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Abstract 
 
Fourier and hyperbolic models of heat transfer on a fin that is subjected to a periodic boundary condition are solved analytically. The 

differential equation in Fourier and non-Fourier models is solved by the Laplace transform method. The temperature distribution on the 
fin is obtained using the residual theorem in a complex plan for the inverse Laplace transform method. The thermal shock is generated at 
the base of the fin, which moves toward the tip of the fin and is reflected from the tip. The current study of various parameters on the 
thermal shock location shows that relaxation time has a great influence on the temperature distribution on the fin. An unsteady boundary 
condition in the base fin caused the shock, which is generated continuously from the base and has interacted with the other reflected 
thermal shocks. Results of the current study show that the hyperbolic heat conduction equation can violate the second thermodynamic 
law under some unsteady boundary conditions.  
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1. Introduction 

Classical Fourier heat conduction model is applied to pre-
dict the temperature distribution in general engineering prob-
lems under regular conditions [1]. The parabolic characteristic 
of Fourier’s laws implies that heat flux is caused simultane-
ously with the creation of the temperature gradient. This as-
sumption cannot be true because we know that two phenom-
ena that are related to each other cannot exist simultaneously 
[2]. Such an immediate response leads to a local change in 
temperature that causes instantaneous temperature perturba-
tions in all regions; thus, heat propagation speed will be infi-
nite [2].  

Fourier’s law has a nonphysical conclusion for situations 
that are involved with very high temperature gradients, ex-
tremely short times, very low temperatures, and very small 
structural dimensions, among others. The mathematical de-
scription of non-Fourier heat conduction law, which repre-
sents the time lag of heat waves, is a hyperbolic type of differ-
ential equation. Non-Fourier hyperbolic heat transfer in the 
fins at short times under periodic boundary conditions has a 
wide application in micro-devices, such as heating and cooling 

of microelectronic elements, micro-fabrication technology, 
and micro-heat exchangers, among others. 

Numerous studies are developed to solve the analytical and 
numerical heat conduction equations in the fins. However, 
applying analytical methods to solve heat transfer in the fins 
with complicated boundary conditions, variable physical 
properties, and thermal discontinuity that are produced in the 
hyperbolic equations is difficult. Thus, numerical schemes are 
used in most studies. The major problem of numerical solu-
tions is the presence of oscillations near the thermal disconti-
nuities, whereas analytical methods do not have unreasonable 
oscillations near the thermal discontinuities. Analytical solu-
tions are used to check the accuracy and convergence of the 
numerical methods.   

Various analytical and numerical methods of the hyperbolic 
heat conduction equation subjected to periodic boundary con-
ditions were presented in Refs. [3-13] and many others. Most 
studies solved the fin problems in the Fourier domain by ap-
plying the numerical methods. Yen and Wu [14] solved the 
hyperbolic heat conduction in a finite slab with surface radia-
tion and periodic heat flux using the Laplace transform 
method. Chang and Juhng [15] analytically solved the hyper-
bolic heat conduction in a slab under the sinusoidal periodic 
surface heating process. Aziz and Na [16] adopted a perturba-
tion method to solve the fins with various thermal properties. 
Convective heat transfer in the fin under a periodic boundary 

† This paper was recommended for publication in revised form by Associate Editor
Dongsik Kim   

*Corresponding author. Tel.: +98 311 7934517, Fax.: +98 311 7932746 
E-mail address: ahmadikia@eng.ui.ac.ir   

© KSME & Springer 2011 



2920 H. Ahmadikia and M. Rismanian / Journal of Mechanical Science and Technology 25 (11) (2011) 2919~2926 
 

 

condition is analytically solved by Yang [17]. The problem of 
periodic boundary conditions in the hyperbolic heat conduc-
tion was investigated by Tang and Araki [18] and Abdel-
Hamid [19]. Periodic boundary conduction in materials with 
non-Fourier heat conduction model for a one-dimensional slab 
was examined by Cossali [20] through the “transfer function” 
method. Abdallah [21] investigate the analytic method of a 
boundary value problem for a semi-infinite medium with trac-
tion-free surface heated by a high-speed laser pulse. He used a 
Dirac laser pulse boundary that was not periodic.  

