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An analytical solution is developed for the unsteady flow of fluid through a parallel rotating plate

microchannel, under the influence of electrokinetic force using the Debye–Hückel (DH) approximation.

Transient Navier–Stokes equations are solved exactly in terms of the cosine Fourier series using the

separation of variables method. The effects of frame rotation frequency and electroosmotic force on the

fluid velocity and the flow rate distributions are investigated. The rotating system is found to have

a damped oscillatory behavior. It is found that the period and the decay rate of the oscillations are

independent of the DH parameter (k). A time dependent structure of the boundary layer is observed at

higher rotational frequencies. Furthermore, the rotation is shown to generate a secondary flow and

a parameter is defined (b(t)) to examine the ratio of the flow in the y and x directions. It showed that

both the angular velocity and the Debye–Hückel parameters are influential on the induced transient

secondary flow in the y direction. At high values of the Debye–Hückel parameter and the rotation

parameter the flow rates in the x and y directions are found to be identical. The analytical solution results

are found to be in good agreement with the numerical method results and previously published work in

this field.

Introduction

Flow through microchannels has become one of the most

important research areas in recent years due to the unique

phenomena occurring at the microscale level such as the

development of a thin electric diffuse layer, called electrical

double layer (EDL).1–6 The thickness of the EDL is comparable

with the size of the microchannel so the length scales of the

electrostatic interactions enable the development of many high-

impact technologies in the area of electrokinetic transport in

microchannels. In such technologies, electroosmotic ow (EOF)

is the prevalent phenomenon for the transport of small volumes

of aqueous solutions when an electric eld is applied across

a microchannel with charged walls.7 The electrical forces on the

EDL near the interface of a solid surface and an electrolyte

solution generate a uid ow.8,9

The characteristics of EOF in microchannels are typically

examined by solving continuity and momentum equations in

the presence of an electrical body force given by the Poisson–

Boltzmann (PB) equation. These equations have been analyti-

cally solved for various geometries, ow properties and elec-

trolyte solution characteristics using the Debye–Hückel (DH)

approximation.10–18 This approximation can be used for small

magnitudes of wall zeta-potential (<0.025 V) which makes the

PB equation linear, thus leading to an analytical and explicit

expression of the potential prole.

Levine et al.11 analytically solved the steady state problem of

electrokinetic ow in a ne cylindrical capillary considering the

DH approximation. This study provided a more precise calcu-

lation of the power requirements for pumping electrolytes

through ne capillaries. Burgreen and Nakache10 analytically

studied electrokinetic laminar steady ow in a very thin rect-

angular channel without the DH approximation. Their analysis

provided a solution for cases of high ionic energy and a small

electrokinetic radius. Hsu et al.12 theoretically studied the ow

of an electrolyte solution through an elliptical microchannel to

simulate the ow of a uid in a vein. They considered a time

independent spatial variation for the liquid velocity with

different types of boundary conditions on the channel wall. In

their analysis, they didn’t consider any assumption regarding

the thickness of the double layer or the level of the electrical

potential in order to present a more realistic description for

biological systems. They also reported that the effects of

boundary conditions are more apparent when the size of

a microchannel decreases. EOF in a human meridian was

studied by Sheu et al.13 through a numerical model considering

a steady state creeping ow for tissue uid motion. The tissue

uids contain ions and nutrients and they interact with the

blood in the capillary vessel through a complex nonlinear

electro-osmosis transport process. EOF in microchannels in the

presence of thermal effects has also attracted much attention.

Chen15 presented analytical expressions for the velocity and the
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temperature distributions of a fully-developed non-Newtonian

uid ow in a microchannel subjected to heat ux at the

boundary conditions. Das and Chakraborty16 obtained closed

form expressions for the velocity and temperature distributions

of steady and fully developed ow of a power-law uid. They

examined the effect of non-Newtonian parameters on ow

behaviour.

In all the above mentioned studies, electrokinetic ow (more

specically EOF) was applied as the only means for controlling

the ow of liquids in microuidic channels.19 A plug-like

velocity prole along with easy controllability are the main

characteristics of EOF in microchannels. However, electroki-

netic pumping suffers from drawbacks so researchers have been

directed toward techniques for generating a secondary ow.

