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The purpose of this paper is to present an approach for replacing
the effects of each rigid disk mounted on the spin shaft by a
lumped mass together with a frequency-dependent equivalent
mass moment of inertia so that the whirling motion of a rotating
shaft-disk system is similar to the transverse free vibration of a
stationary beam and the technique for the free vibration analysis
of a stationary beam with multiple concentrated elements can be
used to determine the forward and backward whirling speeds,
along with mode shapes of a distributed-mass shaft carrying arbi-
trary rigid disks. Numerical results reveal that the characteristics
of whirling motions are significantly dependent on the slopes of
the associated natural mode shapes at the positions where the
rigid disks are located. Furthermore, the results obtained from
the presented analytical method and those obtained from existing
literature or the finite element method (FEM) are in good
agreement. [DOI: 10.1115/1.4024670]

1 Introduction

The critical speeds of flexible rotors are important information
for many engineers; thus, there is great amount of literature con-
cerning this subject. The existing literature reveals that the
dynamic problems of rotor-bearing systems are solved by the
step-by-step integration process [1], transfer matrix method
(TMM) [2], analytical method [3–5], assumed mode method [6],
hybrid method [7], frequency-dependent TMM [8] or the finite
element method (FEM) [9,10]. Besides, Yamamoto and Ishida
[11] have introduced the applications of the analytical methods,
the TMM and FEM, to the linear and nonlinear dynamics of multi-
disk rotor-bearing systems.

From the foregoing literature reviews, one sees that all existing
techniques for the analysis of whirling motions are the approxi-
mate approaches except for the analytical method presented by
Eshleman and Eubanks [4] and that introduced by Yamamoto and
Ishida [11]. In theory, the solution of Eshleman and Eubanks [4]
is an exact one, however, it is only for the whirling speeds of a
rotating shaft carrying “one” disk and the corresponding “whirling
mode shapes” are not considered. Thus, the purpose of this paper
is to extend and modify the aforementioned technique, so that the
lowest five (or higher) forward and backward whirling speeds and
the associated mode shapes for a shaft carrying any number of
disks with various boundary conditions can be easily obtained. To
this end, the transverse displacement of each shaft cross-section is

represented by a complex number and then the equation of
motion, the continuity equations for the deformations, the equilib-
rium equations for the forces (and moments), and the associated
boundary conditions are derived in terms of the complex numbers
in which the effects of each rigid disk mounted on the spin shaft
are replaced by a lumped mass and a frequency-dependent equiva-
lent mass moment of inertia. Finally, the method for obtaining the
natural frequencies and mode shapes of a stationary beam carry-
ing multiple concentrated elements [12–14] is used to determine
the forward and backward whirling speeds and mode shapes of a
spinning shaft mounted by arbitrary rigid disks. In addition to a
comparison with the existing literature, most of the results
obtained from the presented method are also compared with those
obtained from the FEM by using the technique shown in the
Appendix with the property matrices of each shaft element
and each rigid disk given by Nelson and McVaugh [9] and Prze-
mieniecki [15].

A structural system may be considered as the “continuous”
system or “discrete” system and the solution obtained from the
former is called the “closed-form” or “exact” solution, while that
from the latter is called the “approximate” solution [16]. Thus, the
results obtained from the proposed method are the “exact” solu-
tions and may be the “benchmark” for evaluating the accuracy of
the other “approximate” solutions such as those obtained from the
FEM.

2 Formulations for the Problem

2.1 Equation of Motion and Displacement Function for a
Shaft Segment. Figure 1 shows a multistep shaft with its two
ends supported by ball bearings. It consists of n uniform shaft seg-
ments (denoted by (1), (2),…, (i� 1), (i), (iþ 1) ,…, (n)) separated
by n� 1 nodes (denoted by 1, 2,…, i� 1, i, iþ 1,…, n� 1) and
carrying a rigid disk md,i (with an equivalent mass moment of
inertia Jeq,i) at each node i, for i¼ 1 to n� 1. Figure 2 shows the
coordinate systems for the rotating shaft with a spin speed X about
its longitudinal (a-) axis and a whirling speed ~x about the center-
line of the bearings (x-axis), where xyz, ~x~y~z, and abc are the non-
rotating (space-fixed), rotating (shaft-fixed), and cross-sectional
coordinate systems, respectively. The relative positions between
the xyz and ~x~y~z coordinate systems are determined by the angle
hx ¼ ~xt and the position of the abc coordinate system is defined
by hx, hy, hz, and the axial coordinate x. Besides, uy and uz are the
vertical and horizontal transverse displacements of the cross-
sectional centroid of the shaft (or the center of gravity of the disk)
in the y- and z-directions, while hy and hz are the rotational angles
of the shaft (or disk) cross-section (located at x) about the y- and
z-axes, respectively.

For the ith shaft segment (see Fig. 1), its equations of motion
during whirling are given by

EiIi
@4uy;iðx; tÞ

@x4
þ qiAi

@2uy;iðx; tÞ
@t2

¼ 0 ðfor xi�1 � x � xiÞ (1a)

EiIi
@4uz;iðx; tÞ

@x4
þ qiAi

@2uz;iðx; tÞ
@t2

¼ 0 ðfor xi�1 � x � xiÞ (1b)

where qi, Ei, and Ai are the mass density, Young’s modulus, and
the cross-sectional area of the ith shaft segment, respectively, Ii is
the diametric moment of inertia of area Ai, while uy,i (x, t) and uz,i
(x, t) are the vertical and horizontal displacements for the centroid
of the cross-section of the ith shaft segment at the axial coordinate
x and time t (see Fig. 2), respectively.

