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a b s t r a c t

Analytical solutions are presented for the flow of viscoelastic fluids in micron sized ducts, namely between
parallel plates and pipes under the combined influence of electrokinetic and pressure forces using the
Debye–Hückel approximation, including the limit case of pure electro-osmotic flow. The viscoelastic fluids
used are described by the simplified Phan-Thien–Tanner model (sPTT), with linear kernel for the stress
coefficient function, and zero second normal stress difference, and the FENE-P model, based on the kinetic
theory for finitely extensible dumbbells with a Peterlin approximation for the average spring force. The
solution is non-linear with a significant contribution arising from the coupling between the electric and
pressure potentials. This term acts as a drag reducer and a drag increaser under favorable and adverse
pressure gradients, respectively and contrasts with the Newtonian flow case, for which it does not exist,
demonstrating that the superposition principle valid for Newtonian fluids no longer applies when non-
linear viscoelastic fluid models are considered. The combined effects of fluid rheology, electro-osmotic
and pressure gradient forcing on the fluid velocity distribution and fluid stresses are also discussed. The
analysis of the streaming potential is also included.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Pressure-driven fully developed pipe and channel flows of New-
tonian fluids are simple flows described in most classical books
on viscous fluid mechanics [1]. For non-Newtonian fluids the cor-
responding flow characteristics are also well known when their
rheological descriptions are inelastic and rely on such simple mod-
els as the power-law or Bingham equations [2]. In contrast, the
corresponding flows for complex materials described by quasi-
linear and non-linear viscoelastic constitutive equations have only
been the subject of research over the last 30 years, except for a
few simple cases which have been known for a longer time. For
the Phan-Thien–Tanner (PTT) model [3,4] there are several recent
analytical solutions in the literature for non-homogeneous shear
flow under fully developed conditions in pipes, channels and annuli
[5–9]. For the FENE-P fluid [10], Oliveira [11] investigated analyti-
cally the solution for slit and pipe flows and some of these solutions
for PTT and FENE-P fluids were extended by Cruz et al. to account for
the presence of a Newtonian solvent [12] and the use of multimode

∗ Corresponding author.
E-mail addresses: aafonso@fe.up.pt (A.M. Afonso), mmalves@fe.up.pt

(M.A. Alves), fpinho@fe.up.pt (F.T. Pinho).

models [13]. For the Giesekus fluid an earlier solution was derived
by Schleiniger and Weinacht [14] and for the Johnson–Segalman
constitutive equation the reader is referred to [15,16]. Issues of flow
stability in these flows have also been investigated as reported and
discussed in the introduction of Cruz and Pinho [13].

The overall impact of surface forces on flow characteristics
increases as the flow scale decreases [17]. Therefore, capillary and
electrokinetic effects, which may be negligible in macroscale flow
processes, can become dominant or be used on purpose for flow
control in microchannels and microfluidic devices [17]. The latter
are relevant in the present context and arise when dielectric sur-
faces are brought in contact with polar fluids further enhanced by
the application of external electric potentials. It is the case of sepa-
ration and synthesis of biological or chemical components, such as
the separation and manipulation of DNA molecules [18], biopoly-
mers and large proteins.

Electro-osmosis is a basic electrokinetic phenomenon, where
the flow of an electrolyte in a channel is induced by an external elec-
tric field applied between the inlet and outlet, after the interaction
between the dielectric channel walls and the polar fluid has created
near-wall layers of counter-ions within the fluid. These layers of liq-
uid move under the action of the applied electric field whereas the
neutral core is dragged and moves as a solid body [19]. The principle
was first demonstrated by Reuss in 1809 [20], in an experimental
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Nomenclature

Achan cross section area of the channel (m2)
Ā, B̄, C̄ and D̄ functions to compact equations
a1, a2, a3 and b1 coefficients of cubic equations
b dumbbell extensibility (FENE-P model)
De Deborah number
e elementary charge (1.6022 × 10−19 C)
Ex x-component of the electric gradient (V m−1)
Ex,sp streaming potential axial gradient (V m−1)
f (�kk) PTT stress coefficient function
H microchannel half-height or pipe radius (m)
I′c conduction current per unit width (A m−1)
I′s streaming current per unit width (A m−1)
I′ net electrical current per unit width (A m−1)
kB Boltzmann constant (1.3807 × 10−23 J K−1)
l microchannel length (m)
no ionic number concentration (m−3)
p pressure (Pa)
p,x axial pressure gradient (Pa m−1)
Psur wetted perimeter (m)
Q volumetric flow rate (m3 s−1)
t time (s)
T absolute temperature (K)
UN Newtonian bulk velocity (m s−1)
ush Helmholtz–Smoluchowski velocity (m s−1)
w microchannel width (m)
x axial direction (m)
y transverse coordinate (m)
z valence of ions
Z(�kk) FENE-P stress coefficient function

Tensors and vectors

D rate of deformation tensor (s−1)
E external applied electric field (V m−1)
I unitary tensor
u velocity vector (m s−1)
� polymeric extra stress tensor (Pa)

Greek symbols

� near-wall variable (≡ (1 − ȳ)�̄)
ı locus of velocity maximum (m)
ıl thickness of the skimming layer (m)
ε PTT parameter
� dielectric constant of the fluid (C V−1 m−1)
� electric potential (V)

 Euler–Mascheroni constant

̇ shear rate (s−1)
	 ratio of pressure to electro-osmotic driving forces
� polymer viscosity coefficient (PTT and FENE-P mod-

els) (Pa s)
�2 Debye–Hückel parameter (m−2)
� relaxation time (s)
� viscometric viscosity (Pa s)
�e electric charge density (C m−3)
�t total electric conductivity (�−1 m−1)
�fluid fluid bulk conductivity (�−1 m−1)
�sur wall surface conductivity (�−1)
�xx, �yy normal stresses (Pa)
�xy shear stress (Pa)
�kk trace of the extra-stress tensor (Pa)
� EDL thickness (m)
 potential field (V)
 0 wall zeta potential (V)

�1 dimensionless number

Mathematical

∇ upper-convected derivative

Subscripts

sp refers to streaming potential
N refers to Newtonian
sh refers to Helmholtz–Smoluchowski
x refers to the axial coordinate
� refers to Debye–Hückel parameter

Superscript

E related to electro-osmotic flow
P related to pressure-driven flow
EP related to pressure-driven and electro-osmotic com-

bined effects
dimensionless quantity

investigation using porous clay. This was followed by the theoret-
ical work on the electric double layer (EDL) of Helmholtz in 1879
[21], which related the electrical and flow parameters for electroki-
netically driven flows. In the early 1900s von Smoluchowski [22]
contributed to the understanding of electrokinetically driven flows,
especially for conditions where the EDL thickness is much smaller
than the channel height.

For Newtonian fluids, rigorous modeling of the electro-osmotic
flow in microchannels has been the subject of several studies. Bur-
green and Nakache [23] studied the effect of the surface potential on
liquid transport through ultrafine slits relying on the Debye–Hückel
linear approximation to the electrical potential distribution under
an imposed electrical field. Rice and Whitehead [24] discussed the
same problem in a circular capillary and Levine et al. [25] extended
the Rice and Whitehead model [24] to a higher surface potential.
Dutta and Beskok [26] obtained analytical solutions for the velocity
distribution, mass flow rate, pressure gradient, wall shear stress,
and vorticity in mixed electro-osmotic/pressure driven flows for
two-dimensional straight channels, under conditions of small EDL
thickness, with application to microfluidic devices where the wall-
to-wall distance was one to three orders of magnitude larger than
EDL thickness. Arulanandam and Li [27] and Wang et al. [28] pre-
sented a two-dimensional analytical model for the electro-osmotic
flow in a microchannel with rectangular cross-section. A thorough
review on various other aspects of electro-osmosis can be found in
Karniadakis et al. [29].

