
Analytical solution of the almost-perfect-lens problem
R. Merlina)

FOCUS Center and Department of Physics, The University of Michigan, Ann Arbor, Michigan 48109-1120

~Received 10 November 2003; accepted 7 January 2003!

The problem of imaging for a slab of a lossless left-handed material with refractive indexn5
2(12s)1/2 is solved analytically forusu!1. The electromagnetic field behavior is determined
largely by singularities arising from the excitation of surface polaritons with wave vectorq→6`.
Depending on the sign ofs, the near-field is either odd or even with respect to the lens middle plane.
Consistent with other nonanalytical studies, the resolution depends logarithmically onusu. With
minor alterations, these results apply as well to the electrostatic limit. ©2004 American Institute
of Physics. @DOI: 10.1063/1.1650548#

In the 1870’s Abbe proved1 that the smallest feature a
lens can image is limited by diffraction to;l/2n wherel is
the wavelength of light andn is the refractive index. Despite
many attempts to circumvent this barrier2–4 significant
progress has remained elusive. Recently, Pendry5 argued that
a slab of a left-handed~LH! substance withe5m521 should
behave as a perfect lens~e andm are, respectively, the per-
mittivity and the magnetic permeability!. The terms optical
left and right handedness were introduced by Veselago6 to
distinguish substances with bothe,0 and m,0 and, thus,
n,0 from conventional, right-handed~RH! n.0 media. Fol-
lowing Pendry’s work5 and the experimental demonstration
of negative refraction at microwave frequencies,7 LH sub-
stances have attracted a great deal of interest along with
some contention.8–27 While recent experiments26,27 have put
to rest concerns regarding the far field behavior of negative-
refraction slabs, the question of near-field focusing has re-
mained highly controversial.17–25In this letter, we provide an
analytical answer to this problem.

We consider the propagation of electromagnetic waves
from vacuum to a LH medium occupying the half space
z.0, and we assume that Im~e!5Im~m!50. The case
e5m521 ~Ref. 5! will be referred to as ideal refraction. Let
H and E be the magnetic and the electric field, andv the
frequency of light. The transverse magnetic solutions to
Maxwell’s equations, are of the formHy5h(z)exp(2ivt
1iqx), Hx5Hz50 ~with few modifications, arguments simi-
lar to those discussed below apply as well to transverse elec-
tric modes!. From the expression forH, we can obtain the
electric field usingE52( ic/ev)“3H. For z.0, we have
h5M 1 exp(1kz)1M2exp(2kz) where

k5H iAemv2/c22q2 q2,emv2/c2

Aq22emv2/c2 q2.emv2/c2 ~1!

while, for vacuum,h5A1 exp(1k0z)1A2 exp(2k0z) with
k05k~e5m51!. We observe thatk5k0 for e5m521 and
also that, sinceHy and (]Hy /]z)/e must be continuous at
the boundary,A25M 1 andA15M 2 for an ideal interface.
Hence, refraction causes a reversal in the sign of the expo-
nent for both propagating (q2,emv2) and evanescent (q2

.emv2) waves. In a slightly modified form, this feature
accounts for the unusual optical properties of LH substances

and, in particular, for the remarkable converging lens perfor-
mance of planar RH/LH interfaces.6 The latter effect can be
understood by considering a two-dimensional source at
z52, for which the radiative component in vacuum can be
generally written as

Hy
R5E

2v/c

1v/c

H~q!eiqx1 iAv2/c22q2uz1,udq, ~2!

then, for an ideal interface Eq.~2! is also the solution for
z,0. Forz.0, we readily obtain

Hy
R5E

2v/c

1v/c

H~q!eiqx2 iAv2/c22q2~z2, !dq ~3!

which exhibits aberration-free focusing atz5,. As first dis-
cussed by Veselago,6 the ideal vacuum-LH interface is a par-
ticular case of the problem of refraction at a RH/LH bound-
ary. Veselago6 showed that LH materials generally behave as
optical media with negative refractive indexnL52(em)1/2

so that a flat interface connecting such a medium to a RH
substance, with refractive indexnR , acts as a converging
lens with focal length given bynL,/(nL2nR) ~images are
free of aberrations only for the ideal casenL /nR521!.

The above results apply only to radiative modes and,
thus, to length scales>l. Features of smaller sizes are con-
tained in the near-field5

Hy
NF5E

uqu.v/c
H~q!eiqx2Av2/c22q2uz1,udq. ~4!