Let

uiðx; tÞ ¼ uy;iðx; tÞ þ juz;iðx; tÞ (2)

with j ¼
ffiffiffiffiffiffiffi

�1
p

, then, Eqs. (1a) and (1b) become
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EiIi
@4uiðx; tÞ

@x4
þ qiAi

@2uiðx; tÞ
@t2

¼ 0 ðfor xi�1 � x � xiÞ (3)

For the free vibrations, one has

uiðx; tÞ ¼ UiðxÞe6j ~xt (4)

where Ui(x) is the amplitude function of the ith shaft segment and
~x is the whirling speed of the entire shaft-disk system about the
centerline of the bearings (the fixed x-axis). Furthermore, the
upper sign (þ ) and lower sign (�) are for the forward and
backward whirls, respectively.

Substituting Eq. (4) into Eq. (3) leads to

U0000
i ðxÞ � b4iUiðxÞ ¼ 0 ðfor xi�1 � x � xiÞ (5)

with

b4i ¼ ~x2qiAi=ðEiIiÞ (6)

where the prime (0) denotes differentiation with respect to the
axial coordinate x.

The solution of Eq. (5) takes the form

UiðxÞ ¼ Ai sinh bixþ Bi cosh bixþ Ci sin bix

þ Di cos bix ðfor xi�1 � x � xiÞ (7)

2.2 Equilibrium Equations for Forces and Moments at
Arbitrary Intermediate Node i. The entire shaft-disk system is
composed of “shaft segments” and “rigid disks,” as shown in
Fig. 1. The free-body diagrams for a typical “shaft segment” dx
on the xy- and xz-planes are shown in Figs. 3(a) and 3(b), respec-
tively, while those for a typical “rigid disk” i located at node i
(with x¼ xi) joining shaft segments (i) at the left side and (iþ 1)
at the right side on the xy- and xz-planes are shown in Figs. 4(a)
and 4(b), respectively.

Fig. 1 A multistep bearing-support shaft composed of n uniform shaft segments
(denoted by (1), (2), . . ., (i21), (i), (i11), . . ., (n)) separated by n2 1 nodes (denoted
by 1, 2, . . ., i2 1, i, i1 1, . . .,n2 1) and carrying a rigid disk md,i (with equivalent
mass moments of inertia Jeq,i) at each node i, for i51 to n2 1

Fig. 2 The coordinate systems for a rotating shaft with spin
speed X about the a-axis and whirling speed ~x about the x-axis
with xyz, ~x ~y~z , and abc denoting the space-fixed, shaft-fixed and
cross-sectional coordinate systems, respectively

Fig. 3 Free-body diagrams for the “shaft segment” dx on (a)
the xy-plane, and (b) the xz-plane

Fig. 4 Free-body diagrams for the “rigid disk” i located at
node i (with axial coordinate x5 xi) joining shaft segments (i) at
left side and (i1 1) at the right side on (a) the xy-plane, and (b)
the xz-plane. The superscripts L and R refer to the left and right
sides of disk i, respectively.
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From Figs. 3(a) and 3(b), one obtains

hy ¼ � @uz
@x

(8a)

hz ¼
@uy
@x

(8b)

My ¼ �EIy
@2uz

@x2
(9a)

Mz ¼ EIz
@2uy

@x2
(9b)

Qy ¼ � @Mz

@x
¼ �EIz

@3uy

@x3
(10a)

Qz ¼
@My

@x
¼ �EIy

@3uz

@x3
(10b)

If the displacements are small and the center of gravity (c.g.) of
each disk is coincident with the centroid of the cross-section
of the shaft segment then for the translational motions, from
Figs. 4(a) and 4(b), one has

QR
y � QL

y ¼ md;i
@2uyðxi; tÞ

@t2
(11a)

QR
z � QL

z ¼ md;i
@2uzðxi; tÞ

@t2
(11b)

where md,i is the mass of the rigid disk i located at node i (with
x¼ xi), while Qy and Qz are shearing forces on the rigid disk i in
the y- and z-directions, respectively, with the superscripts R and L
denoting the right side and the left side of the disk i (or node i).
Similarly, for the rotational motions, from Figs. 4(a) and 4(b),
one has

MR
z �ML

z ¼ JD;i
@2hzðxi; tÞ

@t2
þ JP;i

@Xz

@t
(12a)

MR
y �ML

y ¼ JD;i
@2hyðxi; tÞ

@t2
þ JP;i

@Xy

@t
(12b)

where JD,i and JP,i are the diametric and polar mass moments of
inertia of the rigid disk i, respectively, and @ðJP;iXkÞ=@t
¼ JP;ið@Xk=@tÞ is the time rate of change of angular momentum
for the disk i in the k-direction (with k¼ y or z) and Xy and Xz are
the components of the spin speed X of the shaft and disk in the y-
and z-directions, respectively, given by (see Figs. 2 and 4)

Xy ¼ X sin hz � Xhz (13a)

Xz ¼ X sinð�hyÞ � �Xhy (13b)

Substituting Eqs. (13a) and (13b) into Eqs. (12a) and (12b),
respectively, one obtains

MR
z �ML

z ¼ JD;i
@2hzðxi; tÞ

@t2
� JP;iX

@hyðxi; tÞ
@t

(14a)

