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Abstract 
 
In this paper, the general Frenet-Serret system of circular motion body with 
constant velocity is analytically solved in three dimensional space. The tangent, 
normal, and binormal vectors are found by reducing the system into a high order 
ordinary differential equation. Solving this equation gives a closed form of those 
vectors. A special case of four dimensional Frenet-Serret system is also solved in 
this work. 
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1. Introduction 
 
The Frenet-Serret frame is one of the most important tools that analyze and 
describe the properties of a particle along differentiable curves in Eucledian space 
[1,10].  
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Frenet and Serret [2] adapted the frame to curves by directly expressing the 
changes in derivatives of the tangent, normal and binormal vectors in terms of the 
frame. A few decades later, after the result of Frenet and Serret, their theory was 
extended to surfaces [3], also an n-dimensional vector calculus formulations of 
the system is developed [4]. Moreover, extensions to the frame have been 
proposed using quaternion-formulations [1]. In applications, studying the Frenet-
Serret systems is of great importance in applied mathematics, physics, 
engineering and many fields of science [ 5-19 ].  
One of the most important applications of the Frenet-Serret frames is 
understanding the kinematic properties of circular bodies, like the circular orbits 
in black hole space [10,11]. In this case, understanding the frame is useful in 
studying the properties of these orbits and provides interpretation of their 
geometry. 
The general three dimensional Frenet-Serret system to be discussed in this paper 
is defined by: 
 

     
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)(
)(
)(

0
0

0

)(
)(
)(

2

1

21

/

/

/

tV
tU
tT

tV
tU
tT

τκ
τκ
κκ

                                                  (1)                                   

 
 
Where VUT ,, are the tangent, normal and binormal vector fields respectively, t 
is the time, UT •= /

1κ , VT •= /
2κ , and τ is the torsion.   

Studying of systems like (1) has been carried out in both analytical and numerical 
approaches as in [20-25]. This System will be analytically solved in this paper for 
bodies of circular motion with constant velocities. 
 
 
2. Analysis and results 
 
2.1 The Three Dimensional System 
Considering a circular motion body with constant velocity leads to a constant 
curvature and torsion, hence, differentiating the third equation of (1) twice and 
differentiating the first and the second equations once with respect to time give 
                                      ////

2
/// UTV τκ −−=                                               (2)  
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// VUT κκ +=                                                       (3) 
and                              //

1
// VTU τκ +−= .                                                     (4)   

Substituting (3) and (4) into (2) gives: 
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which is written as: 
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                                 VTU τκ +−= 1
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Therefore, substituting (7) and (8) in (6) yields to                                                                         
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but from (1),    
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Substituting (11) in (10) gives 
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which is 
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The characteristic equation of the homogeneous ordinary differential equation 
(13) is 
                  0)( 22

2
2

1
3 =+++ rr τκκ  .                                                          (14)  

In addition to the trivial solution, The solution of (14) is 
22

2
2

1 τκκ ++±= ir , where  1−=i , hence ,the solution of V is 
 

    tCtCCtV )sin()cos()( 22
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Now, as V is known , the following system has to be solved for T and U , 
                                     VUT 21

/ κκ +=  
                                    VTU τκ +−= 1

/                                                          (16) 

From (16) 
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                                   //

1
// VTU τκ +−=                                                       (17) 

Substituting  the first equation of (16) into (17) gives 
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2
1 τκκα ++= , then 

 )sin(][)cos(][)( 32122213121 tCCtCCCtF ακκατακκατκκ +−−+−=           (21) 

  Using the variation of parameters method, the solution of (19) is    
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Now, as U and V are known, finding T is obvious by solving the first equation of 
(16). 
 
2.2 The four Dimensional System 
Consider the following well-known four dimensional Frenet-Serret system [4] : 
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It is clear that 
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Equation (32) is a homogeneous fourth order ordinary differential equations. 
Solving it for U makes the solution of system (23) obvious.  
 
 
Conclusions and Future Perspectives 
 
In this paper, the Frenet-Serret system (1) is efficiently reduced to a 
homogeneous third order ordinary differential equation which is solved for the 
binormal vector field. The normal vector field is obtained by solving a linear 
system of first order ordinary differential equations, while the tangent vector field 
can be found by solving a simple linear ordinary differential equation. A special 
case of four dimensional Frenet-Serret system when the torsion is zero has been 
analytically solved.  As a next step, a circular motion bodies with non-constant 
velocities will be under consideration. 
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