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Abstract

This study proposes analytical solution to the problem of transport in a Newtonian fluid within a cylindrical
domain. The flow is assumed to be dominated along the channel axis, and is taken to be axi-symmetric. No-
slip boundary condition is considered for velocity while the temperature and concentration have Dirichlet
boundary values. The resulting problem is transformed into a set of non-trivial variable coefficient
differential equations in a cylindrical geometry. By adopting the series solution method of Frobenius, the
closed-form analytical solutions are derived for the flow variables. We conduct an analysis of the derived
model, and showed that, indeed, the flow variables are axi-symmetric. We also state and prove another
theorem to show that the derived concentration model is positivity preserving — meaning that it yields
positive concentration - provided the boundary value is non-negative. Finally, we present graphical results for
the flow variables and discuss the effect of the relevant flow parameters. The results showed that (i) an

increase in the cooling parameter, 4 reduces the fluid velocity, (ii) the temperature decreases as the cooling

parameter increases and (iii) an increase in the injection parameter, < leads to increase in the
concentration.
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Nomenclatures

u' = Dimensional velocity components
z":= Dimensional axisymetric flow of the channel
r" = Dimensional radius

t":= Dimensional time

T':= Dimensional fluid temperature

T := Dimensional wall temperature

p = Fluid density

M = Magnetic field parameter

k = Thermal conductivity

g = Acceleration due to gravity

= viscosity of the fluid

o = Electrical conductivity

C, = Heat capacity

L = coefficient of volumetric expansion
g, ‘= Radiative heat flux

a = Concentration injection parameter
A = Velocity cooling parameter

A = Temperature cooling parameter

0, = Temperature boundary parameter
@, = Temperature boundary parameter
Gr = Grashof number

Pr : Pressure gradient

u, (r) = Dimensionless velocity

u (r) := Velocity profile of the fluid

6, (r) := Dimensionless temperature
0(r) = Temperature profile

¢, (r) = Dimensionless concentration

(p(r) := Concentration profile
Gr = Grashof number
T, :=Free stream temperature

7,, = Shear stress at the wall

1 Introduction

The study of flows in channels has numerous applications in science and technology. Such applications include
the human blood vessels and arteries, oil and water flows through reservoirs, chemical engineering for filtration
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and purification process, movement of natural gas and flows of rivers moving through cylindrical channels. So,
understanding channel flows is of great practical importance.

This has attracted numerous studies in the area. For instance, Jahangiri et al. [1] studied the effect of non-
Newtonian behavior of blood on wall shear stress in an elastic vessel with simple and consecutive stenosis. They
solved their problem numerically and results showed that the power law model is not suitable for simulating the
non-Newtonian behavior of blood. In the same vain, Lokendra et al. [2] developed a mathematical model for the
blood flow through an overlapping stenosed artery with core region under the effect of magnetic field. The
problem were solved analytical and result showed that the velocity of blood and shear stress on the wall of
artery due to overlapping stenosis can be controlled using external magnetic field but in their research heat and
mass was not considered. Lukendra et al. [3] investigated the pulsatile flow of blood through a porous medium
with constant permeability, in an inclined tapered artery with mild stenosis. Their fluid problem was solved
analytical and result was summarized as magnetic field, velocity slip, inclination and permeability of the porous
medium have significant influence on the flow field, wall shear stress, volumetric flow rate and the effective
viscosity. In their work heat and mass was not investigated. More so, Rathod and Shakera [4] considered the
pulsatile flow of blood through a porous medium. They solved analytical and concluded that velocity
distribution increases with an increase of both body acceleration and permeability of the porous medium, while
it decreases as the magnetic parameter increases. They did not consider heat and mass transfer. Nagarani and
Sarojamme [5] worked on pulsatile flow of blood through a stenosed artery under the influence of external
periodic body acceleration. The problem was solved analytical and result showed the effect of yield stress and
stenosis is to reduce flow rate and increase flow resistance. Their result did not take cognizance of heat and
mass transfer.