MR
y �ML

y ¼ JD;i
@2hyðxi; tÞ

@t2
þ JP;iX

@hzðxi; tÞ
@t

(14b)

Similarly, substituting Eqs. (10a) and (10b) into Eqs. (11a) and
(11b), respectively, yields

� EIz
@3uRy ðxi; tÞ

@x3
þ EIz

@3uLy ðxi; tÞ
@x3

� md;i
@2uyðxi; tÞ

@t2
¼ 0 (15a)

� EIy
@3uRz ðxi; tÞ

@x3
þ EIy

@3uLz ðxi; tÞ
@x3

� md;i
@2uzðxi; tÞ

@t2
¼ 0 (15b)

Introducing Eq. (2) into Eqs. (15a) and (15b) leads to

� EI
@3uRðxi; tÞ

@x3
þ EI

@3uLðxi; tÞ
@x3

� md;i
@2uðxi; tÞ

@t2
¼ 0 (16)

or

EiIiu
000
i ðxi; tÞ ¼ Eiþ1Iiþ1u

000
iþ1ðxi; tÞ þ md;i€uiðxi; tÞ (17)

which is the equilibrium equation for the shearing forces on disk i
(located at node i), where the overhead dot (�) denotes differentia-
tion with respect to time t, while @3uLðxi; tÞ=@x3 ¼ u000i ðxi; tÞ,
@3uRðxi; tÞ=@x3 ¼ u000iþ1ðxi; tÞ, @2uLðxi; tÞ=@t2 � @2uRðxi; tÞ=@t2
¼ €uiðxi; tÞ, Iy ¼ Iz ¼ I, ELIL ¼ EiIi, and ERIR ¼ Eiþ1Iiþ1. Note
that the subscripts i and iþ 1 for the parameters u, E, and I refer
to the ith and (iþ 1)th shaft segments, respectively.

Similarly, the substitution of Eqs. (8) and (9) into Eqs. (14a)
and (14b), respectively, yields

� EIz
@2uRy

@x2
þ EIz

@2uLy

@x2
þ JD;i

@2

@t2
@uy
@x

� �

þ JP;iX
@

@t

@uz
@x

� �

¼ 0

(18a)

� EIy
@2uRz
@x2

þ EIy
@2uLz
@x2

þ JD;i
@2

@t2
@uz
@x

� �

� JP;iX
@

@t

@uy
@x

� �

¼ 0

(18b)

Since, for the disk i with small thickness h, one has

JP;i ¼ 2JD;i (19)

introducing Eq. (2) into Eqs. (18a) and (18b), one obtains

� EI
@2uR

@x2
þ EI

@2uL

@x2
þ JD;i

@3uðxi; tÞ
@x@t2

� j2X
@2uðxi; tÞ
@x@t

� �

¼ 0

(20)

or

EiIiu
00
i ðxi; tÞ ¼ Eiþ1Iiþ1u

00
iþ1ðxi; tÞ � JD;i½€u0iðxi; tÞ � j2X _u0iðxi; tÞ�

(21)

which is the equilibrium equation for the bending moments on
disk i (located at node i).

For a circular thin disk with mass density qd, diameter dd, and
thickness h, its mass md and diametrical mass moment of inertia
JD are given by

md ¼ qdhðpd2d=4Þ (22a)

JD ¼ qdhðpd4d=64Þ (22b)

2.3 Conditions for Continuity and Equilibrium at
Intermediate Node i. The continuity of displacements and slopes
for the two shaft segments (i) and (iþ 1) joined at node i (see
Fig. 1) requires that

UiðxiÞ ¼ Uiþ1ðxiÞ (23a)

U0
iðxiÞ ¼ U0

iþ1ðxiÞ (23b)

Since the equations for the equilibrium of the shearing forces and
bending moments of the two shaft segments (i) and (iþ 1) joined
at disk i are given by Eqs. (17) and (21), the substitution of
Eq. (4) into the latter equations produces
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EiIiU
000
i ðxiÞ ¼ Eiþ1Iiþ1U

000
iþ1ðxiÞ � md;i ~x

2UiðxiÞ (24a)

EiIiU
00
i ðxiÞ ¼ Eiþ1Iiþ1U

00
iþ1ðxiÞ þ Jeq;i ~x

2U0ðxiÞ (24b)

where

Jeq;i ¼ JD;i½1� 2ðX= ~xÞ� ¼ JD;ið1� 2kÞ (25a)

k ¼ X= ~x (25b)

In Eq. (24b), the term Jeq;i ~x
2U0ðxiÞ denotes the gyroscopic

moment of disk i, thus, Jeq,i represents the (frequency-dependent)
equivalent mass moment of inertia of the ith disk. Furthermore,
in Eq. (25a), the symbol k denotes the speed ratio, while the
upper sign (� ) and lower sign (þ) are for the “forward” and
“backward” whirls, respectively. Substituting Ui(x), which is
defined by Eq. (7), into Eqs. (23) and (24), one obtains

Aisinhbixi þ Bicoshbixi þ Cisinbixi þ Dicosbixi

� ðAiþ1sinhbiþ1xi þ Biþ1coshbiþ1xi þ Ciþ1sinbiþ1xi

þ Diþ1cosbiþ1xiÞ ¼ 0 (26a)

biðAicoshbixi þ Bisinhbixi þ Cicosbixi � DisinbixiÞ
� biþ1ðAiþ1coshbiþ1xi þ Biþ1sinhbiþ1xi

þ Ciþ1cosbiþ1xi � Diþ1sinbiþ1xiÞ ¼ 0 (26b)