Because evanescent waves cannot be amplified in conven-
tional refraction~this can be attained in some sense with
mirrors!, the dimensions of the focal spot are at best of order
l.1 However, for ideal RH–LH refraction, amplification
seems possible given that exp(2k0z) connects to exp(k0z) for
A25M 1. Thus, one might be led to believe that evanescent
modes focus atz5, and, therefore, that a perfectly resolved
image can be obtained. It is immediately obvious that this
argument poses a problem since physically sound solutions
cannot grow away from the interface. As indicated by
Haldane22 and others,23–25the absence of a well-behaved so-
lution is due to resonant excitation of surface plasmons or,
more generally, polaritons causing the field to become infi-
nitely large ate521 ~this problem does not affect the far
field!. The dispersion of these modes obeysk/k052e28,29

and, thus, the frequency at whiche521 is always the solu-
tion for q→6` where the density of states diverges. Wea!Electronic mail: merlin@umich.edu
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observe that this singularity can be avoided by adding a dis-
sipative term, and that other approaches for introducing aq
cutoff have been proposed.22,23

The considerations for a single boundary can be easily
extended to two interfaces and, in particular, for a negative-
refraction slab occupying the region 0,z,d and sand-
wiched by vacuum. With the source, as previous, atz52,
and providedd.,, it can be shown that there are now two
far-field images which are aberration free fore5m521. The
first image is inside the medium, atz5,, and the second is at
z52d2,.6 Notably, and different from the single interface,
the slab geometry admits an acceptable solution for evanes-
cent modes ate5m521 since the exponential that grows
with z inside the slab can be matched to a decaying expo-
nential. This is the celebrated Pendry’s solution which leads
to a perfect image of the source, with infinite resolution, at
z52d2,.5 Similar to the single interface, however, Pend-
ry’s solution for evanescent modes is not free of polariton
problems. For a slab in vacuum, the polariton dispersion,
given by (k2k0e)/(k1k0e)56exp(kd),28 also has the so-
lution e521 for q→6`. As will be discussed resonant ex-
citation of such modes leads to a divergence of the field for
certain intervals ofz.

To avoid the singularities associated with high-q polari-
tons, we takee5211s ~but keepm521! and solve the
evanescent-mode problem for a lossless LH slab in the limit
usu!1. The refractive index isn52(12s)1/2. Note that LH
materials must necessarily exhibit dispersion, i.e.,s gener-
ally depends on frequency. For calculating the Green’s func-
tion, the relevant two-dimensional source is a uniformly dis-
tributed line of dipoles which, for simplicity, we place atz
52d/2 ~the images are atz5d/2 and 3d/2). The current
density is j x5pd(x)d(z1,)e2 ivt, j y5 j z50, andH(q)5
2sgn(z1d/2)p/c.11 Adding Eqs.~2! and ~4!, and integrat-

ing, we obtain the following expression for thesourcefield:

Hy
S5

ppv

c2
3

uz1d/2u

A~z1d/2!21x2
H1

~1!@vA~z1d/2!21x2/c#

~5!

containing both propagating and evanescent terms;H1
(1) is a

Hankel function. Forz.d, we write h5B2 exp(2k0z) and
use the boundary conditions atz50 andz5d to obtainB2.
Explicitly, for z.d the contribution of evanescent modes to
the field is

Hy
NF52

p

c Euqu.v/c
F~q!eiqx2k0zdq, ~6!

where25

F~q!5
4kk0eek0d/2

~k0e1k!2ekd2~k0e2k!2e2kd
. ~7!

As shown by Pendry5 using a different method,F(q)
5exp(3k0d/2) for s[0. Hence, an ideal slab provides a per-
fect image of theuqu.c/v components of the source atz
53d/2. By adding the near- and far-field contributions, it
can be shown more generally that the total refracted field for
z.3d/2 is exactly given byHy

S(z22d). However, notice
that Hy

NF diverges in the intervald,z,3d/2 if s[0. The
limit s→0 is considered in the following.