These flows, such as those in human cardiovascular system take place in cylindrical domains; the human blood
vessel, for example. Fluid dynamics models in such domains are more challenging than those in Cartesian
coordinate systems. The problem gets more complicated when the transport of heat and mass are incorporated
into the system.

For instance, [6] studied two finite difference schemes for a channel flow problems. In their results no numerical
oscillations were detected for values of a model parameter smaller than the theoretically derived bound. Also in
a similar manner, [7] considered the theoretical analysis and applications of a convergent numerical algorithm to
the problem of heat transfer in a convective channel flow. They applied numerical scheme and results showed
that temperature is enhanced by increasing Brinkman number, while the velocity is enhanced by increasing
pressure gradient. In another dimension, [8] presents the flow of an electrically conducting and radiating fluid
over a moving heated porous plate in the presence of an induced magnetic field. They applied perturbation
method and solved analytically and results showed that suction has more effect on the fluid velocity and
magnetic field but less effect on the temperature.

Moreso, [9] considered the flow of a variable- viscosity fluid with heat and mass transfer, taking into account
thermal radiation, cross-diffusion and constant-suction. Thus variables are used to transmute the governing
partial differential equations (PDEs) into ordinary differential equations later solved using Runge- Kutta
methods. In their results they established that the fluid velocity increases with increasing Dufour and Soret
parameters. They further buttressed that the flow is only steady, suction is constant, and viscosity variation with
temperature is linear.

Jain et al. [10] studied oscillatory flow of blood in a stenosed artery under the influence of transverse magnetic
field through porous medium. They solved analytically and Bessel solution was obtained. [11] investigated the
flow characterized of the blood flowing through an inclined tapered porous artery with mild stenosis . The
problem was solved analytically where Bessel solution was obtained.

Amos et al. [12] worked on boundary layer flow in a rotating MHD fluid. The result shows that the increase in
magnetic, Schmidt number, chemical reaction and rotation parameter decreases the velocity of flow in the
system while the increase in thermal radiation leads to increase in velocity. Increase in chemical reaction
parameter decreases heat transfer while it enhances the mass transfer. [13] considered the MHD peristaltic
motion of a third grade fluid in an asymmetric channel under the assumptions of long wavelength and low
Reynolds number. Series solutions of axial velocity and pressure gradient were given using perturbation
approach when Deborah number is small. In the work of [14] wall stretching and magnetic field with channel
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flow of copper-kerosene nanofluid was examined. In the cylindrical domain, heat transfer of natural convection
with heat sources was highly deliberated by [15]. In another scenario, the coupled system of Maxwell
convective heat under Navier- Strokes equation to consider the characteristics of thermal Titania nano-fluids by
means of different base in the channel flow. [16] considered the flow of radiating fluid in heated porous media.
Results showed that suction is more efficient on the fluid velocity and magnetic field then becomes inefficient
on temperature profile.

As mentioned above, the problem of investigating fluid flow in cylindrical geometry is non-trivial, and is
compounded by when heat and mass flow are taken account. This difficulty is worsening when analytical
solution of the problem is being sought. This is the thrust of this work; to derive analytical solution for the
problem of heat and mass flow in a cylindrical channel flow of an incompressible fluid. The challenge in
deriving analytical solution is due to the singularity of the resulting fluid models at the origin which is the centre
of the channel (tube).This makes it difficult to apply the zero-gradient boundary condition at the origin. This is
the problem that could not be resolved in [17] leading to a solution that does not satisfy the no-slip boundary
condition at the channel wall. In this work, we resolve this difficulty by imposing the constraint that every flow
quantity or variable is finite throughout the channel. This replaces the zero-Newmann boundary condition at the
origin, and allows us to set the infinite term, in the general solution of the flow variables, to zero. This way, the
desired solution is obtained. This is the novelty of this study.