Aiðcoshbixi þ QisinhbixiÞ þ Biðsinhbixi þ QicoshbixiÞ
� Ciðcosbixi � QisinbixiÞ þ Diðsinbixi þ QicosbixiÞ
� Piþ1ðAiþ1coshbiþ1xi þ Biþ1sinhbiþ1xi

� Ciþ1cosbiþ1xi þ Diþ1sinbiþ1xiÞ ¼ 0 (27a)

Aiðsinhbixi � SicoshbixiÞ þ Biðcoshbixi � SisinhbixiÞ
� Ciðsinbixi þ SicosbixiÞ � Diðcosbixi � SisinbixiÞ
� Riþ1ðAiþ1sinhbiþ1xi þ Biþ1coshbiþ1xi

� Ciþ1sinbiþ1xi � Diþ1cosbiþ1xiÞ ¼ 0 (27b)

where

Piþ1 ¼ Eiþ1Iiþ1b
3
iþ1=ðEiIib

3
i Þ (28a)

Qi ¼ md;i ~x
2=ðEiIib

3
i Þ (28b)

Riþ1 ¼ Eiþ1Iiþ1b
2
iþ1=ðEiIib

2
i Þ (29a)

Si ¼ Jeq;i ~x
2bi=ðEiIib

2
i Þ (29b)

2.4 Boundary Conditions at Two Ends of the Entire
Shaft. The presented method is available for various boundary
conditions (BCs), but only the shaft-disk system with rigid ball-
bearing supports (such as that shown in Fig. 1) is introduced here
because of a limitation of space. For Fig. 1, the transverse dis-
placements and bending moments at nodes 0 and n are equal to
zero; thus

U1ð0Þ ¼ 0 (30a)

U00
1 ð0Þ ¼ 0 (30b)

UnðLÞ ¼ 0 (31a)

U00
n ðLÞ ¼ 0 (31b)

Introducing Eq. (7) into the preceding equations, one has

B1 þ D1 ¼ 0 (32a)

B1 � D1 ¼ 0 (32b)

An sinh bnLþ Bn coshbnLþ Cn sin bnLþ Dn cos bnL ¼ 0 (33a)

An sinh bnLþ Bn coshbnL� Cn sin bnL� Dn cos bnL ¼ 0 (33b)

Since the supporting condition of the present rotating shaft is sim-
ilar to that of the pinned-pinned (P-P) stationary beam, it is called
the P-P shaft in this paper, for convenience.

2.5 Determination of Whirling Speeds and Mode Shapes.
For the shaft-disk system consisting of n shaft segments and carry-
ing n� 1 rigid disks as shown in Fig. 1, from the last section one
sees that there exist simultaneous equations for the integration
constants of all shaft segments to take the form

½Hð ~xÞ�
�n	�nfBg�n	1 ¼ 0 ðwith �n ¼ 4nÞ (34)

where fBg
�n	1 is a column vector composed of the �n integration

constants for all of the n shaft segments, i.e.,

fBg ¼ ½A1 B1 C1 D1 ::: Ai Bi Ci Di ::: An Bn Cn Dn �T

(35)

and ½H�
�n	�n is an �n	 �n square matrix. For the P-P shafting system

shown in Fig. 1, the nonzero coefficients of ½H�
�n	�n may be

obtained from Eqs. (32), (26), (27), and (33), respectively.

2.5.1 For the Left Pinned End at Node 0. From Eqs. (32) one
obtains

H1;1 ¼ 0 (36a)

H1;2 ¼ 1 (36b)

H1;3 ¼ 0 (36c)

H1;4 ¼ 1 (36d)

H2;1 ¼ 0 (37a)

H2;2 ¼ 1 (37b)

H2;3 ¼ 0 (37c)

H2;4 ¼ �1 (37d)

2.5.2 For the Intermediate Node i (With Total Number of
Shaft Segments n
 2). From Eqs. (26) and (27) one obtains

H4i�1;4i�3 ¼ sinh bixi (38a)

H4i�1;4i�2 ¼ coshbixi (38b)

H4i�1;4i�1 ¼ sin bixi (38c)

H4i�1;4i ¼ cos bixi (38d)

H4i�1;4iþ1 ¼ � sinhbiþ1xi (38e)

H4i�1;4iþ2 ¼ � cosh biþ1xi (38f )

H4i�1;4iþ3 ¼ � sin biþ1xi (38g)

H4i�1;4iþ4 ¼ � cos biþ1xi (38h)

H4i;4i�3 ¼ bi coshbixi (39a)

H4i;4i�2 ¼ bi sinh bixi (39b)

H4i;4i�1 ¼ bi cos bixi (39c)

034503-4 / Vol. 81, MARCH 2014 Transactions of the ASME



H4i;4i ¼ �bi sin bixi (39d)

H4i;4iþ1 ¼ �biþ1 coshbiþ1xi (39e)

H4i;4iþ2 ¼ �biþ1 sinh biþ1xi (39f )

H4i;4iþ3 ¼ �biþ1 cos biþ1xi (39g)

H4i;4iþ4 ¼ biþ1 sinbiþ1xi (39h)

H4iþ1;4i�3 ¼ coshbixi þ Qisinhbixi (40a)

H4iþ1;4i�2 ¼ sinhbixi þ Qicoshbixi (40b)

H4iþ1;4i�1 ¼ �ðcosbixi � QisinbixiÞ (40c)