With regard to the periodic boundary condition, most stud-
ies have dealt with conduction heat transfer using the para-
bolic (Fourier’s law) heat equation or numerical schemes, 
whereas some relied on the hyperbolic heat equation. How-
ever, the hyperbolic model of the heat transfer cannot accu-
rately predict the temperature in a medium. 

The present work focuses on the analytical scheme in solv-
ing the hyperbolic heat conduction in the fin that is subjected 
to every periodic boundary condition using the Laplace trans-
form method. Unlike other numerical methods, this analytical 
method is free of oscillations around the thermal discontinui-
ties. The objective of the present work is to investigate the 
effects of relaxation time by having various boundary condi-
tions on the temperature distribution in the fin, and by assess-
ing the second thermodynamic law in the hyperbolic heat 
equation model. 

 
2. Physical model and heat transfer in the fin 

Phonons propagate at the sound speed depending on the 
type of solid medium. Thus, a response time with very small 
order implies a submicron depth penetration, thereby necessi-
tating a simultaneous consideration of the microscopic effect 
in space. To attain the reliable performance of the micro-
devices, the effective means for heat removal at short times 
must be ensured. The response time of the thermal and relaxa-
tion time of the energy carriers resulting in high temperature at 
short times and causing early-time thermal damage before 
steady state operations can occur.  

Microscopic models such as the phonon-electron interaction 
model [22], phonon scattering model [23], and phonon radia-
tive transfer model [24] resulted from the solutions of the 
semi-classical Boltzmann transport equation.  

The classical Fourier diffusion model describes the correla-
tion between the heat flux and temperature gradient in a mac-
roscale heat transfer. The thermal wave model (CV wave) 
depicts a temperature disturbance propagating as a wave, with 
thermal diffusivity acting as a damping effect in heat propaga-
tion. The fractal model [25] is employed for describing the 
conducting path in amorphous material and the scattering of 
phonons over the correlation length on a small scale. The DPL 
model [26] includes the delay time effects due to microscale 
effects on the transient response. In this study, we use a modi-
fied heat flux proposed by Vernotte [24] and Cattaneo [27] to 
solve heat transfer in the fin with time-dependent boundary 

conditions. The thermal wave model given by Cattaneo and 
Vernotte is applied for micro-solid materials at very short 
times. Wang et al. [28] showed that the CV wave model can 
be used for the thermomass gas. They built a thermomass gas 
model based on hyperbolic heat conduction theory to describe 
the fluid-flow-like heat conduction process in a medium. 
Wang and Guo [29] also presented new governing equations 
for non-Fourier heat conduction in nanomaterials based on the 
concept of thermomass. 

Consider a straight fin with uniform thickness b, width w, 
and length L, which has an initial temperature T0 (see Fig. 1). 
The ratio b/L is a small value, and the fin tip (x=L) is adiabatic. 
At a specific time, a periodic temperature boundary condition 
is applied to the fin base (x=0). 

 
( , ,0, ) ( )( )b b m b mT t T ACos t T Tω ∞= + −

 
 (1) 

 
where Tb, T∞, and Tb,m are periodic base temperature, ambient 
temperature, and mean base temperature, respectively. A is the 
input temperature amplitude and ω is the temperature oscilla-
tion frequency. 

The lateral surfaces of the fin dissipate heat to the environ-
ment by convection heat transfer coefficient. The hyperbolic 
heat conduction equation for the fin is given by Eq. (2): 
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where T(x, t) represents temperature; k, ρ, and C are the ther-
mal conductivity, density, and specific heat capacity in a me-
dium, respectively. τ is the relaxation time, which means that 
the free path λ is over phonon velocity and ν (speed of 
sound in the medium). Relaxation time illustrates that there is 
a finite lag time for the onset of a thermal current after a tem-
perature gradient is imposed on a medium. In the absence of 
relaxation time (τ = 0, Eq. (2) is reduced to the classical Fou-
rier’s law. Eq. (2) is a heat wave equation that propagates a 
temperature disturbance in the form of a heat wave; this equa-
tion is damped using the diffusivity coefficient α. 