First, physicochemical properties, such as ionic strength and

pH, may affect the pumping performance. For example, exces-

sive Joule heating (the process by which the passage of an

electric current through a conductor releases heat) prohibits

pumping of liquids with high ionic strengths.20 Therefore, it

may be difficult or impossible to use EOF to pump biological

uids, such as blood and urine.21 Second, electrokinetic

pumping requires high-voltage supplies which may have

adverse safety effects. Third, electrokinetic pumping only works

for uids without any trapped bubbles in the microchannels.

Finally, due to Joule heating, EOF cannot be used for high ow

rates (>1 mL s�1) in wide channels (>1 mm).21 A simple and safe

alternative for controlling the ow of liquids in microuidic

channels is based on centrifugal force which is not sensitive to

the chemical properties of the liquid. This system can also be

applied for liquids with trapped bubbles and a wide range of

channel sizes. In a centrifugal system, the uid spatial and

temporal controls have to be incorporated over the position of

the uids in the micro-channels.

Duffy et al.21 conducted an experimental investigation on the

effect of centrifugal force on the micro-ow transport through

microscopic channels fabricated in a plastic disk. The uid was

pumped outward using centrifugal force due to the rotation of

the disk at 60–3000 rpm. They applied this method to pump

biological uids, such as blood and urine, since the driving

force for the uid ow was no longer sensitive to the physico-

chemical properties of the uids such as pH and ionic strength.

Chang and Wang22 investigated steady state rotating EOF over

an innite plate and inside a rectangular channel using the DH

approximation for the charge distributions. They have shown

that, the speed of rotation and the electrokinetic width are the

most important parameters affecting the steady ow in

a microchannel. In addition, they have demonstrated that when

the speed of rotation increases, axial and transverse ows

vanish and the entire system forms a rigid body rotation. Xie

and Jian23 analysed the rotating EOF of power-law uids at high

zeta potentials in a microchannel. They applied the nonlinear

PB equation for the EDL potential distribution. Using the nite

difference method, they have numerically computed the

rotating EOF velocity proles for non-Newtonian uids.

However, the velocity proles in their study are only computed

for the steady-state conditions. Li et al.24 continued this study

for the third grade uids. They used the perturbation method to

approximately obtain the solutions by assuming a slight non-

Newtonian behaviour. Recently, Ng and Qi25 presented a more

detailed study on electro-osmotic ow in rotating rectangular

microchannels. They considered the same steady state problem

as in ref. 22 to represent the effect of the channel width and

different combination of wall charges on the Ekman-EDL, ow

structure and ow rate.

In this study an analytical solution is developed for transient

electroosmotic ow in a rotating microchannel. To the best of

the authors’ knowledge, this time dependent behaviour has not

been reported in an exact closed-form series solution. First,

a general solution of the problem is obtained via the superpo-

sition and separation of variables techniques. By using a cosine

Fourier series expansion, the governing complex partial differ-

ential equation (PDE) was solved to yield a closed-form solution.

Next, the analytical solutions for the velocity and ow rate were

applied to some examples. Structures of the boundary layer at

higher rotational frequencies were studied and the rotational

induced secondary ows are discussed. Moreover, transient

secondary ow in the y direction is shown to be dependent on

angular velocity and the Debye–Hückel parameters. Finally, the

analytical solution results were compared with numerical

solutions from Mathematica and previously published results.

Problem formulation and solution
procedure
A. Electro-osmotic rotating microchannel ow equations

and boundary conditions

The geometry for the present analysis is shown in Fig. 1. It

consists of two parallel plates separated by a distance of 2h. The

bottom and top plate are located at z ¼ �h and z ¼ h,

respectively.

The basic eld equations governing the ow of an incom-

pressible uid between two parallel walls of a microchannel are

the continuity equation and the modied Cauchy equation

given by

V$u* ¼ 0 (1.a)

r

�

vu*

vt*
þ u*$Vuþ 2U� u*

�

¼ �Vpþ V$sþ b (1.b)

Fig. 1 3D view of the rotating microchannel with EOF.
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where u*¼ (u*, v*, 0) is the velocity vector, r is the uid density,

t* is the time,U¼ (0, 0, U) is the angular velocity vector, p is the

modied pressure including centrifugal force (p ¼ P � r/2|U �
r|2), s is the extra stress tensor, and b is the body force per unit

volume. The pressure gradient along the microchannel is

assumed to be zero except for the centrifugal force that is

included in the modied pressure. In EOF (except for in elec-

trophoresis applications with high electrical elds26) the Rey-

nolds number is less than unity which results in a negligible

convective term in the NS equation (u*$Vu* ¼ 0).27 A list of the

constants and parameters used here is presented in Table 1.