H4iþ1;4i ¼ sinbixi þ Qicosbixi (40d)

H4iþ1;4iþ1 ¼ �Piþ1coshbiþ1xi (40e)

H4iþ1;4iþ2 ¼ �Piþ1sinhbiþ1xi (40f )

H4iþ1;4iþ3 ¼ Piþ1cosbiþ1xi (40g)

Fig. 5 Influence of the inertia ratio lJ on the lowest four nondimensional whirling speed
coefficients brL (r5 124), for the P-P shaft carrying a single disk at x5x15 0.25L (cf., Fig. 6(a))
with the speed ratio k5X=~xr 5 1:0

Fig. 6 A uniform P-P shaft carrying (a) one single disk (with thickness
h50.012m) at its center (x15L/2), and (b) three identical rigid disks (with
h15h15h15h/35 0.004m) at x15L/4, x25L/2 and x35 3L/4, respectively

Journal of Applied Mechanics MARCH 2014, Vol. 81 / 034503-5



H4iþ1;4iþ4 ¼ �Piþ1sinbiþ1xi (40h)

H4iþ2;4i�3 ¼ sinhbixi � Sicoshbixi (41a)

H4iþ2;4i�2 ¼ coshbixi � Sisinhbixi (41b)

H4iþ2;4i�1 ¼ �ðsinbixi þ SicosbixiÞ (41c)

H4iþ2;4i ¼ �ðcosbixi � SisinbixiÞ (41d)

H4iþ2;4iþ1 ¼ �Riþ1sinhbiþ1xi (41e)

H4iþ2;4iþ2 ¼ �Riþ1coshbiþ1xi (41f )

H4iþ2;4iþ3 ¼ Riþ1sinbiþ1xi (41g)

H4iþ2;4iþ4 ¼ Riþ1cosbiþ1xi (41h)

2.5.3 For the Right Pinned End at Node n. From Eqs. (33)
one obtains

H4n�1;4n�3 ¼ sinhbnL (42a)

H4n�1;4n�2 ¼ cosh bnL (42b)

H4n�1;4n�1 ¼ sin bnL (42c)

H4n�1;4n ¼ cosbnL (42d)

H4n;4n�3 ¼ sinh bnL (43a)

H4n;4n�2 ¼ coshbnL (43b)

Table 1 The lowest five natural frequencies x12x5 (with k50) and whirling speeds ~x1�~x5 (with k5 1.0) for the P-P shaft carrying
a single central rigid disk (see Fig. 6(a)) obtained from the presented method and the FEM (with 60 shaft elements and 240 effective
dofs)

Natural frequencies xr (rad/s) with k¼ 0

Methods Direction of whirling x1 x2 x3 x4 x5 CPU time (s)

Presented — 63.9603 401.5251 1139.5836 1232.5813 3601.9354 1

FEM — 63.9603 401.5251 1139.5838 1232.5815 3601.9431 5

— — Whirling speeds ~xr (rad/s) with k¼ 1.0

— — ~xF
1 or ~xB

1 ~xF
2 or ~xB

2 ~xF
3 or ~xB

3 ~xF
4 or ~xB

4 ~xF
5 or ~xB

5 CPU time (s)

Presented Forward 63.9603 986.0439 1139.5836 3523.6775 3603.8514 2
Backward 63.9603 252.7240 1139.5836 1142.4114 3574.9815

FEM Forward 63.9603 986.0441 1139.5838 3523.6850 3603.8591 10
Backward 63.9603 252.7240 1139.5838 1142.4116 3574.9892

Fig. 7 The lowest five natural mode shapes for the P-P shaft carrying a single cen-
tral rigid disk (see Fig. 6(a)) (with the speed ratio k50) obtained from the presented
method (denoted by solid lines: —) and the FEM (denoted by dashed lines: - - -)
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H4n;4n�1 ¼ � sin bnL (43c)

H4n;4n ¼ � cos bnL (43d)

The nontrivial solution for Eq. (34) requires that

jHð ~xÞj ¼ 0 (44)

The preceding expression is an eigenvalue equation, from which
one may determine the whirling speeds of the shaft-disk system
~xr (r ¼ 1; 2; 3; :::) by using the half-interval method [17,18] and,
corresponding to each whirling speed ~xr , one may obtain the
associated integration constants Ai, Bi, Ci, and Di (i¼ 1 to n), from
Eq. (34). The substitution of the latter constants into Eq. (7)
will define the corresponding rth whirling mode shape of the

entire shaft, UðrÞðxÞ ¼ Pn
i¼1 U

ðrÞ
i ðxÞ.

3 Numerical Results and Discussions

3.1 Comparisons With Existing Literature. For a uniform
P-P shaft carrying a rigid disk at x¼ L/4 (cf. Figure 6(a)), the

relationships between the inertia ratio lJ ¼ ðdd=4LÞ2 and the
lowest four nondimensional whirling speed coefficients brL

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qsAsL4 ~x
2
r=ðEIÞ

4

q

(r¼ 1� 4) are shown in Fig. 5, in which the

thick solid lines (—) and dashed lines (- - -) are for the forward
and backward whirls obtained from the presented method, respec-
tively, while the thin solid lines (—) and dashed lines (- - -) are
for the forward and backward whirls obtained from Fig. 5 of Esh-
leman and Eubanks [4], respectively. Furthermore, the symbols,� (or *), + (or	 ), ~ (or ~), and n (or h) denote the 1st, 2nd,
3rd, and 4th whirling speed coefficients, respectively. From