The following dimensionless quantities, i.e., dimensionless 
temperatureθ, dimensionless convective heat transfer H, di-
mensionless time ξ, dimensionless space η, dimensionless 
frequency of the temperature oscillation Ω, and dimensionless 

 
 
Fig. 1. The fin configuration. 
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time relaxation β, are introduced as: 
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Eq. (2) and the relevant boundary conditions are expressed 

in terms of the above dimensionless variables as: 
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3. The analytical procedure of temperature periodic 

boundary condition 

The Laplace transform method is used for solving hyper-
bolic heat transfer in the fin that is subjected to thermal peri-
odic boundary conditions. The main problem of this method is 
the inverse Laplace transform. In this study, we use the in-
verse theorem by applying the residue theorem in the complex 
plan. After taking the Laplace transform of Eq. (5), the follow-
ing ordinary differential equation is obtained. 

 
2
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where Θ(η, s) is Laplace transform of θ (η, ξ). By solving Eq. 
(9) and applying the boundary conditions (6) and (7), we 
would have 
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Eq. (10) is solved using the inverse image functions by cal-

culating residues. Function of θ (x, t) is the inverse Laplace 
transform of Θ(x, s) that is obtained from the complex inte-
gral: 
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which is known as the inverse theorem of Laplace transform 
method [30]. This integral is taken along the infinite line L 
(line x=γ) and half circle CR, where all singular points Sj (j = 1, 
2, …, N) in circle CR of radius R enclose the whole integral 
poles. If Θ(x, s) is analytic, except for a number of N poles 

that are all to the left of some line x=γ, we complete the con-
tour of Eq. (10) by a big contour L+CR and by enclosing the 
whole integral poles. If Θ(x, s) is analytic (except for a num-
ber of poles that are all to the left of some line x=γ) and if it 
has a branch point at z=Sj, then we complete the contour of the 
inversion integral, including a loop along the cut and around 
the branch point by introducing a cut along the left side of line 
x=γ (for more details, see Ref. [30]). After applying this theo-
rem to Eq. (12), an accurate temperature distribution in the fin 
is calculated by the real part of Eq. (12). 
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4. The arbitrary periodic temperature boundary 

condition 

If the boundary condition at the fin base is periodic with an 
arbitrary function, we can write it in the Fourier’s series form. 
For example, if the boundary condition is in the step function 
form shown in Fig. 2, then the Fourier’s series is: 
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where p is the period of boundary condition and Ω=nπ/p. We 
can use the superposition theorem because the governing 
equation and boundary conditions are linear. Therefore, this 
problem is divided into three sub-problems with the following 
boundary conditions:  
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One of the boundary conditions above (e.g., constant 

boundary condition) is solved with θ∞, whereas the other 
boundary conditions are solved without θ∞ (or θ∞=0) because 
Eq. (5) is nonhomogenous due to term θ∞. 

When the boundary condition at the fin base has a constant 
value θb1, (including θ∞), the solution can be obtained by ap-
plying the Laplace transform and the inverse theorem in com-
plex variables. The solution of this case is expressed as fol-
lows: 
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where sn, λn, and m are defined in Eqs. (13)-(15), respectively. 
Solving the governing equation with cosine boundary condi-
tion θb2 without θ∞ is similar to solving the equations men-
tioned in section 3, which is the real part of Eq. (20). 
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If the boundary condition at the fin base is sinusoidal θb3 

with θ∞=0, the solution named 3( , )θ η ξ will be a real part of 
Eq. (21). 
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Therefore, the solution of the hyperbolic heat transfer in the 

fin with arbitrary periodic boundary condition is:  
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5. The heating flux periodic boundary condition 

In this section, we assume that the heat flux boundary con-
dition at the fin base is:  
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This boundary condition can be a part of the arbitrary peri-

odic boundary condition. θe=0 is also assumed. Once the Lap-
lace transform method in Eq. (2) under the boundary condition 
(23) is applied, then the temperature will be: 
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Fig. 2. Step function boundary condition. 
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where sinh ( 1) / cosh .m H H Hη⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦   

 
6. Discussion of results  

6.1 The periodic boundary condition temperature 

The fin temperature subjected to the boundary condition θ(0, 
ξ)=1+Acos(Ωξ) with dimensionless parameters A=1, H=1.9, 
and θ∞=1 is calculated by Eq. (13). The temperature distribu-
tion at dimensionless time ξ=0.5 and dimensionless relaxation 
time β=0.5 for various frequencies of temperature oscillations 
is shown in Fig. 3. The thermal shock is caused in the tem-
perature because the governing equation is hyperbolic. Fig. 3 
shows that the base temperature frequency does not have any 
influence on the location and span of thermal shock. The tem-
perature before thermal shock influences the base temperature 
frequency. The temperature after thermal shock is not influ-
enced due to the base temperature after the shock and the fi-
nite heat propagation speed. No parameter exerts an influence 
on the temperature after the shock, except a temperature in-
crease due to convective heat transfer with the environment.  