To nd the electric potential distribution within the EDL the

Poisson–Nernst–Planck (PNP) model is considered. The species

conservation equation can be written as:

vn*�
vt*

¼ �V$
�

Hem� � n*�Vj*�m�kBTVn*�
�

(2)

where n*þ and n*� are the concentration numbers of the free

charges in the uid, e is the elementary charge, m� is the

mobility, j* is the electric potential in the uid, kB is the

Boltzmann constant, and T is the absolute temperature. By

subtracting the positive and negative number concentrations

the following equation is obtained:

vr*f
vt*

¼ �V$

�

sVj*�DVr*f

�

(3)

with r*f ¼ e ðn*þ � n*�Þ and s ¼ e ðm*
þn

*
þ �m*

�n
*
�Þ. The electrical

conductivity of the electrolyte (s) is found based on the molar

conductivity of the solution,8 s¼ 1000MsM. Substituting eqn (3)

into eqn (2) yields:8,28–30

sc

sp

vr*f
vt*

¼ �V$

�

Vj*� 3D

sh2
Vr*f

�

(4)

where 3 is the electric permittivity and sc¼ 3/s and sp¼ mh2/3j*2

are the charge relaxation time scale and the process time scale,

respectively. Here, based on the parameters presented in Table

1, the process time is higher than the charge relaxation time (sp
[ sc), the dynamics of the charges become negligible

compared to the uid motion and the PNP equation simplies

to the Poisson–Boltzmann equation. The net electric charge

density in the uid and the electric potential eld j*(z) within

the EDL are related as follows:

v
2
j*ðz*Þ
vz*

2
¼ � re

3
(5)

The term, re is the Boltzmann distribution of the net electric

charge density near to the charged walls described as31

re ¼ �2n0ex sinh

�

ex

kBT
j*

�

(6)

where n0 is the bulk concentration of the electrolytes in the

liquid (n0 ¼ 1000NAM), e is the electron charge, and x (¼1) is the

valence. The body force per unit volume, dened in eqn (1.b)

can be written as b ¼ (reE, 0, 0).

In the present study, it is assumed that the wall electrical

potential is small (j ¼ 10 # 25 mV) compared to the thermal

potential of the charged species (|exj| # kBT). Hence, the DH

linearization principle (sinh(A)z A)8,32 can be applied to obtain

the following simpler linear relation:

v2j*ðz*Þ
vz*

2
¼ k*

2
j*ðz*Þ (7)

where k* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n0e2x
2=3kBT

p

is the DH parameter and it is the

inverse of the Debye length (lD). It should be noted that, the DH

approximation can be used when the Debye thickness is small

but nite, i.e., for h/lD # 103.32

Scaling factors are dened to simplify the analysis procedure

as follows:

z ¼ k*z*;j ¼ j*

z
; u ¼ m

z3E
u*; v ¼ m

z3E
v*; t ¼ m

h2r
t*; k ¼ hk* (8)

Applying these scaling factors to eqn (1.b) and (7) along with

considering the no-slip (zero velocities) boundary conditions on

the channel walls, the following dimensionless governing

equations are obtained in the x and y directions:

vu

vt
� v2u

vz2
� 2uv� v2j

vz2
¼ 0 (9.a)

vv

vt
� v2v

vz2
þ 2uu ¼ 0 (9.b)

where u ¼ rU/mk2 is the dimensionless angular velocity. In the

electrokinetic part, one can solve the dimensionless form of eqn

(7) subjected to the boundary conditions of j(�1)¼ 1 as follows:

jðzÞ ¼ coshðkzÞ
coshðkÞ (10)

To facilitate solutions of eqn (9.a) and (9.b), a complex

function of c(z, t) ¼ u(z, t) + iv(z, t) with i ¼ �1 was used. Hence,

the hydrodynamic equations (eqn (9.a) and (9.b) can be written

as a single complex partial differential equation as follows:

v
2
c

vz2
� vc

vt
� 2iucþ v

2
j

vz2
¼ 0 (11)