The theoretical study of electro-osmotic flows of non-
Newtonian fluids is recent and most works have been limited
to simple inelastic fluid models, such as the power-law, due
to the inherent analytical difficulties introduced by more com-
plex constitutive equations. Examples are the recent works of
Das and Chakraborty [30] and Chakraborty [31], who presented
explicit analytical solutions for velocity, temperature and con-
centration distributions in electro-osmotic microchannel flows of
a non-Newtonian bio-fluid described by the power-law model.
Other purely viscous models were analytically investigated by Berli
and Olivares [32], who considered the existence of a small wall
layer depleted of additives (the skimming layer) and behaving as
a Newtonian fluid under the combined action of pressure and
electrical fields, thus restricting the non-Newtonian behaviour to
the electrically neutral region outside the EDL. Investigations on
other relevant phenomena in microfluidics, such as surface tension
effects and its relation to non-Newtonian properties also rely on
the inelastic power law viscosity model [33].
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Very recently these studies were extended to viscoelastic fluids
by Park and Lee [34], who derived the Helmholtz–Smoluchowski
velocity for pure electro-osmotic flow of PTT fluids and provided
a simple numerical procedure to calculate its value. It is clear
that there are no analytical solutions for fully-developed electro-
osmotic flows of quasi-linear and non-linear viscoelastic fluids, and
even less so when in combination with pressure gradient, where
some new non-linear coupled terms arise. This work aims to par-
tially fulfill this gap by presenting the analytical solutions for the
flows of PTT and FENE-P fluids between two parallel plates under
the mixed influence of electrokinetic and pressure forces, including
the limit case of pure electro-osmosis. The PTT fluid [3] obeys the
simplified model, with a linear kernel for the stress coefficient func-
tion [4] and a zero second normal stress difference, thus it includes
the solution for Upper-Convected model (UCM) fluids. The FENE-
P fluid is also used, and this model is based on the kinetic theory
for finitely extensible non-linear elastic dumbbells with a Peterlin
approximation for the average spring force (cf. Bird et al. [10]). The
viscoelastic fluids are assumed to have the same properties in the
whole domain including the EDL. Bio-fluids are usually complex in
their structure leading to equally complex constitutive equations
to describe their rheology and the ensuing flows. In particular they
often exhibit normal stresses, shear-thinning viscosity and memory
effects and their rheological behaviour can be described by differ-
ential viscoelastic constitutive equations that are related to the PTT
and FENE-P form, as in the case of blood [35,36], saliva [37], synovial
fluid [38,39] or other biofluids containing long chain molecules. The
flows of relevance here would be in micron-size geometries as in
chips for chemical and biological analysis and in micro-rheometers
[40].

The paper starts with the set of governing equations includ-
ing the non-linear Poisson–Boltzmann equation governing the EDL
field and the added body force to the momentum equation caused
by the applied electrical potential field. The simplifications required
to obtain the analytical solution are discussed, the solutions are pre-
sented, including the particular case of streaming potential, and a
discussion of the effects of the various relevant nondimensional
parameters upon the flow characteristics closes this work.

2. Governing equations

The steady, fully-developed flow of the incompressible vis-
coelastic fluid under investigation is sketched in Fig. 1. The flow
direction in the conditions illustrated is from left to right, but it can
be reversed if either the polarity at the walls or of the electrodes at
each end of the channel are reversed. In both cases, the solutions
here described remain valid. The migration of ions naturally arises
due to the interaction between the dielectric walls and the polar
fluid. Here, the two negatively charged walls of the microchannel of
height 2H, length l and widthw, withw ≫ 2H, attract counter-ions
forming layers of positively charged fluid near the walls and repel
the co-ions. Very thin layers of immobile counter-ions cover the
walls, known as the Stern layers, followed by thicker more diffuse
layers of mobile counter-ions, the two layers near the wall forming

Fig. 1. Schematic of the flow in a microchannel.

what is called the electric double layer (EDL). The global charge of
the flow domain remains neutral, but since the two EDLs are thin
the core is essentially neutral. Applying a DC potential difference
between the two electrodes at the inlet and outlet generates an
external electric field that exerts a body force on the counter-ions
of the EDL, which move along the channel dragging the neutral liq-
uid core. The pressure difference that can also be applied between
the inlet and outlet can act in the same direction of the electric field
or in the opposite direction. Alternatively, the potential difference
is not imposed, but results from the accumulation of ions at the
end of the channel due to the flow created by the pressure differ-
ence. This particular case, known as streaming potential, implies a
specific relation between the favorable pressure gradient and the
ensuing adverse external electric field [41], which will be quantified
later in this paper.

The basic field equations describing this fully-developed flow
for incompressible fluids are the continuity equation,

∇ · u = 0 (1)

and the modified Cauchy equation,

−∇p+ ∇ · � + �eE = 0 (2)

where u is the velocity vector, p the pressure, and � the polymeric
extra-stress contribution. The �eE term of Eq. (2) represents a body
force per unit volume, where E is the applied external electric field
(or resulting from the streaming potential) and �e is the net electric
charge density in the fluid.

2.1. Constitutive equations

2.1.1. PTT model

The polymer extra-stress � is described by an appropriate con-
stitutive equation, and in this work we consider two models. The
first model describes the viscoelastic behaviour following the ideas
of Phan-Thien and Tanner [3,4], who derived the PTT model – Eq.
(3)– from network theory arguments:

f (�kk)� + ��
∇ = 2�D (3)

where D = (▽uT + ▽u)/2 is the rate of deformation tensor, � is the
relaxation time of the fluid, � is a polymer viscosity coefficient and
�

∇ represents the upper-convected derivative of �, defined as

�
∇ =

D�

Dt
− ▽uT .� − �.▽u (4)

The stress coefficient function, f (�kk), is given by the linear form [3]

f (�kk) = 1 +
ε�

�
�kk (5)

where �kk represents the trace of the extra-stress tensor and ε is a
parameter that imposes an upper limit to the elongational viscosity.
For ε = 0 the upper-convected Maxwell model (UCM) is recovered.

2.1.2. FENE-P model

The second viscoelastic model used in this work is the FENE-P
equation, based on the kinetic theory for finitely extensible dumb-
bells with a Peterlin approximation for the average spring force. In
this case the polymer extra-stress is given by [10]:

Z(�kk)� + ��
∇ − �

(

� −
b

b+ 2
nkBTI

)

D ln Z
Dt

= 2�
(

b+ 5
b+ 2

)

D (6)

where I is the identity tensor, b is a parameter that measures the
extensibility of the dumbbell, kB is the Boltzmann constant, T is the
absolute temperature and n is a parameter of the model [10]. The
stress coefficient function, Z(�kk), can be expressed by [10]:

Z(�kk) = 1 + 3
(

1
b+ 2

+
�

3�
�kk

(b+ 5)

)

(7)
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Note that for fully-developed flows D ln Z/Dt ≈ 0 and Eq. (6)
becomes considerably simplified.

2.2. Poisson–Boltzmann equation

Contact between the dielectric walls of the channel with the
electrolyte fluid spontaneously results in the formation of two elec-
tric double layers, one near each wall, as seen in Fig. 1. They are
sufficiently far from each other to allow us to consider them as
independent. In the case of pipe flow there is a single EDL around
the wall, so that EDL’s at opposite sides of a diameter do not inter-
fere. The potential field ( ) of these electric double layers can be
expressed by means of a Poisson–Boltzmann equation:

∇2 = −
�e
�

(8)

where � is the dielectric constant of the solution, assumed con-
stant. The Poisson–Boltzman equation can be integrated subjected
to adequate boundary conditions, to be given in the next section.
Prior to that it is necessary to quantify the electric charge density in
order to have a closed-form equation. According to Bruus [19] the
electric charge density, �e, for an electrolyte in equilibrium near a
charged surface is given by

�e = −2noez sinh
(

ez

kBT
 

)

(9)

where no is the ionic density, e is the elementary electronic charge
and z is the valence of the ions.