In Fig. 4, the temperature distribution on the fin under the 

unsteady boundary condition Eq. (6) is shown at various di-
mensionless times, dimensionless relaxation time β=5, and 
under conditions A=1, H=1.9, θ∞=1, and Ω=0.8. 

At dimensionless time ξ=0.2, the thermal wave is close to 
the base of the fin due to its finite velocity. At time ξ=1, the 
thermal wave moves to the tip of the fin, and the fin tempera-
ture is increased after the thermal wave because it has a con-
vective heat transfer with the environment. With an increase in 
time (at time ξ=3), the thermal shock reaches the tip of the fin 
where it is reflected. Here, the fin temperature is increased 
after the thermal shock due to the convective heat transfer. 

The thermal shock is reflected back after it reaches the tip of 
the fin. Some other thermal waves are generated because the 
base temperature changes rapidly. On one hand, the thermal 
wave keeps on heating because the fin tip is cooler than that of 
the environment. Consequently, the fin tip gets warmer than 
its base and brings about a heat flux toward the fin base. An-
other heat wave is generated that moves to the fin base be-
cause the thermal wave speed is finite (due to relaxation time). 
The thermal waves then move back and forth until they are 
damped. At time ξ=15 (a long time), the thermal wave is 
completely uniform, and that we will not see any thermal 
waves in the fin. 

The dimensionless location of the thermal shock ηs can be 
obtained by: 

 
/ .sη ξ β=

 
 (25) 

 
If ηs is greater than the unit (fin length), we should consider 

the reflected wave from the fin tip; thus, thermal wave loca-
tion can be obtained by: 

 
,a s s sη η η= − ⎡ ⎤⎣ ⎦

 
 (26) 

 
where [ηs] is the bracket of ηs, and ηa,s is the actual location of 
the thermal shock. If [ηs] is an even number, then it is evalu-
ated from the fin base; if [ηs] is an odd number, then it is 
evaluated from the fin tip. 

The temperature distribution corresponding to the analytical 
solution Eq. (22) at various non-dimensional relaxation times 
and dimensionless time ξ=0.5 is presented in Fig. 5. With a 
decrease in relaxation time, the shock wave location in the fin 
moves to the right side due to an increase in shock wave ve-
locity and a decrease in relaxation time. At the relaxation time 
β=0.001, the dimensionless temperature tends to get closer to 
the temperature obtained from the Fourier’s law model; hence, 
there is no thermal shock in this case. 

The temperature distribution under boundary condition Eq. 
(6), dimensionless time ξ=100 (a long time), and various re-
laxation times is shown in Fig. 6. The relaxation time has a 
great influence on temperature distribution. This fact shows 
that even for long periods, the variation of relaxation time 
brings about great effects on the temperature distribution in 
the fin. Thus, applying Fourier heat equation for slightly high 
relaxation time can lead to significant error. 

 
 
Fig. 3. The temperature distribution on the fin subjected to the bound-
ary condition Eq. (6). 

 

 
 
Fig. 4. Temperature distribution on the fin at β=5. 
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6.2 Studying the accuracy of the hyperbolic heat equation 

A problem related to the hyperbolic heat equations is the 
creation of thermal shocks. Based on the assumption that the 
speed of thermal wave in the Fourier model is infinite, the 
thermal shock will not be generated. According to Fig. 5, heat 
flux is not infinite in this location with regard to the infinite 
temperature gradient. By checking Eq. (13), this infinite tem-
perature gradient is due to the time derivative of the heat flux 
in the fin. Thus, creating infinite temperature gradient cannot 
be a good reason for proving the invalidity of the hyperbolic 
heat equation model.  