Table 1 Constants and parameters

Parameter Value

Electron charge, e 1.6 � 10�19 C
Boltzmann constant, kB 1.38 � 10�23 J K�1

Avogadro’s number, NA 6.022 � 10�23 mol�1

Electric permittivity, 3 695 � 10�12 F m�1

Molar conductivity, sM (151.9 � 143.36) � 10�4 S m2 mol�1

Electric eld strength, E 104 V m�1

Molar concentration, n*� 10�5 to 10�2 mol L�1

Wall electric potential, j 10 mV
Electric eld strength, E 104 V m�1

Absolute temperature, T 293 K
Dynamic viscosity, m 10�3 Pa s
Density, r 103 kg m�3

Channel width, 2h 200 mm
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B. Solution procedure

To nd the ‘analytical’ solution of the complex PDE described in

eqn (11), the superposition property is used:

c(z, t) ¼ c1(z) + c2(z, t) (12)

where, c1(z) is the steady state component of the velocity prole

and c2(z, t) is the transient component. Introducing eqn (12)

into eqn (11) while imposing the boundary and initial condi-

tions, the following set of differential equations are obtained for

c1(z):

v2c1

vz2
� 2iuc1 þ

v2j

vz2
¼ 0;with c1ð1Þ ¼ 0;c1ð�1Þ ¼ 0; (13)

and for c2(z, t)

v
2
c2

vz2
� vc2

vt
� 2iuc2 ¼ 0;with c2ð1; tÞ ¼ 0 c2ð�1; tÞ ¼ 0;c2ðz; 0Þ

¼ �c2ðzÞ:
(14)

Applying the corresponding boundary conditions to the

differential equation eqn (13), yields the steady state compo-

nent of the velocity prole as22 follows:

c1ðzÞ ¼
k2

"

cosh
� ffiffiffiffiffiffiffiffi

2iu
p

z
�

cosh
� ffiffiffiffiffiffiffiffi

2iu
p � � coshðkzÞsechðkÞ

#

ðk2 � 2iuÞ (15)

Eqn (14) is solved using the separation of variables method

by assuming c2(z, t) ¼ Z(z)T(t), with Z(z) and T(t) being the

spatial and temporal functions, respectively.

The new form for c2(z, t) is substituted into eqn (14) to obtain

the following separated ordinary differential equations (ODEs)

for z and t:

1

ZðzÞ
v
2ZðzÞ
vz2

¼ 1

TðtÞ
vTðtÞ
vt

þ 2iu ¼ �l2 (16)

where, l2 is the separation constant.

A solution of eqn (16) for Z(z) satisfying its boundary

conditions Z(1) ¼ Z(�1) ¼ 0 can be assumed to take the form

Z(z) ¼ cos(lnz) with ln ¼ (2n + 1)p/2. Also, the exact solution for

T(t) in eqn (16) is as follows:

TðtÞ ¼ Cne
�ðln2þ2iuÞt; (17)

where Cn is a constant. Hence the expression for c2(z, t)

becomes:

c2ðz; tÞ ¼
X

N

n¼0

Cn cosðlnzÞe�ðln
2þ2iuÞt (18)

Next, the initial condition requires c2(z, 0) ¼ �c1(z) and the

coefficient Cn is determined as

Cn ¼ �

2

4

16k2ð1þ 2nÞp cosðnpÞ
�

4k2 þ ð2npþ pÞ2
��

8iuþ ð2npþ pÞ2
�

3

5

Finally, the solution for c(z, t) is:

cðz; tÞ ¼
k2

"

cosh
� ffiffiffiffiffiffiffiffi

2iu
p

z
�

cosh
� ffiffiffiffiffiffiffiffi

2iu
p � � coshðkzÞsechðkÞ

#

ðk2 � 2iuÞ

þ
X

N

n¼0

Ane
�
	

2iuþ

�

2nþ 1

2
p

�2



t

;

An ¼ �

2

4

16k2ð1þ 2nÞp cosðnpÞ
�

4k2 þ ð2npþ pÞ2
��

8iuþ ð2npþ pÞ2
�

3

5

� cos

�

2nþ 1

2
pz

�

(19)

Integrating eqn (19) with respect to z leads to the following

expression for the normalized complex volume ow rate per

width:

QðtÞ ¼ QxðtÞ þ iQyðtÞ ¼
ð1

�1

cðz; tÞdz

¼

"

2k2 tanh
� ffiffiffiffiffiffiffiffi

2iu
p �

ffiffiffiffiffiffiffiffi

2iu
p � 2k tanhðkÞ

#

ðk2 � 2iuÞ

þ
X

N

n¼0

8

<

:

�

2

4

64k2 cos2ðnpÞ
�

4k2 þ ð2npþ pÞ2
��

8iuþ ð2npþ pÞ2
�

3

5

� e
�

�

2iuþ

�

2nþ1

2
p

�2�

t

9

=

;

;

(20)

Terms, Qx(t) and Qy(t) are the transient ow rates in the x and

y direction, respectively. Finally, b(t) ¼ tan�1[Qy(t)/Qx(t)] is

dened as a parameter representing the rotationally induced

transient secondary ow in the y direction.

The solution represented in eqn (19) goes through three

stages of development. Firstly, when ut � 1, the Coriolis force

in the momentum eqn (9) is small compared to the stress

gradient. Using the relationship eiut ¼ cos(ut) + i sin(ut) at this

stage, eqn (19) is re-written as follows:

cðz; tÞ ¼ c1ðzÞ þ
X

N

n¼0

n

Cn cosðlnzÞe�ln
2t
o

: (21)

At this stage, the solution is related to a non-rotating trans-

port accelerated by a constant stress. Next, at longer times, the

Coriolis force deects the ow towards steady-state conditions.

The solution undergoes damped inertial oscillations near the

steady-state conditions. Finally, aer a long time, for ut [ 1

momentum completely diffuses to the microchannel ow. At

This journal is © The Royal Society of Chemistry 2016 RSC Adv., 2016, 6, 17632–17641 | 17635
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this stage, the velocity eld in the microchannel is at the nal

phase of inertial oscillations, which are damped by the viscous

stress gradient. Therefore, the inertial oscillations are dissi-

pated and onemay use the rst unsteady term of solution in eqn

(19) for a long time solution, as represented in the literature.22

Results and discussion

To illustrate the nature and general behaviour of the analytical

solution, some numerical examples are considered in this

section. The variation of the dimensionless velocity eld (u(z, t))

as a function of time for different values of the DH parameter (k)

and dimensionless angular velocity (u) are discussed using

contour plots. Then, the effects of k and u on the evolution of

rotationally induced secondary ow in the y direction are

investigated by examining b(t). The uid experiences a force

imparted due to EOF and the frame rotation inuences the ow

velocity eld with centrifugal force. In order to nd the overall

transient signature of the ow both of these two factors and

their relative strengths must be included. However, we note that

the oscillation characteristic of the ow, is appropriately

described using the rotation parameter (u), apart from the DH

parameter (k). In all the numerical results, a truncation

constant of n ¼ 5 was found to yield satisfactory results.

2-D dimensionless contour plots of velocity evolution (x-

component, u(z, t)) and the centre-line velocity prole versus

time are shown in Fig. 2. To investigate the inuence of rota-

tion, different values for the dimensionless rotation parameter

u ¼ 1.0, 2.5, 5.0, 10 and 20 are used. The transient centre-line

velocity is also plotted to have a better comparison of the

velocity magnitude and behaviour at the centre of the channel

at various u values. In all these gures, the horizontal axis is the

dimensionless time parameter (0 < t < 3).

Results show that, as the frequency of rotation increases, the

oscillatory behaviour of the ow eld increases too. Generally,

as is observed in Fig. 2a–e, the values and ranges of the velocity

in the x-direction are reduced as the angular velocity increases.

This is attributed to the effects of u on the initiation of the

secondary ow or the y-component of the ow.22 It should be

noted that, the velocity is positive in the whole cross-section of

the channel when u ¼ 1, whereas when increasing the u,

negative values are also observed in the velocity contour plots.