2.3. Boundary conditions and other assumptions

The coordinate system is represented in Fig. 1. Due to the sym-
metry of the geometry only half of the channel (0 ≤ y ≤ H) is
considered in this analysis. For the pipe geometry, H is the pipe
radius. At the wall the no-slip condition applies whereas on the cen-
treplane/axis, y = 0, the condition of symmetry applies. Since the
flow is fully-developed the velocity and stress fields only depend on
the transverse coordinate y. This coordinate represents the radial
position for the pipe flow.

As described above, the contact between the dielectric wall
and the electrolyte fluid results in a spontaneous charge trans-
fer between wall and fluid by ionization, ion adsorption or ion
dissolution that leads to an opposite charge distribution at the
wall and fluid, which depends on the chemical composition of
both materials, while maintaining global charge neutrality. Then,
electro-osmotic flow results from the motion of the charged fluid
species when subjected to an externally applied electric field
between the channel/pipe inlet and outlet. The thickness of the EDL
depends on the ionic concentration, thermal energy and electrical
properties of the liquid, ranging from nanometers for high ionic
concentration solutions to several microns for pure water and pure
organic liquids. Here, we assume that the ionic charge distribution
across the channel/pipe is such that the two EDL are thin. Under
these conditions and provided the applied electric field is weak,
i.e., that △�/l≪  0/�, where △� is the potential difference of the
applied electric field, l is the channel length and � is the Debye layer
thickness, the charge distribution is essentially independent of the
external electric field and is determined from the potential at the
wall,  0, frequently called the zeta potential. If the local electro-
osmotic flow velocities are small, which is the case for thin EDL,
the effect of fluid motion on the charge redistribution can also be
neglected. These assumptions are all part of the so-called standard
electrokinetic model.

The electric double layer is thin when the potential at the wall is
small. For small values of ez 0/kBT , synonymous of a small ratio of
electrical to thermal energies, Eq. (9) can be linearized, sinh x ≈ x.

This is called the Debye–Hückel approximation and is invoked in
this work. At room temperature this limits the zeta potential to val-
ues much smaller than 26 mV. Under these conditions, each wall
only affects the charge distribution in its vicinity and does not inter-
fere with the charge distribution near the other wall of the channel.
For thin layers in a pipe this also means that there is no need to
account for wall curvature effects, when deriving the potential and
electric charge distributions for the pipe flow solution.

The boundary conditions for the Poisson–Boltzmann equation
are ∂ /∂y = 0 at the symmetry plane/axis and zeta potential at the
wall,  wall =  0, which takes the sign of the fluid charges at the
wall.

Regarding the non-Newtonian fluid, the assumption is made
that there is a well mixed fluid behaviour uniformly distributed
across the channel/pipes. An alternative assumption, sometimes
invoked for solutions and suspensions, including non-Newtonian
fluids [32], is that there is depletion of additives very close to the
wall, where the fluid essentially behaves as a Newtonian fluid. This
is currently under investigation and the corresponding solution is
considerably more elaborate. Besides there are here possibilities
that need to be considered, and this matter is left for future work.

3. Analytical solution

3.1. PTT constitutive equation

The extra-stresses for the PTT model in these fully-developed
flows, for which u = {u(y),0,0}, can be obtained from Eqs. (3)–(5),
which reduce to

f (�kk)�xx = 2�
̇�xy (10)

f (�kk)�yy = 0 (11)

f (�kk)�xy = �
̇ + �
̇�yy (12)

where �kk = �xx + �yy is the trace of the extra-stress tensor. Eq.
(11) implies �yy = 0, �kk = �xx, and the stress coefficient function
becomes an explicit function of the streamwise normal stress f (�xx)
as in [3]. Then, upon division of Eq. (10) by Eq. (12) the specific func-
tion f (�xx) cancels out, and a relation between the normal and shear
stresses is obtained,

�xx = 2
�

�
�2
xy (13)

3.2. FENE-P constitutive equation

For the FENE-P fluid in fully developed shear flow between two
parallel plates and in a pipe, i.e., subjected to u = {u(y),0,0}, Eqs.
(6) and (7) reduce to

Z(�kk)�xx = 2�
̇�xy (14)

Z(�kk)�xy =
(

b+ 5
b+ 2

)

�
̇ (15)

Again, the trace of the extra-stress tensor becomes �kk = �xx, thus

Z(�xx) =
(

b+ 5
b+ 2

)

[

1 +
�

�

(b+ 2)

(b+ 5)2
�xx

]

(16)

The relation between the normal and shear stresses is,

�xx = 2
�

�

(

b+ 2
b+ 5

)

�2
xy (17)

3.3. Potential field across the channel

The potential field only depends on y, ∇2 = d2 /dy2, which
can be used in Eq. (8). Substituting the distribution of the net charge
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density (�e) by Eq. (9) and invoking the assumptions discussed in
Section 2.3, the following form of the Poisson–Boltzmann equation
for the potential across the half channel is obtained:

d2 

dy2
= �2 (18)

where �2 = ((2noe2z2)/(�kBT)) is the Debye–Hückel parameter,
related to the thickness of the Debye layer, � = 1/� (also referred to
as the EDL thickness). This approximation is valid when the Debye
thickness is small but finite, i.e., for 10 � H/� � 103, and it is also
used here for pipe flow neglecting wall curvature effects in the
Laplacian.

Eq. (18) can be solved subjected to the boundary conditions (cf.
Section 2.3) to give,

 =
 0 cosh(�y)

cosh(�H)
(19)

for 0 ≤ y ≤ H. Finally, the net charge density distribution, Eq. (9), in
conjunction with Eq. (19) reduces to

�e = −� 0�
2 cosh(�y)

cosh(�H)
(20)

which is a positive quantity for a wall charged negatively ( 0 < 0).

3.4. Analytical solution for the PTT model

Henceforth, the analytical solution and the subsequent
discussions are for channel flow, thus avoiding unnecessary com-
plications. The full solution for pipe flow is presented in Appendix
A without any discussion because the trends are similar to those
found for the slit flow.

Under fully developed conditions, the momentum Eq. (2),
reduces to

d�xy
dy

= −�eEx + p,x (21)

where p,x ≡ dp/dx, Ex ≡ −d�/dx and � is the electric potential of
the applied external field, which is characterized by a constant
streamwise gradient under fully-developed flow conditions. Note
that in this flow the external electrical field is positive according to
Fig. 1, and negative otherwise.

Using Eq. (20) and noting that the shear stress at the centerline
is zero, Eq. (21) can be integrated to yield the following linear con-
tribution of electro-osmotic and pressure gradient contributions to
the shear stress distribution

�xy = � 0Ex�
sinh(�y)
cosh(�H)

+ p,xy (22)

Using the relation between the normal and shear stresses—Eq. (13),
the following explicit expression for the normal stress component
is obtained,

�xx = 2
�

�

(

� 0Ex�
sinh(�y)
cosh(�H)

+ p,xy
)2

(23)

The square term in Eq. (23) introduces a contribution to the normal
stress from the combined electro-osmotic and pressure forces.