The paper is presented as follows: In Section 2, we present the physical and mathematical models of the
problem, and a detailed analytical solution is derived in Section 3. We present some Theorems with proves, to
analyze the derived analytic solution in Section 4. The results are presented and discussed in Section 5. The
paper is concluded in Section 6.

This present paper is aimed at extending the work of [11] by including mass and heat transfer and obtaining
closed-form analytical solution.

2 Mathematical Formulation

The flow is assumed to be dominated along the channel axis, and is taken to be axi-symmetric. No-slip
boundary condition is considered for velocity while the temperature and concentration have non-zero positive
- T', CV

constants on the boundary. Let” be the distance from the channel centre and ¥ are the fluid velocity,

u z(0,0,M')

temperature and mass concentration as shown in Fig. 1. Let the fluid velocity be .

’ ! !
Since the flow is axisymmetric let( 7T ) be the cylindrical channel coordinates, where” is the radius
of the channel, the directions of flow lies along horizontal axis £ and flow is maintained at

non-constant temperature (non-isothermal) the directions without flow lies along the vertical axis~ see
Fig. 1.

Channel Wall

I FLOW AXIS

Yy

!

Channel Wall

Fig. 1. Geometry of the physical model in horizontal channel
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approximation of fluid model and taken consideration of induced

magnetic field and steady flow; the equations governing the flow are:

ou'
I 0 1
oz' W
op' o’u’ ou' )
-——+ —— |+ T'-T, )-aB'u=0
o ﬂ(@r'z ’ 5r’j pef(T'-L.)-ab; @
ZTI 1 T!
k [oT ~ +—,a—, -2 (T'-T,)=0 3)
pC,\ or'” r' or
2 ’
(a ¢ iﬂ}g(cr-g):o
or'= r'or
4
Subject to the following boundary conditions
u'=0,0=0,9'=p onr'=a (5)
u',0',¢' <o for all r' (6)

! !
Where ¥ W is the velocity components of fluid, P is the fluid density ,BO is the magnetic field ,k is the

’
thermal conductivity, T" is the wall temperature , k is the thermal conductivity, & is the acceleration due to

C
gravity and H i the viscosity of the fluid, O is the electrical conductivity , ” is the heat capacity ,

qr iS

constant magnetic field and p is the coefficient volumetric expansion.

2.1 Non-dimensionalization

From equations (1)-(4) and boundary conditions (5) and (6) respectively the following non- dimensional

variables were used:

r z' T'-T,
r=— ,z=—,0= =
a a I -T,
C 3
pr=tCe £=1, Grzgﬂza
k v
MZO'BzaZ’ _C-G
/’l Cw_CO

where, < is the Grashof number.

Substituting (7) in (2)-(6) gives

u'a t'v pla
=" :_23p= s
v a v
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2

—a—p+a—?+la—u—M2u+Gr9=0 ®)

oz Or° ror

2
00,190 29y ©)
or~ ror
O p 109

+———+a'p=0 10
or* ror v o
Subject to

u=0,0=0,p=¢ Onr=1 (11)
u,0,p <o (12)

. . . uFulz . . . .
Equation (1) implies that ( ) , hence ¥ is a function of 7" alone and we arrived at the following system
of ordinary differential equations:

2
%+%%—M2u:—p—@f€ (13)

2
d ?+lﬁ—/ﬁ9=0 (14)
dr= rdr
d¢p ldp |,

+——+ =0 15

dr’  rdr “9 (1

Subject to the following boundary conditions

u=0, 0=60,p=¢, on r=1 16)

u,0,p<oo for 0<r<I1 17)

where P is constant term M represents magnetic field parameter, & represents injection term and A
represents cooling term. In the next section, we derive, in detail, an analytical solution of the proposed model.