To study the accuracy of the thermodynamic laws, consider 
the following example: the thermal distribution for heat flux 
periodic boundary condition (23), H=0 (no dissipate heat 
transfer to the ambient), Ω=0, and ξ=1.75 are shown in Fig. 7. 
For the periodic boundary condition q=cos(Ωξ) at ξ=0, which 
is the first quarter of the unit circle, heat is continuously in-
jected into the fin base with a positive value while the tem-
peratures decrease at the initial times as shown in Fig. 7. Thus, 
for the time interval where cos(Ωξ) has a positive value, both 

the heat flux and temperature gradient have positive values. 
Therefore, heat flows from a higher temperature to a lower 
temperature, which is a violation of the second law of thermo-
dynamics. By increasing the relaxation time and frequency of 
the periodic boundary condition, the violation of the second 
law of thermodynamics is increased. We can now express a 
periodic function for the boundary condition, which continues 
piecewise in terms of both sines and cosines. Therefore, we 
can find an interval that hyperbolic equations violate the sec-
ond law of thermodynamics.  

In Fig. 7, we observe that the temperature of fin has a nega-
tive value (a below ambient temperature). This shows that for 
a dimensionless time from 0.5 up to 1.75, both the heat flux 
and temperature gradient at the fin base are positive, which 
can violate the second law of thermodynamics. According to 
this viewpoint, temperature decreases while heat is exposed to 
the fin. Therefore, we conclude that hyperbolic heat equation 
violates the second thermodynamic law. However, this phe-
nomenon occurs during a very short interval. Moreover, ther-
modynamic laws attempt to describe equilibrium, whereas 
non-Fourier conduction seeks to present a correct description 
of the transient behavior. 

 
7. Conclusion 

For the most practical purpose, the effects of non-Fourier 
conduction are negligible. As the size of the microelectronic 
devices decreases to tiny portions and the circuit speed in-
creases, Fourier’s law cannot be used in heat transfer and tem-
perature prediction. The wave character gives rise to the ef-
fects, which do not occur under classical Fourier conduction. 
In the present study, the non-Fourier hyperbolic heat conduc-
tion was solved in the straight small fin that is subjected to 
thermal and heat flux periodic boundary conditions using ana-
lytical solutions. The non-Fourier thermal wave behavior in 
the small fin for fast phenomenon (high frequency periodic 
boundary condition) is successfully explained by the results 
obtained from the hyperbolic heat conduction model. The 

 
 
Fig. 5. Temperature distribution on the fin at various relaxation times 
and ξ=0.5, Ω=1.0, A=1, H=1.9, and θ∞=1.0. 

 

 
 
Fig. 6. Temperature distribution on the fin at various relaxation times, 
and ξ=100, Ω=1.0, A=1, H=1.9, and θ∞=1.0. 
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Fig. 7. Dimensionless temperature distribution on the fin in the heat 
flux boundary condition at ξ=1.75, β=16, Ω=1.0, A=1, and H=0. 
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effects of various parameters on the shock wave show that 
only the relaxation time has an influence on the location and 
movement of the shock waves. The frequency and amplitude 
of the periodic boundary condition and diffusivity coefficient 
of the fin have a high influence on the strength of the thermal 
shock waves. 

The parabolic (classical diffusion) and hyperbolic equations 
fail to capture the microscale responses during an unsteady 
boundary condition. From a physical viewpoint, both models 
violate the second thermodynamic law in the short-time tran-
sient boundary condition. The hyperbolic model is rendering 
an underestimated temperature in the unsteady heat flux 
boundary condition. Results show an inductive behavior, dis-
continuities in the thermal step response, and negative (sub 
ambient) temperatures during the heating process. 

 
Nomenclature------------------------------------------------------------------------ 

A : Amplitude of the input temperature 
b : Thickness of the fin 
C : Specific heat capacity 
H : Dimensionless convective heat transfer 
h : Convective heat transfer coefficient 
K : Thermal conductivity 
L : Length of the fin 
q : Heat flux 
T : Temperature 
T0 : Initial temperature of the fin 
T∞ : Ambient temperature 
Tb : Periodic boundary condition 
Tb,m : Mean base temperature 
t : Time 
w : Width of the fin 
x : Spatial coordinate 

 
Greek symbols 

α : Diffusivity coefficient 
β : Dimensionless relaxation time 
η : Dimensionless spatial coordinate 
η s , η a,s : Dimensionless location of the thermal shock 
λ : Means free path between phonons 
ν : Sound speed of in the medium 
ρ : Density 
τ : Relaxation time 
ω : Frequency of the temperature oscillation 
Ω : Dimensionless frequency of the oscillation 
ξ : Dimensionless time 
θ : Dimensionless temperature 
θ∞ : Dimensionless ambient temperature 
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