To determine the velocity gradient, Eqs. (12), (22) and (23) are
combined to give


̇ ≡
du
dy

=

[

1 + 2ε�2

(

�� 0Ex
�

sinh(�y)
cosh(�H)

+
p,x
�
y

)2
]

×

(

�� 0Ex
�

sinh(�y)
cosh(�H)

+
p,x
�
y

)

(24)

Eq. (24) can be integrated subject to the no-slip boundary condition
at the wall (u‖y=H = 0) and the resulting velocity profile is

u = uE + uP + uEP (25)

with

uE =

(

� 0Ex
�

− 2C̄�2ε�2

[

� 0Ex
�

]3
)

(Ā− 1) +
2
3
�2ε�2

[

� 0Ex
�

]3

× (Ā3 − 1) (26)

uP =
1
2

[

p,x
�

]

(y2 −H2)

[

1 + ε�2
[

p,x
�

]2

(y2 +H2)

]

(27)

uEP =
3
2
ε�2

[

� 0Ex
�

]2
[

p,x
�

]

[1−Ā2+(�2H2−�2y2)C̄+2�D̄(yĀ B̄−H)]

+12
ε�2

�2

[

� 0Ex
�

]

[

p,x
�

]2 [

�D̄(H − yB̄) +
(

1 +
1
2
�2y2

)

Ā

−
(

1 +
1
2
�2H2

)]

(28)

where Ā = ((cosh(�y))/(cosh(�H))), B̄ = ((sinh(�y))/(sinh(�H))),
C̄ = (1/(cosh2(�H))) and D̄ = tanh(�H).

As suggested by Eq. (25) there are three contributions to the
velocity profile: uE represents the pure electro-osmotic flow for a
viscoelastic fluid and is given by Eq. (26); uP is the contribution
due to the pressure gradient for a viscoelastic fluid and is given
by Eq. (27); finally, the third contribution couples the Poiseuille
and electro-osmotic flows and this is given by uEP expressed by
Eq. (28), which is simultaneously proportional to p,x and Ex. This
last contribution only exists because the fluid is non-linear, i.e., no
such effect is present if the fluid is Newtonian or a quasi-linear
viscoelastic fluid, such as UCM fluid. Indeed, uEP is proportional to
ε, which is non-zero for the PTT fluid but is zero for UCM/Oldroyd-
B fluids. Eq. (25) shows that the superposition principle valid for
Newtonian and quasi-linear viscoelastic fluids is no longer valid for
the PTT and FENE-P fluids and suggests that the same applies to
other non-linear viscoelastic models.

It is often more convenient to work with the dimensionless form
of Eq. (25). Introducing the normalizations ȳ = y/H and �̄ = �H, the
dimensionless velocity profile can be written as

u

ush
= (1 − 2C̄εDe2

�)(1 − Ā) +
2
3
εDe2

�(1 − Ā3) −
1
2
	 (1 − ȳ2)

×

[

1 +
εDe2

�

�̄2
	 2(1 + ȳ2)

]

+
3
2
εDe2

�

�̄2
	 [1−Ā2+(�̄2−(�̄ȳ)2)C̄

+ 2�̄D̄(ȳĀ B̄− 1)] −
12εDe2

�

�̄4
	 2

[

�̄D̄(1−ȳB̄) +
(

1+
1
2

(�̄ȳ)2
)

Ā

−
(

1 +
1
2
�̄2

)]

(29)

where De� = ((�ush)/�) = ��ush is the Deborah number based
on the EDL thickness and on the Helmholtz–Smoluchowski
electro-osmotic velocity, defined as ush = −((� 0Ex)/�) [22,34]. In
Poiseuille flows a different Deborah number is usually defined
[5,7] based on the cross-sectional average velocity for the New-
tonian flow under the sole influence of pressure gradient and the
channel half-height, DeN = ((�UN)/H) with UN = −((H2p,x)/3�).
A third alternative Deborah number for electro-osmotic flow is
based again on ush, but considers the channel half-height, Desh =
((�ush)/H). These three Deborah numbers are related by De� =
�̄Desh = −(3/	 )�̄DeN , where parameter 	 = −(H2/(� 0))(p,x/Ex)
represents the ratio of pressure to electro-osmotic driving forces.
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Flow problems are usually of direct or indirect/inverse type. In
a direct problem the pressure gradient p,x and the applied electric
potential gradient Ex are known (or instead the ratio of pressure to
electro-osmotic driving forces is known) and the flow rate, or the
cross-sectional average velocity, is required. The flow rate can be
determined from integration of the velocity profile of Eq. (25). Here,
this integration was carried out using the normalized velocity pro-
file, Eq. (29), thinking ahead on the benefit this brings to the inverse
problem, where the aim is the determination of	 for a given dimen-
sionless flow rate. The expression for the normalized flow rate is

Q̄ =
Q

2Hush
=
ū

ush
=

∫ 1

−1

u

ush
dȳ = 2

∫ 1

0

u

ush
dȳ = Q̄E + Q̄P + Q̄EP

Q̄E = 2(1 − 2C̄εDe2
�)

(

1 −
D̄

�̄

)

+
4
3
εDe2

�

(

1 −
1
3
D̄

�̄
(1 + 2C̄)

)

Q̄P = −2	

(

2
5
εDe2

�

�̄2
	 2 +

1
3

)

Q̄EP = 3
εDe2

�

�̄2
	

(

2 −
D̄

�̄
− C̄ +

2
3
C̄�̄2 − 2�̄D̄

)

−
24εDe2

�

�̄4
	 2

(

−3 + 3
D̄

�̄
+

3
2
�̄D̄−

1
2
�̄2

)

(30)

This is a cubic equation on 	 and the solution of the inverse prob-
lem (calculation of 	 for a given Q̄ ) involves the determination
of 	 , which can be done using the Cardan–Tartaglia solution for
cubic algebraic equations. Within the assumptions invoked in Sec-
tion 2.3, the analysis in this section is general, but relies on the
Debye–Hückel approximation. Here, as in many practical applica-
tions the finite electric double layer is very small, about 1–3 orders
of magnitude smaller than the thickness of the microfluidic chan-
nel (10 � �̄ � 103). In these circumstances cosh(�̄) ≫ 1 and D̄ =
tanh(�̄) ≈ 1, so the above equations for the velocity profile can be
further simplified. In particular the normalized flow rate becomes

Q̄ ≃ 2
(

�̄ − 1
�̄

)

+
4
3
εDe2
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(
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3�̄
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	 2
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2
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3 − 3�̄
�̄

)

(31)

which is simpler than Eq. (30), but still cubic in 	 . This expression
can be written in compact form as

	 3 + a1	
2 + a2	 + a3 = 0 (32)

The explicit solution of the inverse problem, giving the ratio of
pressure to electro-osmotic driving forces as a function of the non-
dimensional flow rate, viscoelastic model parameters and relative
microchannel ratio is obtained using the Cardan–Tartaglia solution,
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(33)

with

a1 = 15
(
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(34)

The explicit expressions for the dimensionless shear and normal
stress components are obtained from normalization of Eqs. (22)
and (23),

�xy
3�ush�

=
1
3

[

	
ȳ
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−

sinh(�̄ȳ)
cosh(�̄)

]

(35)

�xx
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(36)

The normalized shear rate is


̇

ush�
=

[

1 + 2εDe2
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(
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ȳ

�̄
−

sinh (�̄ȳ)
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and the viscosity profile is given by

�(
̇) ≡
�xy
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Wall values for all these quantities are useful and are obtained
after setting ȳ = 1 (and tanh(�̄) ≈ 1 for �̄ � 10):

�xy
3�ush�

∣

∣

∣

w
≃

1
3

(

	

�̄
− 1

)

�xx
3�ush�

∣

∣

∣

w
≃

2
3
De�

(

	

�̄
− 1

)2

�(
̇)
�

∣

∣

∣

w
≃

[

1 + 2εDe2
�

(

	

�̄
− 1

)2
]−1

(39)

The dimensionless locci of the local velocity profile maximum (or
minimum), ı̄, can be obtained by setting the shear rate Eq. (37)
to zero. Since the first term on the right-hand side of Eq. (37) is
always positive, ı̄ requires the multiplicative factor to be null and
is given by,

ı̄ =
�̄

	

sinh(�̄ı̄)
cosh(�̄)

=
�̄

	
B(ı̄) (40)

This is an interesting equation, because it is independent of the
fluid rheology. Recalling Eq. (35) it implies that �xy‖ȳ=ı̄ = 0, and

obviously ı̄ = 0 is a natural solution of Eq. (40) required by the
centerline symmetry condition. However Eq. (40) must have a
second solution for ı̄ for positive values of 	 as will become
apparent in Section 4(cf. Fig. 3).