3 Method of Solution

Equations (13)-(16) are coupled non-linear partial differential equations in the flow variables and .We adopts the

u(r,t),0(r,t) and @(r,t), _. .

method of Ferobenius in solving for ( )’ ( ’ ) (0( )’ Firstly, we solve equation (14), (15) and
substituting the result in equation (13) then solving the resulting systems independently to obtain the following
flow variables:
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3.1 Solution of the temperature model

0

We assume 19(1") = Zanr””,where a,,ce R

n=0
=0= ianr”” = r”ianr” (18)
n=0 n=0
6”=§:an(n+c)r””’1 =rc’lian(n+c)r” (19)
n=0 n=0

rH"zr“’zian (n+c)(n+c—1)r” =rc’1ian (n+c)(n+c—1)r"} (20)

n=0 n=0
Putting (18)-(20) into (14) and performing long algebraic expressions gives
c— X 2 n+c n+c
a,c’re! +Z(an+1 (n+c+1) r"* —a,A°r" ”): 0
n=0

2 _ 2o .
The indicial equation, therefore gives: o€ ~ 0.4, #0,c” =0,¢=0(twice)

A% A4t A°r° A8p8
O =ra,+ >+ > >+ > 2 >+ 2 2 2 7+
(c+2) (c+2) (c+4) (c+2) (c+4) (c+6) (c+2) (c+4) (c+6) (c+8)

That is,
A’ A4 26,6
1+ >+ 5 >+ = - .
e (c+2) (c+2) (c+4) (c+2) (c+4) (c+6)
O=a,r 1)
0 2’8’/8
+ +
(c+2)2 (c+4)2 (c+6)2 (c+8)2
When (21) becomes
O=u=A|1+ rr + A + A + AT + (22)
22 22X42 22X42X62 22)(42)(62)(82 .o
Another is given by v =—
dc
a0 e A’r? At A0
— =a,rinr{l+ =+ - —+ _ _ .
de (c+2) (c+2) (c+4) (c+2) (c+4) (c+6)
/187'8 . d /'LZ}/_Z ;’.4F4
+ > . 5 .. JHagrt—1+ _ a .
(c+2) (c+4) (c+6) (c+8) dc (c+2) (c+2) (c+4)
A8p° 2858
i }

(c+2) (c+4) (c+6) (c+2) (ctd) (c6) (ce8)
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When ¢ =0
At AN A%r° A%
@=v=Bilnr| 1+ + + + +...
v { r( 22 22><42 22><42X62 22><42><62X82
At At A%r° A%
+a, ) — - - + —..
aor { 22 23 % 42 43 % 63 25 % 63 % 83 }

A linear combination (22) and (23) gives the complete solution

=4 1+/12r2+ A + A + A +...
27 22x4’ 2Px4x6° 2Px4*x6°x§
+B<Inr 1+/12r2+ A + A + A +
22 22><42 22><42><62 22><42><62X82 ‘

S o A%7° A58
- - - -
22 2Px4* 4x6° 2°x6°x8§’ }

Applying the boundary condition (16) then setting B=0 gives

— eﬂ
()
o A At A%r° A%
9(7"): y 1+ 2 + 2 2 + 2 2 2 + 2 2 2 2 +
v, (a) 2 2°x4” 2°x4"x6" 2°x4"x6"x8

3.2 Solution of concentration model

Similarly from (15) we assume a solution of the form:

0

p(r)= ibmr””k =7t Z b, r"

m=0 m=0

Q"= iam (m+ky"" 2 = rk’ZZam (m+k)(m+k-1)r"
n=0

n=0

= r(o"zrk_liam(m+k)(n+k—1)r'”

n=0

(23)

24)

(25)

(26)

27

(28)

29)
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Putting equations (27)-(29) into (15) gives

bk + ibq+1 (q+k+1) 7+ ibmazr”’”‘” =0
k=0 m=0

b0k2 =0,b, # 0,k* =0,k = 0(twice)