Since the singularities are atq56`, we calculate the
field by dividing the integral@Eq. ~6!# into two regions:~i!
v/c,uqu,Q and ~ii ! uqu.Q. HereQ is an auxiliary vari-
able satisfyingv/c!Q!d21 lnusu21 ~the final expression
below does not depend onQ). In the first region, we sets50
whereas, in the second region, we deal with the singularity
using the approximationF(q)e2k0z'e2uqu(z1d/2)/(e22uqud

2s2/4). Keeping terms.s2 and replacingu5z23d/2, we
obtain

c

p
Hy

NF'
p

2d H cotF p

2d
~u2 ix !G S s2

4 D ~u2 ix !/2d

1cotF p

2d
~u1 ix !G S s2

4 D ~u1 ix !/2dJ

15 22e2vu/c
~u cosvx/c2x sinvx/c!

u21x2
u,0

pN1@vA~u21x2!/c#
vu/c

A~u21x2!
1E

2v/c

1v/c

cosqx cos@~v2/c22q2!1/2u#dq u.0

~8!

whereN1 is a Neumann function. A typical field profile is
shown in Fig. 1~a!. Consistent with the previous discussion,
the real part of the exponent ofs is such that, fors→0, the
near-field diverges ifz,3d/2 (u,0) while the term that de-
pends ons vanishes ifz.3d/2 (u.0). Accordingly, the
length scale of the interference pattern shown in Fig. 1~a!
evolves fromd for z,3d/2 to l for z.3d/2. Figure 1~b! is
a high resolution image of the region delineated by the rect-
angle in Fig. 1~a!, with the focal point at its center. The
calculated magnetic field, its derivatives and, hence,E are all
continuous at the focal point. We emphasize that Eq.~8! is
valid for z.d. Using the same procedure, the induced mag-
netic field can be gained for arbitraryz. Inside the slab, i.e.,

for 0,z,d, we get approximately2sgn(s)Hy
NF(z1d)

1Hy
NF(2d2z) whereas, forz,0, we have2sgn(s)Hy

NF

(2z1d). Here,Hy
NF(z) is the field forz.d as defined in

Eq. ~8!. The two solutions are shown in Fig. 1~c! for x50.
This result is not unexpected since the polariton dispersion
exhibits two branches for which the associated fields have a
well-defined parity. These findings are consistent with the
time-domain studies of Go´mez-Santos.24 For a time-varying
perturbation with a spectrum that is symmetric and centered
at the frequencyV for which s[0, only the interface atz
5d becomes excited due to cancellation between the odd
and even solutions; see Fig. 1~c!. We further note that at the
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interfaces, where the field is largest,Hy
NF}usu21/2; this is an

important result. Sinces}~v2V!, this shows that the field
induced by anonmonochromaticsource, of arbitrary fre-
quency spectrum, is an integrable function ofv for all x and
z.

The behavior of the total field at the image plane is of
particular interest. Adding the radiative component,Hy

R, we
have atz53d/2 (u50):

c

p
~Hy

NF1Hy
R!'

p

d
cothS xp

2d D sinF x

2d
ln~s2/4!G , ~9!

accordingly, the resolution length is

LR52
2pd

lnus/2u
. ~10!

This expression is identical to that obtained by Smithet al.25

using a back-of-the-envelope argument, and is also consis-
tent with the analysis of Go´mez-Santos.24 Furthermore, Eq.
~9! supports Pendry’s claim of perfect imaging in that
c/p(Hy

NF1Hy
R)→24pd(x) for s→0. However, as already

noted in Ref. 25, the resolution is severely limited by the
logarithmic dependence of Eq.~10! and, moreover, by the
fact that the field exhibits a saddle point atx50, z53d/2 so
that the depth of focus is poorly defined; see Fig. 1~b!.

In the electrostatic limit (l@d) the behavior of an ideal
LH slab is closely related to that of a medium withe[21
and arbitrarym.5 Interestingly, the field pattern in Fig. 1
bears a strong resemblance to the numerical studies reported
in Ref. 16 for the near-field of a slab of SiC. Some reflection
shows that our analysis and, in particular, Eq.~8! also applies
to the electrostatic case provided we make the substitution

2p(d/l)5Ausu ln(2/usu). Using this expression and Eq.
~10! we can easily calculate the lens’ resolution. The depen-
dence ofLR on l/d is shown in Fig. 2.
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FIG. 1. ~Color! ~a! Calculated contour plot of the magnitude of the magnetic
near field, HNF ~logarithmic scale!. The focal point is atx50 and z
53d/2. Parameters ares51023 and d5l/5p. The green arrow indicates
the slab-vacuum interface;~b! high resolution image of the near-focal point
region. The scale foruHNFu is linear;~c! dependence of the induced field on
the direction perpendicular to the slab atx50. The top~antisymmetric! and
bottom~symmetric! solutions correspond, respectively, to positive and nega-
tive s. The slab is represented by the red rectangle.

FIG. 2. Electrostatic limit; dependence of the resolution of the lens,LR , on
l/d for e521 and arbitrary magnetic permeability.
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