Fig. 5, one sees that the results of the presented method are in
good agreement with those of Eshleman and Eubanks [4]. The
given data for Fig. 5 are as follows: L¼ 1.26m, shaft diameter
ds¼ 0.1 L¼ 0.126m, disk thickness h ¼ L=72 ¼ 0:0175m and
disk diameter dd ¼ 4L

ffiffiffiffiffi

lJ
p ¼ 5:04

ffiffiffiffiffi

lJ
p

, speed ratio k ¼ X= ~xr

¼ 1:0, Young’s modulus E¼ 2.068	 1011N/m2, and mass density
qs¼ qd¼ 7850 kg/m3, where the inertia ratio (lJ) is given by

lJ ¼ JD=ðmdL
2Þ ¼ ½qdðpd4d=64Þh�=½qdðpd2d=4ÞhL2� ¼ ½dd=ð4LÞ�2

(45)

3.2 Free Vibrations and Whirling Motions of a P-P Shaft
Carrying Multiple Disks. Figure 6 shows the uniform P-P shaft
mounted by one disk and three disks, respectively, studied here. If
h represents the thickness of the disk for the case of the shaft car-
rying one single disk (see Fig. 6(a)), then for the case of the shaft
carrying three identical disks (see Fig. 6(b)), the thickness of each
disk is assumed to be hi¼ h/3 with i¼ 1� 3. The dimensions and
material constants of the shaft-disk system are as follows: shaft
diameter ds¼ 0.02m, shaft length L¼ 1.20m, disk diameter
dd¼ 0.36m, thickness of a single disk h¼ 0.012m, Young’s mod-
ulus E¼ 2.068	 1011N/m2, and the mass density for the shaft (or
disk) material is qs¼ qd¼ 7850 kg/m3.

For the P-P shaft carrying a single rigid disk at its center (with
x¼ x1¼L/2), as shown in Fig. 6(a), the characteristic equations
are similar to Eqs. (34)–(44). If the rth natural frequency for the
transverse vibrations of the stationary P-P shaft-disk system is
denoted by xr (with r ¼ 1; 2; :::), then the lowest five natural fre-
quencies obtained from the presented method and the FEM (with
60 shaft elements and 240 effective dofs) are listed in the 3rd and
4th rows of Table 1, respectively. Since X¼ 0 for a stationary
shaft, the foregoing natural frequencies x1�x5 (rad/s) are

Fig. 8 The lowest five (whirling) mode shapes of the P-P shaft carrying a single
rigid disk (see Fig. 6(a)) obtained from the presented method (denoted by the solid
lines: —) and the FEM (denoted by the dashed lines: - - -) with the speed ratio
k5 1.0 for (a) forward whirling, and (b) backward whirling
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determined with zero speed ratio (k ¼ X= ~x ¼ 0) and, in such a
case, one has ~xr ¼ xr . From Table 1, one sees that the values of
x1�x5 (rad/s) obtained from the presented method and those
obtained from the FEM are in good agreement, but the CPU time
required by the presented method is about one fifth of that
required by the FEM (by using an IBM PC Pentium III).

For the case of k¼ 1.0, the lowest five forward whirling speeds
~xF
r and backward ones ~xB

r with r ¼ 1� 5, obtained from the pre-
sented method are listed in the 7th and 8th rows of Table 1, while
the corresponding ones obtained from the FEM are listed in the
final two rows of the table. It is seen that the results of the two
methods are also in good agreement. From Table 1 one also sees
that, either obtained from the presented method or the FEM, there
exist the relationships ~xF

1 ¼ ~xB
1 ¼ x1 and ~xF

3 ¼ ~xB
3 ¼ x3; this is

because the slopes of the 1st and 3rd natural mode shapes at
x¼ x1¼L/2 (where the rigid disk is located) are equal to zero (see
Fig. 7), so that the gyroscopic moments induced by the rigid disk
associated with the 1st and 3rd modes are equal to zero.

Corresponding to the lowest five natural frequencies listed in the
3rd and 4th rows of Table 1, the lowest five natural mode shapes of
the P-P shaft-disk system are plotted in Fig. 7, in which, the mode
shapes obtained from the presented method are denoted by the solid
lines (—) and those from the FEM by the dashed lines (- - -). Fur-
thermore, the 1st, 2nd, 3rd, 4th, and 5th natural mode shapes are
denoted by the symbols� (or *), + (or	 ), ~ (or ~), n (or h)
and $ (or q), respectively. From Fig. 7, one sees that the mode
shapes obtained from the presented method and those obtained
from the FEM are overlapped, because the corresponding natural
frequencies listed in Table 1 are very close to each other.

Corresponding to the lowest five whirling speeds ( ~x1 � ~x5)
listed in the final four rows of Table 1, the lowest five mode
shapes of the shaft-disk system for forward and backward whirls

are plotted in Figs. 8(a) and 8(b), respectively. It is noted that the
1st and 3rd forward whirling mode shapes in Fig. 8(a) are the
same as the 1st and 3rd backward ones in Fig. 8(b) and they are
also identical to the 1st and 3rd natural mode shapes in Fig. 7,
respectively; this is because ~xF

1 ¼ ~xB
1 ¼ x1 and ~xF

3 ¼ ~xB
3 ¼ x3

as previously mentioned. Comparing Fig. 8(a) with Fig. 8(b), one
sees that, except for the 1st and 3rd mode shapes, the 2nd, 4th,
and 5th forward whirling mode shapes are different from the cor-
responding backward ones, because the corresponding 2nd, 4th,
and 5th forward whirling speeds ( ~xF

2 , ~xF
4 , and ~xF

5 ) are different
from the corresponding backward ones ( ~xB

2 , ~x
B
4 , and ~xB

5 ), as one
may see from Table 1. Figures 8(a) and 8(b) also reveal that all
whirling mode shapes obtained from the presented method are in
good agreement with those obtained from the FEM (using the
technique shown in the Appendix). Therefore, only the curves of
the whirling speeds ~xr versus the spin speeds X obtained from the
presented method are plotted in Fig. 9.