Equating coefficients of indicial equation, therefore gives:

k a4b0r4 a6b0}"6 agborg
Q=r 0 2 P + 2 2 5 2 3 > -
(k+2) (k+4)  (k+2) (k+4) (k+6) (k+2) (k+4) (k+6) (k+8)
That is,
k a2r2 a4r4 aGrG
p=br 1o Tt 2 2 2 2 2
(k+2)" (k+2) (k+4) (k+2) (k+4) (k+6)
a*
+ 2 2 2 2+... }
(k+2) (k+4) (k+6) (k+8) (30)
When £ =0 (30) becomes
=u =C 1_a2r2+ a4r4 _ aéré N a8r8 N } N
o=u =L 2 2 D6 P xexg 31)
Another is given by vV, = @
r? 44 6.6
@Zborklnr — —+ (er __ : a’r : :
dk (k+2) (k+2) (k+4) (k+2) (k+4) (k+6)
a'r®
+ 2 2 2 ) + }
(k+2) (k+4) (k+6) (k+8)
v d a’r? atrt o6
ot 2 F 2 2 2 2 2
dk | (k+2) (k+2) (k+4) (k+2) (k+4) (k+6)
PR
* 2 2 5 7t
(k+2) (k+4) (k+6) (k+8)
k=0
When
=v,=C,qInr 1_a2r2+ a'r’ - a’r’ + a'r® N
p=v, =04 22 AT A6 V2 xAx6 xS .
2,2 4,4 6,.6 8 8
k ar ar a’r alr ~
+b07" { + 72 23X42+43X63+25x63x83 }
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A linear combination (31) and (32) gives the complete solution

_c 1_a2r2+ a‘rt  a'r* . a'r’ )
q) 1 22 22X42 22X42X62 22X42X62X82
+C,<Inr 1—a2r2+ a'r’ - a’r’ + a’r + (33)
2 22 22x4% 2Px4’x6d 22x4*x62x8
+a2r2_ a'r? . a’rt . atr® )
22 2x4 4x6 2°x2°x6’x8

Applying the boundary condition (16) then setting G =0 in(33) gives
P
C=—" (34
bY@
where ', =|1- oo + oa’ | o'd + oa +
Yie 22 x4 x4 x6 x4 x6x§
9, |, o . a'rt  aff N a’r® N (35)
? y*l(a) 27 2Px4* x4 x6" 2Px4*x6”x§
3.3 Solution of velocity model
Also we assume a solution of the form:
u= mer””k =rt z b, r" (36)
m=0 m=0
u'=Z:bm(m+k)r"”k’1 =rk’Ime (m+k)r" (37)
m=0 m=0
u"= Zam(m +h " = rk’ZZam(m +k)(m+k-1)r"
n=0 n=0
= ru"=rk’12am(m+k)(n+k—l)rm (38)
n=0

Putting equations (36)-(38) into the left hand side of equation (13) gives
Pbg + Db, (g k1) P =D b M =0
k=0 m=0

b0k2 =0,b, # 0,k*> =0,k = 0(twice)

Equating coefficients of indicial equation, therefore gives:
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M?*b r? M*b M°b,r®
b0+ - 2+ 2 : 2+ 2 > 2 2
(r)=r oo 2 (k+2) (k+2) (k+4) (k+2) (k+4) (k+6)
ulr)y=r m:EO " o=r Mgbors

+(k+2)2(k+4)2(k+6)2(k+8)2 "

That is,

. M2I’2 M4I’4 M6I’6
u(r)zbor 1+ >+ > >+ > > >
(k+2) (k+2) (k+4) (k+2) (k+4) (k+6) 39)
N M*® N }
(k+2) (k+4) (k+6) (k+8)

When k=0 (39) becomes

M MY MSr¢ M
u=u =A4-<1+ + + + +... 40
1 1{ 22 22X42 22X42X62 22X42X62X82 } ( )

Another is given by Vv, = —

dk

du ‘ M?*? Mt MOr¢
— =byr'inr<1+ -+ > =+ > 5 5
dk (k+2) (k+2) (k+4) (k+2) (k+4) (k+6)