3.5. Streaming potential solution

In the solution of the previous section, the electrical field Ex can
be applied externally or be a consequence of electric potentials cre-
ated by the flow. In the absence of an externally applied electrical
field, the imposed pressure difference causes a flow containing ions
in motion, hence it causes an electrical current, called the stream-
ing current, I′s. The streaming current accumulates counterions at
the end of the channel therefore setting up an electric field, Ex,sp
which is associated with the so-called streaming potential, �sp via
Ex,sp = −��sp/l. Therefore, this induced electric field opposes the
flow and creates an opposite current, I′c , called conduction corrent.
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The net electrical current, I′, is the sum of the streaming current and
the electrical conduction corrent and in steady-state should be zero:

I′ = I′s + I′c ≡ 0 (41)

The electrical streaming current (per unit of width) is of the form:

I′s = 2

∫ H

0

u(y)�e(y) dy (42)

which for the particular case of the PTT fluid leads to

I′s
� 0

= �

[

� 0Ex,sp
�

]

[

D̄− �HC̄ + �2ε�2

[

� 0Ex,sp
�

]2

×
[

D̄+
3
2
�HC̄2 −

5
2
D̄ C̄

]]

+
2
�

[

p,x
�

]

×

[

�H − D̄+
[(p,x/�)]22ε�2

�2
(�3H3−6D̄−3�2H2D̄+6�H)

]

+ 4�ε�2

[

� 0Ex,sp
�

]2
[

p,x
�

][

−
1
3
D̄+�HD̄2−2�HC̄+

7
3
D̄ C̄

]

+ 2
ε�2

�

[

� 0Ex,sp
�

]

[

p,x
�

]2 [
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(43)

The electrical conduction current in the channel can now be
expressed as

I′c = 2�tEx,spH (44)

where �t is the total electric conductivity. Note that the conduction
current can now flow back through both the fluid as well as
the channel walls, depending on the corresponding electrical
conductivities. The total electrical conductivity can be calculated
as �t = �fluid + �surPsur/Achan, where Psur and Achan are the wetting
perimeter and cross-section area of the channel, respectively and
�fluid and �sur are the fluid bulk and wall surface conductivities,
respectively. This equation and the condition imposed by Eq. (41)
leads finally to the expression that defines the relation for the ratio
between the imposed pressure gradient and the ensuing streaming
electric field, Ex,sp. This ratio is 	sp = −(H2/(� 0))(p,x/Ex,sp) and
such relation is Eq. (45)
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2
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(45)

with �1 = ((H2��t)/(�2 2
0)). This new dimensionless number

quantifies the effect of electric conductivity. Eq. (45) is a cubic
equation in 	sp, that can be rewritten in compact form as

	 3
sp + a1	

2
sp + a2	sp + a3 = 0 (46)

with coefficients

a1 =
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(47)

The solution of Eq. (46) for 	sp is Eq. (33), but with the coefficients
of Eq. (47).

For (10 � �̄ � 103), cosh(�̄) ≫ 1 and D̄ = tanh(�̄) ≈ 1, and the
above equations simplify to become

a1 =
−(�̄�1 + 0.5�̄2 + 9εDe2

N[3�̄2 − 3�̄ + (3/2)])

�̄ − 1 + ((18εDe2
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(48)

As expected, Eqs. (46)–(47) reduce to the Newtonian fluid solution,
as found in [42], when ε→ 0:

	sp = �1

[

1 + (1/2)(�̄2/�1)((D̄/�̄) − C̄)

1 − D̄/�̄

]

(49)

3.6. Analytical solutions for the FENE-P model

For fully developed channel flow there is similarity between the
solutions for the PTT and the FENE-P models as found by Oliveira
[11]. Comparing Eqs. (10)–(12) for the PTT model with Eqs. (14) and
(15) for the FENE-P model, and since the momentum Eq. (21) is inde-
pendent of the constitutive equation, there is an exact equivalence
of the solution in the sense of a parameter to parameter match, as
explained in detail in Cruz et al. [12]. Hence, the solution of Section
3.4 also applies to the flow of FENE-P fluids, provided the following
substitutions are made:

f (�xx) →
(

b+ 2
b+ 5

)

Z(�xx)

�→ �
(

b+ 2
b+ 5

)

ε→
1

b+ 5

�→ �

(50)

Identically, these same substitutions are valid to provide the pipe
solution for the FENE-P model from the corresponding PTT equa-
tions in Appendix A.

4. Discussion of results

In the previous section, general equations were derived for fully
developed flow of viscoelastic fluids (PTT and FENE-P fluids) under
the mixed influence of electrokinetic and pressure gradient forces.
The different influences of the driving forces and fluid rheology
on the velocity profile have been identified in Eq. (25) and in this
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section we discuss in detail some limiting cases in order to under-
stand the fluid dynamics. The following limit cases contained in
the general solution are: (a) Newtonian fluid with mixed electro-
osmotic/pressure driving forces; (b) viscoelastic fluid under the
sole influence of an electro-osmotic driving force; (c) Poiseuille
flow of a viscoelastic fluid and (d) viscoelastic fluid with mixed
electro-osmotic/pressure driving forces. Case (c) was studied in
detail elsewhere [5,7,12], and so was case (a) [26], but this latter
situation is revisited here as a starting point.

4.1. Newtonian fluid with mixed driving forces

For a Newtonian fluid the relaxation time is zero and the Deborah
number vanishes (De� = 0), thus Eq. (29) becomes

u

ush
= 1 −

cosh(�̄ȳ)
cosh(�̄)

−
1
2
	 (1 − ȳ2) (51)

under the mixed influence of electro-osmotic and pressure driving
forces, as was also shown by Dutta and Beskok [26]. For 	 → ∞,
pressure forces dominate the momentum transport for any value
of �̄, and the classical laminar parabolic velocity profile is recovered.
Note that this corresponds to Ex → 0 andush → 0, sinceush ∝ Ex and
	 ∝ E−1

x . For	 → 0, the last term on the right-hand side of Eq. (51)
vanishes, the flow becomes governed solely by the electro-osmosis
and the velocity profile is only a function of the wall distance and
the relative microchannel ratio, �̄, as shown earlier by Burgreen and
Nakache [23]. Fig. 2 shows the effect of the relative microchannel
ratio, �̄ (orH/�, where � is the Debye layer thickness) on the dimen-
sionless velocity profiles for pure electro-osmotic flow, 	 = 0. As
�̄→ 1 the double layer thickness becomes of the same order of
magnitude as the channel half-height and the region of excess
charge is distributed over the entire channel. This situation is not
fully compatible with this solution for which the Debye–Hückel
approximation was invoked, which requires �̄min � 10. For �̄ = 100
the width the Debye layer is about 1% of the channel half-height.
Note that for large �̄ (�̄→ ∞) the size of the EDL or region of
excess charge is relatively small, and Eq. (51) reduces to the classical
Helmoltz–Smoluchowski equation, u/ush = 1 [22], if simultane-
ously 	 = 0.