In Fig. 9, the relationships between ~xF
1 � ~xF

4 (Hz) and X (Hz)
are denoted by the solid lines (—), while those between ~xB

1 � ~xB
4

and X are denoted by the dashed lines (- - -), with the symbols,�
(or *), + (or 	), ~ (or ~) and n (or h) denoting the 1st, 2nd,
3rd, and 4th modes, respectively. From the figure one sees that
~xF
1 ¼ ~xB

1 ¼ x1 ¼ 63:9603 rad=s � 10:18 Hz and ~xF
3 ¼ ~xB

3 ¼ x3

¼ 1139:5836 rad=s � 181:37 Hz; in other words, the spin speed
X does not affect the 1st and 3rd whirling speeds because the
slopes of the 1st and 3rd natural mode shapes at the position
x¼ x1¼L/2 (where the single disk located) are equal to zero. Zu
and Han [5] have shown that, for a beam being put into a spinning
motion, its at-rest (transverse-vibration) natural frequency will
split into two components: forward and backward precessions.
This is the reason why, in Fig. 9, each pair of (forward) solid
lines and (backward) dashed lines meet at a point on the vertical

Fig. 9 Influence of the spin speeds X on the lowest four whirling speeds (~x1�~x4) for the P-P
shaft carrying 1 central rigid disk (see Fig. 6(a)) obtained from the presented method
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(ordinate) axis with X¼ 0 and ~xF
r ¼ ~xB

r ¼ xr . In addition, Fig. 9
also indicates that the influence of the spin speed X on the 2nd
whirling speed, either ~xF

2 or ~xB
2 , is much greater than that on the

4th whirling speed; this is because the slope of the 2nd natural
mode shape at the position x¼ L/2 is much greater than the corre-
sponding slope of the 4th one, as one may see from Fig. 7. From
the foregoing analyses one sees that the influence of the spin
speed X on the rth whirling speed ~xr is dependent on the slope of
the corresponding rth natural mode shape at the position where
the rigid disk is located.

For the uniform P-P shaft carrying three identical rigid disks
(with thickness h1 ¼ h2 ¼ h3 ¼ h=3 ¼ 0:004 m) at x1¼L/4,
x2¼L/2, and x3¼ 3 L/4, respectively) as shown in Fig. 6(b), the
lowest five natural frequencies xr are listed in the 3rd and 4th
rows of Table 2 (with k¼ 0), while the lowest five forward whirl-
ing speeds ~xF

r (r ¼ 1� 5) and backward ones ~xB
r (r ¼ 1� 5)

obtained from the presented method and the FEM are listed in the
final four rows of Table 2 (with k¼ 1.0). Although the configura-
tion of the shaft-disk system shown in Fig. 6(b) is symmetrical
and so are the 1st, 3rd, and 5th natural mode shapes shown in
Fig. 10, one cannot find the slopes of any natural mode shape at
the three positions x1¼ L/4, x2¼ L/2, and x3¼ 3 L/4 (where the
three disks are located) to be equal to zero simultaneously. This is
the reason why one cannot find the relationship ~xF

r ¼ ~xB
r ¼ xr

from Table 2. Therefore, the lowest five forward whirling mode
shapes are different from the backward ones and thus are between
the curves of ~xF

r versus X and the corresponding ones of ~xB
r ver-

sus X, as one may see from the computer output (not shown here).
In other words, for a shaft carrying more than one rigid disk, the

possibility of ~xF
r ¼ ~xB

r ¼ xr (with k 6¼ 0) is small, because it is
difficult to find the slopes of any natural mode shape at the posi-
tions where the rigid disks are located to be equal to zero
simultaneously.

4 Conclusions

(1) With the transverse displacement of each shaft cross-
section represented by a complex number and the effects of
each rigid disk i replaced by a lumped mass md,i together
with a frequency-dependent equivalent mass moment of
inertia Jeq,i, one may easily obtain the forward and back-
ward whirling speeds ( ~xF

r and ~xB
r ) and the associated whirl-

ing mode shapes for a rotating shaft mounted by arbitrary
rigid disks by using the simple approach presented in this
paper.

(2) When a shaft-disk system is put into a spinning motion,
each of its at-rest (transverse-vibration) natural frequencies
xr (r ¼ 1; 2; :::) will split into two branches: forward
speeds ~xF

r and backward speeds ~xB
r , where the right super-

scripts “F” and “B” denote forward and backward whirls,
respectively.

(3) The influence of the spin speed X on the rth whirling speed
and mode shape is dependent on the slopes of the corre-
sponding rth natural mode shape at the positions where the
rigid disks are located: The larger the slopes, the larger the
influence of the spin speed on the whirling speed and mode
shape, because the magnitude of the gyroscopic moment

Fig. 10 The lowest five natural mode shapes for the P-P shaft carrying three
identical rigid disks (see Fig. 6(b)) (with the speed ratio k5 0). The legends are the
same as those of Fig. 7.