Mt
+ - - - —+... |
(k+2) (k+4) (k+6) (k+8)

p d M?*? M M
+byrt —q1+ >+ > =+ > > >
dk (k+2) (k+2) (k+4) (k+2) (k+4) (k+6)

MEE

+(k+2)2(k+4)2 (k+6)" (k+8)’ "

Whenk:0
M MY MS*® M
u=v2=A2{lnr{1+ 7 +22><42+22x42x62+22x42x62x82+mj .
+b0rk{ _MZZ”Z_A3/14”42_A;[6’”63+ 5M83r8 3 } "
2 2°x4" 4°'x6° 2°x6"x8

A linear combination (40) and (41) gives the complete solution
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M MY MOr® M*
u=A1{1+ 2° +22><42+22x42x62+22x42x62x82 }
M2r2 M4l"4 M6r6 M8r8
+A2{lnr(1+ > +22><42+22x42x62+22x42x62x82+m] (42)
_M27"2_M4r4_M6r6Jr M® _}
22 2x4 4x6 2°x6’x8’

Applying the boundary conditions (16) and setting 4 =0 in (42) gives

4 =Y @3)
n(@)
Ma® M'a* Moa® Ma®
where =1+ + + + +...
Yo ( 2 x4 x4 x6 2 x4 x6 x§ j
. o, 1+M21’2+M4F4 N M°r® . M® o w
»(@ 2° 2°x4”  2°x4*x6° 2°x4°x6”x§

3.3.1 Non-homogenous part of velocity model

To get the particular solution of (13) which is the non-homogenous part of the problem, we solve using the
method of undetermined coefficients.

22’/‘2 /14’/,4 /16’/‘6 /18’/‘8
ry=A4<1+ + + + +---r,4eR 45
) { 2% 2Px47 27x4*x6° 27 x4*x6°x§ (45)
The complementary solution for (13) is
2 4 6 8
u(r)=c |1+ 8 (M) (M) () (46)
2 (2x4)" (2x4x6)  (2x4x6x8)
Consider the particular solution:
2 4 6 8
u, (r)=A4,+ Ar’ + 4,r* + 4 + A,r 7
) (r)=24r+A44,r° +64;r° +84,r (48)
uh (r)=24,+124,r* +30 40" +56 4,r° (49)

Putting equations(47)-(49) into equation (13) gives
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=44 +16 4,77 +36 47" +644,0° —M> Ay~ M Ar* —M* Ar* —M* Ar° —M* 4" =

—p—Gr9[1+(/1’;)2+ (/1’”)42+ (Ar)° 4 (Ar)® ZJ
2% (2x4)  (2x4x6)" (2x4x6)

(50)

Combining equations (46) and (47) respectively yields

eM*rt eMY! cMr® cMBr®
u(r)=|c+ + + +

= + A+ AP+ At + A+ A
4 (2><4)2 (2><4><6)2 (2><4><6><8)2} At ? ’ !

Taking like terms in the above expressions gives a complete solution of equation (13)

2 4 6
u(r):c+A0+(CM +A1jr2+ i2+A2 rt+ L2+A3 re
4 (2><4) (2><4><6)
(51)
8
+ L%—AA‘ s
(2><4><6><8)

In general, we combine the three flow variables to obtain the following results:

Velocity profile:

2 4 6
u(r)y=c+4,+ %jLAI P+ i2+A2 rt+ L2+A3 r®
2 (2x4) (2x4x6)

8
+ L2+A4 r®
(2x4x6x8)

o O Ags A 4y, 4 and A,

(52)

Wher are constants stated in appendix.