Fig. 3 shows velocity profiles for various ratios of pressure gradi-
ent to electro-osmotic driving forces at �̄ = 20 and �̄ = 100. When
	 = 0 the velocity profiles correspond to a pluglike flow. 	 < 0 and

Fig. 2. Velocity profiles for several relative microchannel ratios, �̄, for Newtonian
fluids under the sole influence of electrokinetic forces, 	 = 0.

Fig. 3. Velocity profiles for various ratios of pressure to electro-osmotic driving
forces, 	 , for Newtonian fluids with relative microchannel ratio of (a) �̄ = 20 and
(b) �̄ = 100.

	 > 0 correspond to Poiseuille electro-osmotic flows with favorable
and adverse pressure gradients, respectively. The velocity profiles
shown in Fig. 3(b) for �̄ = 100 are identical to those of Dutta and
Beskok [26]. The value of �̄ = 100 is a typical example for a 0.1 mM
buffer solution in a glass channel with  0 of aproximately 25 mV
[26].

Eq. (51) predicts negative velocities at ȳ = 0 when 	 >
2((cosh(�̄) − 1)/(cosh(�̄))) for all values of �̄. For small but finite
Debye lengths, �̄ � 10, the velocity becomes negative in the central
region of the channel for 	 � 2. As shown in Fig. 3, the veloc-
ity maxima depend on 	 , and this dependency can be expressed
by
⎧

⎪

⎪

⎨

⎪

⎪

⎩

u

ush

∣

∣

∣

max
= 1 −

1
2
	 	 ≤ 0

∧

�̄ � 10

u

ush

∣

∣

∣

max
= 1 −

cosh(�̄ı̄)
cosh(�̄)

−
1
2
	 (1 − ı̄2) 	 > 0

(52)

where ı̄ is the dimensionless locci of the velocity peaks (or �xy‖y=ı̄ =
0), given by Eq. (40).
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Fig. 4. Flow characteristics for electro-osmotic flow (	 = 0) of a PTT fluid for relative
microchannel ratios of �̄ = 20 (lines) and �̄ = 100 (lines and symbols): (a) dimen-
sionless velocity profiles as function of

√
εDe�; (b) dimensionless normal and shear

stress profiles as function of De� . � = (1 − ȳ)�̄ is the near wall variable.

4.2. Viscoelastic fluid with sole electro-osmotic driving force

The discussion in this paper on viscoelastic flows is for a PTT
fluid, but will be identical for a FENE-P model provided the sub-
stitutions indicated in Section 3.6 are made. For a viscoelastic fluid
under the sole influence of electro-osmotic driving force,	 = 0, Eq.
(29) reduces to

u

ush
=

(

1 − 2
εDe2

�

cosh2(�̄)

)

(

1 −
cosh(�̄ȳ)
cosh(�̄)

)

+
2
3
εDe2

�

×

[

1 −
(

cosh(�̄ȳ)
cosh(�̄)

)3
]

(53)

Fig. 4(a) shows the corresponding dimensionless velocity profiles
as a function of the parameter

√
εDe� for two relative microchannel

ratios of �̄ = 20 and �̄ = 100 and these profiles should be compared
with the profiles in Fig. 2 for Newtonian fluids. As for Newtonian
fluids, the velocity profiles exhibit a pluglike shape, but now with the
velocity plateau increasing significantly with

√
εDe� , for both values

Fig. 5. Dimensionless viscosity profiles for electro-osmotic viscoelastic flow (	 = 0)
of a PTT fluid as function of

√
εDe� for relative microchannel ratios of �̄ = 20 (lines)

and �̄ = 100 (lines and symbols). � = (1 − ȳ)�̄ is the near wall variable.

of �̄. In fact, setting ȳ = 0 in Eq. (53) leads to the following quadratic
relationship between the maximum velocity plateau and

√
εDe� ,

u

ush

∣

∣

∣

max
=

(

1 − 2
εDe2

�

cosh2(�̄)

)

(

1 −
1

cosh(�̄)

)

+
2
3
εDe2

�

[

1 −
1

cosh3(�̄)

]

(54)

which for �̄ � 10 reduces to (u/ush)|max ≈ 1 + (2/3)εDe2
� .

The influence of �̄ on the velocity profiles of Fig. 4(a) is restricted
to a narrow region, the effective EDL thickness, with the velocity
profiles for higher values of �̄ exhibiting thinner EDL layers and
consequently larger velocity gradients. Fig. 4(b) shows the corre-
sponding profiles of dimensionless normal and shear stresses for
the viscoelastic fluid as function of De� . In order to simplify the
analysis of the influence of both De� and �̄ on the stress profiles, a
near-wall variable, � = (1 − ȳ)�̄, is used. By using � in Fig. 4(b) the
stress profiles for different values of �̄collapse, since their magni-
tudes are determined by the values of �̄. The dimensionless shear
stress is also independent of De� , exhibiting a constant wall value
of −1/3 (as predicted by Eq. (35) with 	 = 0). The normal stresses
increase linearly with De� regardless of �̄ (cf. Eq. (36)).

Dimensionless shear viscosity profiles for the PTT fluid in
electro-osmotic flow are plotted in Fig. 5 as function of the near
wall variable, �. There is a decrease in shear viscosity near the wall
when

√
εDe� increases, on account of the shear-thinning behavior

of the PTT fluid, and consequently the thickness of the EDL is larger
than for the equivalent Newtonian flow. By using the modified wall
variable the dimensionless shear viscosity profiles, �̄(
̇), become
independent of the relative micro-channel ratio. It is this low wall
viscosity at high values of εDe2

� that is responsible for the strong
increase in u/ush.

4.3. Viscoelastic fluid with mixed driving forces

The viscoelastic flow characteristics under the combined action
of electro-osmosis and pressure gradient forcing are discussed here,
recalling Eq. (25).

Fig. 6(a) and (b) presents dimensionless velocity profiles for
flows with favorable and adverse pressure gradients, respectively.
For 	 < 0, the velocity profiles increase with

√
εDe� , as seen
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previously in Fig. 4, due to shear-thinning effects, leading to
correspondingly higher shear rates near the walls. For 	 > 0, the
pressure gradient is against the flow and the velocity profiles show
the same double peak seen for Newtonian flows (cf. Fig. 3). The
velocity profiles also increase with

√
εDe� , due to increasing levels

of shear-thinning, both within the EDL layer and in the bulk zone.
For flow with favorable pressure gradients the velocity maximum
is given by Eq. (55)(for �̄ � 10) and takes place on the centreplane.
For adverse pressure gradients the velocity peaks are at the edge
of the EDL and the corresponding velocity maximum depends on
	 as given by Eq. (56)
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Fig. 6. Dimensionless velocity profiles for a PTT fluid under the mixed influence of
electro-osmotic/pressure driving force as function of

√
εDe� relative microchannel

ratio of �̄ = 100: (a) 	 = −1 and (b) 	 = 2.5.

Fig. 7. Profiles of dimensionless normal and shear stresses for viscoelastic fluid
under the mixed influence of electro-osmotic/pressure driving force as function of√
εDe� for �̄ = 100, 	 = −1 (lines) and 	 = 2.5 (lines with symbols).

where ı̄ is the dimensionless locci of the velocity peaks (or the loca-
tion of a zero shear stress, �xy‖y=ı̄ = 0) to be calculated from Eq. (40).