This could be related to the fact that higher rotational centrif-

ugal force pushes the ow back in the x-direction. The reduc-

tion of the centre-line velocity, as shown in Fig. 2f, conrms

these observations. As is seen, the velocity at the centre is

reduced when the frequency of rotation increases and becomes

almost zero at u ¼ 20. Furthermore, the position of the

maximum velocity moves from the centre of the microchannel

toward the walls when u increases. The same trend was also

reported by Chang and Wang.22

In Fig. 3, the transient 2-D dimensionless velocity u(z, t) and

the centre-line velocity prole are plotted for k ¼ 5 for the same

range of angular velocities as in Fig. 2. As is observed, the

oscillatory behaviour of the uid ow didn’t change when

increasing the DH parameter. According to eqn (17), the period

of the velocity oscillations is equal to p/u, regardless of the DH

parameter. At higher rotational frequencies, the structure of the

boundary layer is observed. The boundary layer structure is

Fig. 2 2-D dimensionless velocity evolution u(z, t) for k ¼ 1. Dimensionless angular velocities, u ¼ (a) 1.0, (b) 2.5, (c) 5.0, (d) 10, and (e) 20, and (f)
uc centre-line velocity profile versus time.
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found to be time dependent in the present work which was not

noticed in earlier studies.22,25

However, it is clear that the velocity magnitude increased

when increasing the DH parameter. At higher k values the effect

of the induced electroosmotic forces (i.e., body force per unit

volume on the uid) becomes more inuential, thus increasing

the uid velocity in the x-direction. Also, the effect of u on u(z, t)

is dampened at higher k values. It becomes more evident when

we compare the ratios of the maximum velocity represented on

the range bars at different angular velocities. For example, umax

Fig. 3 2-D dimensionless velocity evolution u(z, t) for k ¼ 5. Dimensionless angular velocities, u ¼ (a) 1.0, (b) 2.5, (c) 5.0, (d) 10, and (e) 20, and (f)
uc centre-line velocity profile versus time.

Fig. 4 2-D dimensionless velocity evolution u(z, t) for k¼ 1000. Dimensionless angular velocities, u¼ (a) 1.0, (b) 2.5, (c) 5.0, (d) 10, and (e) 20, and
(f) uc centre-line velocity profile versus time.
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at u ¼ 1.0 over umax at u ¼ 2.5 for k ¼ 1 and k ¼ 5 is 1.92 and

1.48, respectively. In order to examine the effect of a large value

DH parameter on the x-component of the 2-D dimensionless

velocity pattern and the centre-line velocity prole, k was set at

1000 and the results are presented in Fig. 4. As shown, there is

a small change in the range of the velocity with the change in u.

This is due to the signicant effects of the electroosmotic forces

at high k values. Here, it must be noted that, to avoid incon-

sistency in using the DH approximation we assumed k # 103 as

Fig. 5 2-D dimensionless velocity evolution v(z, t) for k¼ 1. Dimensionless angular velocities, u¼ (a) 1.0, (b) 2.5, (c) 5.0, (d) 10, and (e) 20, and (f) Vc

centre-line velocity profile versus time.

Fig. 6 2-D dimensionless velocity evolution v(z, t) for k¼ 5. Dimensionless angular velocities, u¼ (a) 1, (b) 2.5, (c) 5.0, (d) 10, and (e) 20, and (f) Vc

centre-line velocity profile versus time.
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mentioned in the problem formulation section. The ratio of

umax at u ¼ 1.0 over umax at u ¼ 2.5 in this case is about 1.0.

From Fig. 2–4 and eqn (17) it can be concluded that the

period of the velocity oscillations is constant (p/u) and the rate

of decay of oscillations is ln
2 which is independent of the DH

parameter. The inertial oscillations are dissipated (i.e., third

stage of development) through momentum diffusion. The

results related to the transient electroosmotic ow in a non-

rotating microchannel are plotted for three DH parameters

(k ¼ 1, 5 and 1000) in Fig. 2f and 4f. As is observed, there is an

Fig. 7 2-D dimensionless velocity evolution v(z, t) for k¼ 1000. Dimensionless angular velocities, u¼ (a) 1.0, (b) 2.5, (c) 5.0, (d) 10, and (e) 20, and
(f) Vc centre-line velocity profile versus time.

Fig. 8 Evolution of b with time for k ¼ 1000 with different dimensionless angular velocities, u ¼ (a) 0.1, (b) 1, (c) p, and (d) 5.
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excellent agreement between our results and the literature

data.33 Compared to the conventional laminar ows, one of the

most important characteristics of electro-osmosis ow is the

front plug-like prole. To show this feature, we have plotted the

velocity proles in the steady-state part of Fig. 2a and 4a as well

(for u ¼ 1.0). One can clearly see the plug-like prole especially

when the Debye–Hückel parameter (k) increases.