Temperature profile:

2.2 4_4 6_6 8. 8
o {1+/Ir A'r Ar Ar (53)

o = 4 + + + +
(”') yl(a) 22 22><42 22X42X62 22X42X62X82 }

Aad’ N Aa’ B A%a’ N Ata N
22 22X42 22X42X62 22X42X62X82 o

where  y,, = [1 +

Mass concentration:

2.2 4_4 6.6 8 8
) a’r’  a'r a’r a’r

= a 1- + - + +... 54
¢(V) y*l(a){ 22 22X42 22X42X62 22X42X62X82 } ( )
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where

y;(a) =(1—

a’a’ . ata a’a’ N a‘a®
22 22)(42 22X42X62 22X42X62X82 o

4 Analysis of the Model

4.1 Axi-symmetric property of the model

Here, the solutions of the three flow variables will be subjected for analysis. Hence, we state the following
theorem:

Theorem 4.1(Axi-symmetric Property): The solution (52), (53) and (54) derived for each field variable is

i . du de do
symmetrical about the centre of the tube. That is - l.o=0,—|_,=0,—/—| _,=0.
r

dr dr
Proof
To proof that the three flow variables are axi-symmetric
Recall the solutions in equations (52), (53) and (54)

From (52)

2 4 6
u(r):c+A0+[Cf +A1Jr2+ <k +4, |rt+ S + 4, |r’

: (2><4)2 (2><4><6)2
8
+ LZ+A4 r®
(2x4x6x8)
2 4 6
du_ Cﬂz id |rad] =L ia | e —La |
dr 2 (2x4) (2x4x6)
(55)
8
+8 L2+A4 r’
(2x4x6x8)

du
=0
dr |r—0
Similarly for temperature (54)

ﬁ _ 2/12r+4/14r3 N 6A°r° N 8% (56)

dr | 22 22x4> 22x4’x6> 2°x4’x6”x§’
do
22 =0
d}" |r—0
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Also for concentration (55)

(r) = P [1_ a’r’ a'rt arf . a'r® _
4 ¥ (a) 27 2Px4? 22x4’x6% 2P x4Px67x§
dep 20°r  a'rt a’r’ a’r®

(57)

+ - + -
dr 27 22x4? 2’x4*x6* 2°x4*x6°x8
9, _g
dr
Hence the claim is true.

4.2 Invariance domain of concentration

Physically concentration should be positive .Hence, if the boundary concentration is positive, then physical

reality requires that the model for concentration (15) be positive for all values of re[0,1]. Below we state and
prove theorem to show that our developed model satisfies this physical requirement.

Theorem 4.2: Suppose the boundary concentration Pa is positive and Osasl .Then the model (15) yields
a positive concentration for all re[0,1].
Proof
air?
Let 0<r<I, 0<a<l,andg, 20.Then——<1forp=>1.
From the solution of mass Concentration (54), we have the following:
gp( ) (0(1 a2r2 . 0!47”4 a67"6 . a8r8
14 = " — - T e
v, (a) 27 x4 x4 x6 2Px4x6°x§
where
4 6 8
o o of ol

F = 1——+ : —.
Y 2 2Pxf PxFx6 2 xFx6 x§

o’ ot o’ of o’
2 )T 2xa? 6 ) @2x4x67( 10
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8

a’ o

=0
= yl*(l)ZO

Also define g)(r) as

( o’ ot alr® ot j

2 + P 5 + 3 +...
22 (2x4) (2x4x6)" (2x4x6x8)
Otzl"2 OL4V4 OLZI"2 ()Lgl"8 OLZI"2
=l 1-—— |+ o I=—— |+ 5|1 +o
2 ) (2x4) 6" ) (2x4x6x8) 10°
(x4r4 ()Lsr8
=|(1-1)+ 1-1)+ 1-1)+... [>0
(( ) (2><4)2( ) (2><4><6><8)2( )+j

So (/)(r) = *(0“

- N (1)