Fig. 7 shows transverse profiles of the dimensionless normal and
shear stresses as function of the near-wall variable, � = (1 − ȳ)�̄
and Deborah number, for a high value of �̄ (�̄ = 100). The lines rep-
resent flows with favorable pressure gradients (	 = −1) whereas
lines with symbols typify flows with adverse pressure gradients
(	 = 2.5). In the former case the dimensionless normal stresses
decrease sharply near the microchannel walls, within the EDL layer,
as shown in detail in Fig. 8 forDe� = 2. In the latter case, as shown in
Fig. 8, the profiles of �̄xx also decrease sharply near the microchannel
walls within the EDL, followed by an increase to a local maximum at
the end of the EDL layer. For all flows the magnitude of �̄xx increases
with De� and �̄.

As observed in Section 3.4 in respect to Eq. (25), besides the vis-
coelastic flow induced by the single contributions from electrical
and pressure potentials, there is an extra term that simultaneously

Fig. 8. Profiles of dimensionless normal and shear stresses for viscoelastic fluid
under the mixed influence of electro-osmotic/pressure driving force at De� = 2 as
function of the near wall variable, for �̄ = 100 (	 = −1 and 	 = 2.5) and �̄ = 20
(	 = 2.5).
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Fig. 9. Profiles of the components of the dimensionless velocity for a PTT fluid under
the mixed influence of electro-osmotic/pressure driving force for

√
εDe� = 2 and

relative microchannel ratio of �̄ = 20: (a) 	 = −1 and (b) 	 = 2.5.

combines both effects and which is absent from the Newtonian case.
This invalidates the superposition principle, and is associated with
the non-linearity of the rheological model. These various contri-
butions and the corresponding whole velocity profile are plotted in
Fig. 9(a) and (b) for two typical cases of favorable and opposed pres-
sure gradient and electric force, 	 = −1 and 	 = 2.5, respectively.
The combined term uEP acts in the same direction as the Poiseuille
contributions, but has a slope like that of the electro-osmotic con-
tribution, i.e., it is a plug like profile except in the wall vicinity. In
absolute terms uEP and uP are here of similar magnitude, but uEP

can be larger than uP as discussed next.
The corresponding flow rates are given by Eq. (30) and the flow

rate contributions relative to the total flow rate, QT = QE + QP +
QEP , are shown in Fig. 10(a) and (b), as function of

√
εDeN for	 = −1

and 	 = 2.5, respectively. The contribution in terms of flow rate
are similar to those of the velocity discussed above, but no longer

Fig. 10. Relative contributions to the flow rate for electro-osmotic flow of a PTT fluid
for relative microchannel ratios of �̄ = 20 (lines) and �̄ = 100 (lines and symbols) as
function of

√
εDe�: (a) 	 = −1 (b) 	 = 2.5.

include the effect of position in the channel. In each figure, curves
for two relative microchannel ratios of �̄ = 20 (lines) and �̄ = 100
(lines and symbols) are presented. At low

√
εDeN the relative con-

tributions vary quickly from their corresponding Newtonian values
to asymptotic values at large

√
εDeN (

√
εDeN � 5). These asymp-

totic values at large
√
εDeN are inversely proportional to �̄. For

	 = −1 and �̄ = 20 the non-linear contribution is actually quite sig-
nificant, with QEP/QT ≃ 19%, whereas at �̄ = 100, QEP/QT is only of
4%. At high values of

√
εDeN , the non-linear contribution becomes

stronger than the pressure potential contribution, because Q̄EP has
one term linearly proportional to the pressure gradient and a sec-
ond term proportional to p2

,x, which acts in opposite direction to
the linear term for p,x > 0. This non-linear contribution is there-
fore equivalent to a drag reduction effect when fixing the flow rate
and quantifying the required forcings relative to a non-coupled sit-
uation. For adverse pressure gradients, the non-linear contribution
acts to reduce the total flow rate as shown in Fig. 10(b) for 	 = 2.5,
where the non-linear flow reduction, Q̄EP , is stronger than the pres-
sure contribution, Q̄P . Thus, the coupled term is now acting as a drag
increaser. In this situation, the main contribution for the total flow
rate is Q̄E , with both Q̄P and Q̄EP acting to reduce the flow rate. At
higher values of

√
εDeN this reduction is again stronger at lower

values of �̄, with QEP/QT ≃ −12% and −76% for �̄ = 100 and �̄ = 20,
respectively (note that QE/QT ≃ 180% for �̄ = 20).

The variation with 	 of the asymptotic values at εDe2
� = 200 of

the various contributions to the total flow rate are plotted in Fig. 11
for �̄ = 20. For very large favorable and adverse pressure gradient
the main flow is obviously dominated by the pressure contribu-
tion, Q̄P . The singularities at 	 ≃ 6.45 correspond to Q̄ ≃ 0. Here,
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Fig. 11. Relative contributions to the flow rate for electro-osmotic flow of a PTT fluid
for relative microchannel ratios of �̄ = 20 at large εDe2

� (= 200) as a function of 	 .

the strength of the adverse pressure gradient was sufficient to over-
come the strength of the electro-osmotic forcing to reverse the total
flow rate.

To discuss the streaming potential problem it is more enlight-
ning to work with the reciprocal of 	sp, 	

−1
sp = −((� 0)/H2)

(Ex,sp/p,x). Fig. 12(a) shows that this quantity increases with vis-
coelasticity, for differents values of �̄ and �1. This means that
viscoelasticity increases the amount of electrical streaming current,

Fig. 12. Streaming potential: (a) variation of 	 −1
sp with

√
εDeN as function of �̄ and

�1; (b) normalized velocity profiles for �̄ = 20 and showing effects of�1 and
√
εDeN .

which asymptotes to a constant value at high
√
εDeN . In contrast,

increasing �1 decreases the value of 	 −1
sp (and the amount of elec-

trical streaming current) for two reasons. The streaming current is
directly proportional to Ex,sp (cf. Eq. (43)) and then with I′c = −I′s, a
higher electrical conductivity implies a lower value of Ex,sp as in Eq.
(44). So, the combination of these two effects, for a given pressure
gradient results in a lower streaming potential therefore a lower
value of 	 −1

sp . Similarly, if the system has a lower electrical conduc-
tivity stronger streaming potentials are required to obtain electrical
equilibrium. The necessarily larger electric fields in poor conduc-
tors (small �1) lead to stronger effects on the velocity field as is
well shown in Fig. 12(b). Here, the deviation from pure Poiseuille
flow is enhanced by poor electric conductivity. This Figure also
confirms that viscoelastic shear-thinning fluids enhance streaming
potential effects more than Newtonian fluids. All these effects are
enhanced as �̄decreases. Note that the velocity profiles in Fig. 12(b)
have been normalized by the Newtonian bulk velocity at identical
pressure gradient (UN), instead of ush, to avoid the singularity in
the Helmholtz–Smoluchowski electro-osmotic velocity (Ex,sp = 0)
for pure Poiseuille flow.

The final comment concerns with the skimming layer, the thin
layer close to the wall where the fluid essentially behaves as the
Newtonian solvent. This can act as a lubrication layer and the real
impact on the flow depends on the ratio between its thickness
(ıl) and the EDL thickness (�), on the amount of shear-thinning of
the bulk fluid, on the applied pressure gradient and on the ratio
between the characteristic viscosities of the bulk fluid and solvent.
For both ıl = � and ıl > �, u/ush is essentially unchanged in the
EDL for the homogeneous and two-fluid model. Outside the EDL,
u/ush does not change much if the flow is purely electro-osmotic
regardless of all other parameters, but an intense shear-thinning
can lead to differences of up to 20% as can be assessed from Berli
and Olivares [32]. In the presence of a skimming layer the sensi-
tivity of u/ush to pressure gradient is always reduced relative to
the homogeneous fluid solution: for ıl = � this leads to large dif-
ferences in u/ush outside the EDL and for ıl > �, say ıl = 5�, this
problem is somewhat reduced so that for weak shear-thinning flu-
ids (and Newtonian fluids) the homogeneous solution is a good
approximation to the two-fluid model, but for moderate to strongly
shear-thinning fluids differences in excess of 70% can be found. This
is currently a problem under investigation for viscoelastic fluids.

