,
is physiologically relevant;5 so, for the application of interest we would not expect the
damping level to differ drastically from this. And, while increased damping helps with
the reflection issue, further increasing it combined with increased anisotropy amplifies

Fig. 4. Normalized z direction displacement ðuzr=uzri Þ using the bounded theoretical model (solid line) and for
the bounded FE numerical model (dashed line). (a) Along the y (fiber) axis in-phase: Dy ¼ 5:2%; (b) along the y
(fiber) axis 90� out-of-phase: Dy ¼ 15%; (c) along the x axis in-phase: Dx ¼ 15%; (d) along the x axis 90� out-of-
phase: Dx ¼ 23%.

Fig. 3. Normalized z direction displacement ðuzr=uzri Þ at r0 ¼ 4 mm in the x-y plane using the unbounded theo-
retical model uzH [(a): in-phase, (b): 90� out-of-phase].
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a current limitation of the elliptic-based theoretical solution. As damping and anisot-
ropy increase the imaginary part of q becomes larger, thereby increasing error in the
algorithm used to calculate the Mathieu function coefficients A2n

2m½q� in Eqs. (3)–(8).
In documentation provided with the MATLAB functions that were adapted for

this study,16 it is noted that the algorithm is for positive and real values of q. But since
q is proportional to the square of the shear wavenumber, which in turn is proportional
to the reciprocal of the square root of the shear modulus l, in the present application
q will be complex-valued, since l is complex-valued. Mathieu functions are defined
and can be determined for complex-valued q, at least asymptotically.15 However, a
reliable algorithm for the values needed in the present study has not yet been found or
developed by the authors.
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