In Fig. 5, the transient 2-D dimensionless velocity evolution

in the y-direction (v(z, t)) and the centre-line velocity (Vc) proles

versus time are presented for k ¼ 1 and various dimensionless

angular velocities, u ¼ (a) 1.0, (b) 2.5, (c) 5.0, (d) 10, and (e) 20.

The time interval is 0 < t < 3. The velocity in the y-direction is

also observed to follow an oscillatory behaviour. However, the

most important distinction between u and v is that for all the

positive values of u and k, the sign of the velocity in the y-

direction is always negative. This means that the direction of

the induced secondary ow is always �y.

The variations of the y-component velocity and centre line

velocities for k ¼ 5 and k ¼ 1000 were also investigated and the

results are presented in Fig. 6 and 7, respectively. The most

important distinctions are as follow.

Higher rotation frequency leads to more oscillatory behav-

iour of the ow velocity. Also, velocity gets some positive values

when the DH parameter increases. This is directly linked to the

effect of the driving force of the electroosmotic forces at high k

values on the y-component of the velocity eld. Furthermore, as

the rotation frequency increases the probability of boundary

layer initiation increases too which is in full agreement with

previous reports.22,25

Fig. 8 shows the evolution of b over time (0 < t < 3) for k ¼
1000 with different dimensionless angular velocities, u ¼ (a)

0.1, (b) 1.0, (c) p, and (d) 5.0. It is indicated that u has

a noticeable effect on the oscillatory behaviour of the ow.

Smaller values of u led to an almost non-oscillatory behaviour

for b(t) which was seen before for the velocity behaviour. As

shown, the value of b(t) increases signicantly with the increase

of u. This means that, physically, the secondary induced ow is

enhanced as the frequency of rotation increases. Also, the

secondary induced ow parameter varies most rapidly with

smaller values of u which is in full agreement with the ndings

of Chang and Wang.22

Fig. 9 shows the evolution of b over time (0 < t < 3) for u ¼ 5

with different DH parameters, k ¼ (a) 1.0, (b) 5.0, (c) 50, and (d)

1000. It is clear that increasing the DH parameter (k) leads to

a decrease in the value of b(t). For the large values of k, b(t)

gradually approaches 45. This means that for large k, equal

ows in both the x and y directions are obtained which matches

well with the Chang and Wang calculations to generate Fig. 8 in

their study.22 The governing equations are also solved numeri-

cally using Mathematica. As can be seen in Fig. 8 and 9, the

exact analytical solution results are in very good agreement with

those obtained through numerical computation. Moreover, as

indicated in Fig. 8 and 9, it should be pointed out that the effect

of the angular velocity gradually fades as the momentum

diffusion increases which is also observed in Fig. 1. As a result,

b(t) approaches its steady state value, as reported by Chang and

Wang,22 when the time is long enough.

Conclusions

In the present paper, the dynamics of rotationally induced

secondary ow in the EOF between two parallel plates have been

Fig. 9 Evolution of b with time for u ¼ 5 with k ¼ (a) 1.0, (b) 5.0, (c) 50, and (d) 1000.
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analytically studied. A general series solution expression for the

non-dimensional velocity eld and ow rate has been derived

through the separation of variables technique. The effect of the

Debye–Hückel parameter (k) and the dimensionless angular

velocity (u) on the velocity contour plots and parameter b(t) has

been examined. The main contribution of this study is

providing a closed-form solution for the transient EOF in

a rotating microchannel. It is found that the oscillatory behav-

iour of the uid ow is only related to u while the DH parameter

only changes the amplitude of the velocity eld.

A time dependent structure of the boundary layer was

observed at higher rotational frequencies. The effects of u on

the initiation of the secondary ow were examined. Further-

more, the b(t) parameter was investigated to show the effect of

the angular velocity and the Debye–Hückel parameter on the

induced transient secondary ow in the y direction. It is found

that when the Debye–Hückel parameter and the rotation

parameter are high, b(t) oscillates near 45 degrees implying

identical ow rates in the x and y directions. Moreover, excellent

agreement was found between the analytical results and the

numerical results obtained using Mathematica.
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