5 Results and Discussion

>0
2(r)=0. Since ¢, >0,y (1)>0 and ¢(r)>0

We have formulated and computed results of non-isothermal flow in a cylindrical channel. The parameter values
used from the graphical presentations are shown as follows: However, the following parameter values were
explicitly used in the simulation study:

e  Vary velocity with magnetic field Pr=4, Gr=10, 1=180.0
h Gr:M=1.5, p=1, 1=1000

p ProM =25, Gr=0.05, 1 =188
A:M=25 Pr=6, Gr=0.05

e Vary velocity wit
e Vary velocity wit

e  Vary velocity with

e  Vary temperature with A:M= 9” =10
e  Vary temperature with 6, :1.0
a:¢, =0.1

e  Vary concentration with

h(oa:a=0.8

e  Vary concentration wit

5.1 Results

Therefore we present our results and discussion:
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Fig. 2. Velocity profiles for Pr=4, Gr=1.0, 4 =180.0 and different values of velocity cooling

parameter, A

Fig. 2 shows the variation of fluid velocity with the cooling parameter. It can be seen that the velocity reduces

with increasing cooling parameter. This is physically consistent because an increase in cooling parameter
reduces fluid temperature which in turn in turn increases the fluid viscosity, hence reduces the fluid velocity.
This result is in good agreement with the results of [8].
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r

Fig. 3. Velocity profiles for M =1.5, p=1, 4 =1000 and different values of Grashof, number Gr

Fig. 3 shows the variation of fluid velocity with Grashof number. It is clear that an increase in Grashof number
leads to an increase in fluid velocity. This agrees with the results of [18] and [19].
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Fig. 4. Velocity profiles for M = 2.5, Gr =0.05, A =188 and different values of Magnetic field
parameter, M
Fig. 4 shows the variation of fluid velocity with magnetic field parameter. It can be seen that increase in the

magnetic field parameter decreases the fluid velocity. This is in accordance with the results of
[8,10,16,20,21,22].
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Velocity
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0.00¢
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 5. Velocity profiles for with M =2.5, Pr=6, Gr =0.05 and different values of pressure gradient

parameter, F7

Fig. 5 shows an increase in pressure gradient leads to an increase in fluid velocity. Therefore, the result is
physically obtainable; it is in agreement with those of [10,23].
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Fig. 6. Temperature profiles for with 6’0 =1.0 and different values of temperature cooling parameter,

Fig. 6 shows the variation of fluid temperature with cooling parameter. It is observed that the temperature
decreases as the cooling parameter increases. This is quite obvious in our daily lives, if a body is hot and if
cooling is applied, the body temperature reduces. This agree with the result of [7].
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Fig. 7. Temperature profiles for 4 =1.0 and different values of temperature boundary parameter,

0.2 0.4 0.8

e,

Fig. 7 shows the variation of temperature with the temperature boundary condition, it can be noticed that an
increase in boundary parameter increases fluid temperature.

It is shown in Fig. 8 that an increase in the injection parameter increases concentration. This is physically
obvious in the sense that an increasing injection parameter would increase the level by which the pollutant is
being added into the fluid; this is also similar with increasing boundary condition parameter in Fig. 9 Therefore,
it is realistic. This is in line with result of [7].
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Fig. 8. Concentration profiles for ¢, = 0.1 and different values of concentration injection parameter, <
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Fig. 9. Concentration profiles for with ¢ = 0.8 and different values of boundary condition parameter,

@,
6 Conclusions

This study investigated the problem of heat and mass transfer for simulation of non-isothermal flow in a
cylindrical channel. A coupled system of three differential equations is carefully formulated. Detailed analytical
solutions are presented; then the positivity of the concentration in was proved theoretically and verified

graphically. The graphical results showed (i) an increase in cooling parameter, A reduces the fluid velocity (ii)

temperature decreases as the cooling parameter increases ~  (iii) an increase in injection parameter, < leads to
increase in fluid concentration.
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Appendix
8 6 4
:>A4:_’1_2L92’:>A3:_ 12 64A4—Lr92 = A= 12 36@—% ’
M~ (2x4x6x8) M (2x4x6) M (2x4)

1 A*Gré

=4 =-— {16A2 -

2

1
},: A4, = —W[4A1 +p—Gro|
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