Table 2 The lowest five natural frequencies x12x5 (with k50) and whirling speeds ~x1�~x51 (with k51.0) for the P-P shaft carry-
ing three identical rigid disks (see Fig. 6(b)) obtained from presented method and FEM (with 60 shaft elements and 240 effective
dofs)

Natural frequencies xr (rad/s) with k¼ 0

Methods Direction of whirling x1 x2 x3 x4 x5 CPU time (s)

Presented — 75.3973 290.8641 611.9586 958.4773 1288.8920 1

FEM — 75.3973 290.8641 611.9586 958.4773 1288.8920 5

— — Whirling speeds ~xr (rad/s) with k¼ 1.0

— — ~xF
1 or ~xB

1 ~xF
2 or ~xB

2 ~xF
3 or ~xB

3 ~xF
4 or ~xB

4 ~xF
5 or ~xB

5 CPU time (s)

Presented Forward 77.1099 316.2592 686.8000 4406.5020 4412.7430 2
Backward 73.7624 266.5857 513.7804 587.4075 927.6585

FEM Forward 77.1099 316.2592 686.8000 4406.5176 4412.7581 10
Backward 73.7624 266.5857 513.7804 587.4075 927.6585
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induced by a rigid disk is proportional to the magnitude of
the slope of the natural mode shape at the position where
the rigid disk is located.

(4) For a uniform P-P shaft carrying one central rigid disk, the
slopes of the 1st and 3rd natural mode shapes at x¼ 0.5 L
(where the rigid disk is located) are equal to zero; for this
reason, there exist the relationships ~xF

1 ¼ ~xB
1 ¼ x1 and

~xF
3 ¼ ~xB

3 ¼ x3 and the influence of the spin speed X on the
1st and 3rd whirling speeds and mode shapes is nil. How-
ever, for the same shaft carrying more than one rigid disk,
the possibility of ~xF

r ¼ ~xB
r ¼ xr (with k 6¼ 0) is small,

because it is difficult to find the slopes of any natural mode
shape at the positions where a number of rigid disks are
located to be equal to zero simultaneously.

(5) Since the order of the characteristic equation obtained from
the presented method is much lower than that obtained
from the FEM, the CPU time required by the former is
much less than that required by the latter. This is another
predominant advantage for the presented method to be
superior to the FEM, in addition to providing the “exact”
solutions for evaluating the accuracy of the other
“approximate” ones. Furthermore, the formulation of the
proposed method is also much simpler than that of the
FEM, as one may see from the existing literature and
the Appendix of this paper.
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Appendix: Determination of Whirling Speeds and Mode
Shapes by the FEM

According to Nelson and McVaugh [9] and Yamamoto and
Ishida [11], the equations of motion for the free vibration of a
“rotating” shaft-disk system take the form

½ �m�f€�ug þ ½�c�f _�ug þ ½�k�f�ug ¼ 0 (A1)

where ½ �m�, ½�c�, and ½�k� are the effective overall mass, damping, and
stiffness matrices of the entire shaft-disk system, respectively, and
f�ug, f _�ug, and f€�ug are the associated displacement, velocity, and
acceleration vectors, respectively. In order to solve Eq. (A1) by
using the existing computer codes in Ref. [19], one needs to trans-
form it into the following form [16]:

½ �M�f _�Ug þ ½ �K�f �Ug ¼ 0 (A2)

where

½ �M� ¼ ½0� ½ �m�
½ �m� ½�c�

� �

(A3a)

½ �K� ¼ �½ �m� ½0�
½0� ½�k�

� �

(A3b)

f �Ug ¼ f _�ug
f�ug

� �

(A3c)

f _�Ug ¼ f€�ug
f _�ug

� �

(A3d)

The rth eigenvalues ~xr and associated rth eigenvectors [wr] of
Eq. (A2) take the two pairs of conjugate complex numbers

~xB
r ¼ ~xB

r;R6 j ~xB
r;I (A4a)

fwB
r g ¼

~xB
r;Rw

B
r;R

wB
r;R

( )

6 j
~xB
r;Iw

B
r;I

wB
r;I

( )

(A4b)

~xF
r ¼ ~xF

r;R 6 j ~xF
r;I (A5a)

fwF
r g ¼

~xF
r;Rw

F
r;R

wF
r;R

( )

6 j
~xF
r;Iw

F
r;I

wF
r;I

( )

(A5b)

In the preceding equations, the superscripts B and F refer to the
“backward” and “forward” whirls, respectively, while the sub-
scripts R and I refer to the “real” and “imaginary” parts of a com-
plex number, respectively, and j ¼

ffiffiffiffiffiffiffi

�1
p

. Furthermore, the
imaginary parts of ~xr , ~xB

r;I , and ~xF
r;I denote the “backward” and

“forward” whirling speeds, respectively, while the corresponding
real parts of {wr}, fwB

r;Rg, and fwF
r;Rg denote the “backward” and

“forward” whirling mode shapes, respectively.
For an undamped “stationary” shaft-disk system, because

X¼ 0, Eq. (A1) reduces to

½ �m�f€�ug þ ½�k�f�ug ¼ 0 (A6)

which is the equation of motion for the general free vibrations and
can be solved with the Jacobi method [20]. The order of the prop-
erty matrices of Eq. (A2) is two times that of Eq. (A6); this is one
of the reasons why the CPU time required by the whirling prob-
lem is much greater than that required by the general free vibra-
tion problem.
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