5. Conclusions

Analytical solutions for channel and pipe flows of viscoelastic
fluids under the mixed influence of electrokinetic and pressure
forces were obtained. The analysis are restricted to cases with small
electric double-layer, where the distance between the walls of a
microfluidic device is at least one order of magnitude larger than
the EDL. The viscoelastic fluids used are described by the PTT model
(Phan-Thien and Tanner [3]), with linear kernel for the stress coef-
ficient function and zero second normal stress difference [4], and
the FENE-P model [10].

In the absence of an imposed pressure gradient, the electro-
osmotic flow exhibits a pluglike velocity profile, as found previously
for Newtonian fluids, but with the maximum velocity plateau
increasing quadraticaly with

√
εDe� , for all �̄ values.

When the viscoelastic flow is induced by a combination of both
electrical and pressure potentials, in addition to the single contri-
butions from these two mechanisms, there is an extra term in the
velocity profile that simultaneously combines both, which is absent
for the Newtonian case where the superposition principle applies.
This non-linear term can contribute significantly to the total flow
rate, depending on the value of �̄. Under conditions of favorable
pressure gradient it thus acts as a drag reducer, but for adverse
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pressure gradients it changes its role to become a drag increaser. Its
existence invalidates the superposition principle and is associated
with the non-linearity of the rheological model, with this analytical
solution indicating that for quasi-linear viscoelastic equations the
superposition principle still applies.

Under favorable pressure gradients, the velocities increase sig-
nificantly with

√
εDe� , with the profiles at higher values of �̄

exhibiting large shear rates within the electric double layer. As for
Newtonian fluids, adverse pressure gradients lead to local velocity
peaks at the edge of the electric double layer.

Regarding the streaming potential problem, viscoelasticity
increases the amount of electrical streaming current, which asymp-
totes to a constant value at high

√
εDeN . The amount of electrical

streaming current decreases with the increase of �1, due to the
lower Ex,sp required to establish the conduction current for good
conductors and the consequent lower streaming potential as found
for Newtonian fluids.

Acknowledgements

The authors acknowledge funding from FEDER and Fundação
para a Ciência e a Tecnologia (FCT), Portugal, through projects
PPCDT/EME/59338/2004, PTDC/EQU-FTT/70727/2006 and
PTDC/EQU-FTT/71800/2006. A. Afonso would also like to thank FCT
for financial support through the scholarship SFRH/BD28828/2006.
The help of Dr. S. Dhinakaran in checking the equations is gratefully
acknowledged.

Appendix A. Analytical solution for the PTT and FENE-P

models in pipe flow

The momentum equation is given by Eq. (A.1) where now y

denotes the radial coordinate, H is the pipe radius and all other
quantities are defined in the main text. The net charge density
distribution is given by Eq. (20)

1
y

d(y�xy)

dy
= −�eEx + p,x (A.1)

which can be integrated to obtain

�xy =
� 0Ex� sinh(�y)

cosh(�H)
−
� 0Ex cosh(�y)
y cosh(�H)

+
� 0Ex

y cosh(�H)
+

1
2
p,xy

(A.2)

Using Eq. (13) the following explicit expression for the normal stress
component is obtained for the PTT fluid,

�xx=2
�

�

(

� 0Ex� sinh(�y)
cosh(�H)

+
1
2
p,xy−

� 0Ex cosh(�y)
y cosh(�H)

+
� 0Ex

y cosh(�H)

)2

(A.3)

The velocity gradient is


̇ ≡
du
dy

=

[

1 + 2ε�2

(

� 0Ex� sinh(�y)
� cosh(�H)

+
1

2�
p,xy

−
� 0Ex cosh(�y)
�y cosh(�H)

+
� 0Ex

�y cosh(�H)

)2
]

×

(

� 0Ex� sinh(�y)
� cosh(�H)

+
1

2�
p,xy

−
� 0Ex cosh(�y)
�y cosh(�H)

+
� 0Ex

�y cosh(�H)

)

(A.4)

The integration of Eq. (A.4) subject to the no-slip boundary condi-
tion at the wall (u‖y=H = 0) gives the following velocity profile for
the PTT fluid:

u = uE + uP + uEP (A.5)

with

uE =

[

� 0Ex
�

]

[

Ā− 1 +
√

C̄
{

ln
(

y

H

)

+ Chi(�H) − Chi(�y)
}]

+�22ε�2

[

� 0Ex
�

]3 [

C̄(1 − Ā) +
1
3

(Ā3 − 1)

+ C̄
{

√

C̄
(

21
8

Chi(�y) −
21
8

Chi(�H)

+
3
2

Chi(2�H) −
3
2

Chi(2�y) +
3
8

Chi(3�y)

−
3
8

Chi(3�H) +
3
2

ln
(

H

y

))

+
3

2�H

[

5
4
D̄

(

1 −
H

y
B̄
)

+
√

C̄
(

H

y
sinh(2�y) − sinh(2�H)

−
1
4
H

y
sinh(3�y) +

1
4

sinh(3�H)
)]

+
3

4�2H2

[

5
2

(

H2

y2
Ā− 1

)

+
√

C̄

(

cosh(2�H)−
H2

y2
cosh(2�y)

+
5
3

(

1 −
H2

y2

)

+
1
6
H2

y2
cosh(3�y) −

1
6

cosh(3�H)

)]}]

(A.6)

uP =
1
2

[

p,x
2�

]

(y2 −H2)

[

1 +
[

p,x
2�

]2

ε�2(y2 +H2)

]

(A.7)

uEP =
3
2
ε�2

[

� 0Ex
�

]2
[

p′
x

2�

]

[5(1 − Ā2) + 2�D̄(yĀB̄−H)

+�2C̄(H2 − y2) + 2{4
√

C̄(Ā− 1) + C̄[4Chi(�H) − 4Chi(�y)

+ Chi(2�y) − Chi(2�H)+3 ln(
y

H
)]}]+12

ε�2

�2

[

� 0Ex
�

]

[

p′
x

2�

]2

×

[

3
2
�D̄(H − yB̄) +

(

1 +
1
2
�2y2

)

Ā−
(

1 +
1
2
�2H2

)

+
1
2

(

Ā− 1 +
�2

2

√

C̄(y2 −H2)

)]

(A.8)

where Chi(z) is the hyperbolic cosine integral, defined as

Chi(z) = 
 + ln(z) +
∫ z

0

cosh(t) − 1
t

dt (A.9)

and 
 is the Euler–Mascheroni constant (
 = 0.57721566490 . . .).
Chi(z) can also be calculated from:

Chi(z) = 
 + ln(z) +
1
2

∑∞

k=1

z2k

k(2k)!
(A.10)

To obtain the solution for pipe flow of FENE-P fluids it suffices to
apply the substitutions of Section 3.6 to this set of equations.
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For pipe flow, the relation between the electrical streaming cur-
rent and the electrical conduction current is

Is = −Ic =
∫ H

0

2�u(y)�e(y)ydy = −��tEx,spH2 (A.11)

For the PTT and FENE-P fluids, Eq. (A.11) is not integrable, and a
numerical approach is required to obtain a solution.
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