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ANALYTICAL SOLUTIONS AND DESIGN CURVES FOR VACUUM-

ASSISTED CONSOLIDATION WITH BOTH VERTICAL AND 

HORIZONTAL DRAINAGE 

Cholachat Rujikiatkamjorn and Buddhima Indraratna  

Abstract 

A system of vertical drains combined with vacuum preloading is an effective method 

for promoting radial flow to accelerate soil consolidation. This study presents the 

analytical modeling of a consolidation of vertical drains incorporating vacuum 

preloading considering both vertical and horizontal drainage. The effects of a number 

of dimensionless parameters involving the drain length, soil permeability and vacuum 

pressure are examined through average excess pore pressure, degree of consolidation, 

associated settlement and time factor analyses. An analysis of selected case histories 

compliments the use of the proposed solutions. Design charts are also presented for 

practical use. 

Key words: Analytical solution, Consolidation, Design charts, Vertical drains. 
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Introduction 

 Vacuum preloading method was first introduced by Kjellman (1952) to 

improve the strength of soft soil. An increase in the effective stress in a soil mass for 

this method is attributed to applying a vacuum pressure in lieu of a conventional 

surcharge (Qian et al. 1992). This system has been used to achieve a rapid 

consolidation and reduce the height of surchage fill by vacuum  pressure acting as an 

additional surcharge load. The advantages of vacuum preloading in comparison with 

conventional preloading can be summarised as follows: 

(a) The effective stress related to suction pressure increases equiaxially, and the 

corresponding lateral movement is compressive. Consequently, the risk of 

shear failure can be minimised even at a higher rate of embankment 

construction (Qian et al. 1992). 

(b) Depending on the vacuum efficiency (e.g., extent of air leaks in the field), the 

height of surcharge fill can be decreased to achieve the same amount of 

settlement. 

(c) At any given time, the maximum excess pore pressure prevailing under a 

vacuum preloading system is less than a conventional surcharge.  

(d) With a vacuum pressure applied through prefabricated vertical drains, the risk 

of unsaturation at the soil-drain interface due to mandrel withdrawal may be 

reduced (Indraratna et al. 2004). 

Prefabricated vertical drains (PVDs) can affect the distribution of vacuum 

pressure to deep subsoil layers and thereby increase the consolidation rate (Holtan 

1965, Chu et al. 2000). The effectiveness of vacuum consolidation via PVDs for 

ground improvement has been verified through various field trials (Choa 1989; 
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Shinsha et al. 1991; Indraratna et al. 2004). In the case of hydraulic fill used in land 

reclamation projects where the height of surcharge is restricted due to the low shear 

strength of soft soil, vacuum-assisted consolidation is an ideal method for ground 

improvement (Yan and Chu, 2003; Song and Kim, 2004). However, the effectiveness 

of this system depends on: (a) the integrity (airtightness) of the membrane, (b) the 

effectiveness of the seal between the edges of the membrane and the ground surface, 

and (c) soil conditions and the location of ground water level (Cognon et al. 1994). 

 The theory of radial drainage and consolidation was initially presented by 

Carrillo (1942) and Barron (1948). Subsequently, Yoshikini and Nakanodo (1974) 

proposed a rigorous solution that included well resistance. Hansbo (1981) and Onoue 

(1988) extended these solutions to take the smear effect into account. In terms of 

vacuum preloading, a rigorous solution for vertical consolidation was proposed by 

Mohamedelhassan and Shang (2002), whereas a solution for radial consolidation was 

introduced by Indraratna et al. (2005). However, to the authors’ knowledge, no 

comprehensive solution to vacuum-assisted consolidation with both vertical and 

horizontal drainage including the smear effect and well resistance is available in the 

literature. 

In this paper, the authors present mathematical solutions to the above problem. 

The effects of the length of vertical drain, anisotropic soil permeability, and vacuum 

pressure are considered, and a reduction in consolidation time through vacuum 

preloading is compared to other available methods. Design charts eliminating 

cumbersome iteration procedures are then developed using the equivalent drain 

diameter as an independent variable to obtain the relevant drain spacing.  
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Basic equations and solutions 

To obtain the governing equation for the consolidation of soil with vertical drains, it is 

assumed that: 

(a) Darcy’s law is valid, 

(b) the soil is fully saturated, 

(c) water and soil are incompressible, 

(d) strains are small, 

(e) all vertical loads are initially carried by the excess pore pressure u0,

(f) all compressive strains within the soil mass occur isotropically; shear strains 

are neglected as the unit cell is laterally confined and horizontal sections 

remain horizontal during consolidation, 

(g) the coefficients of compressibility and permeability are constant. 

The schematic representation of the problem under consideration where a vertical 

drain is surrounded by a smear zone is shown in Fig. 1. The basic partial differential 

equation for excess pore water pressure by vertical and radial drainage is (Barron 

1948): 
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where, ),,( tzru = excess pore pressure, t = elapsed time, r = radial distance from the 

center of the drain well, z = vertical distance from the soil surface, hc = coefficient of 

consolidation for radial consolidation and vc = coefficient of consolidation for 

vertical consolidation. 
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The boundary and initial conditions for Equation (1) are: 

[2] 0),0,( ptru −= for 0>t : constant vacuum pressure, - 0p at the soil surface; 

[3] 0=
∂
∂

= errr
u for 0>t : impervious boundary at  r=re ;

[4] 0),0,( ptru w −= for 0>t : constant vacuum pressure, - 0p along the drain 

boundary, However, vacuum pressure at the drain boundary may vary during the 

consolidation process.;         

[5] 0=
∂
∂

=lzz
u for 0>t : impervious boundary at the bottom of soil layer; and 

[6] 0)0,,( uzru = for 0=t : initial excess pore pressure due to surcharge load.   

In the above expressions, er = radius of the soil cylinder dewatered by a drain, 0p =

applied vacuum pressure at the top soil surface and along the drain, l = the soil 

thickness which equals the length of vertical drains, 0u = initial excess pore pressure 

and wr = the equivalent radius of the drain, where 4/)( barw += , a and b are the 

width and thickness of PVD, respectively (Rixner et al. 1986). 

 

Based on the method of separation of variables (Kreyszig 1999), it is appropriate to 

assume that, 

[7] ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )









∞−
∞−









∞−
∞−

=
∞−
∞−

,0,
,,

,0,
,,

,,0,,
,,,,

zuzu
zutzu

ruru
rutru

zruzru
zrutzru

vv

vv

hh

hh

where, ( )truh , = excess pore pressure for pure radial consolidation and ( )tzuv , = 

excess pore pressure for pure vertical consolidation. 

Equation (7) is more general than that introduced by Carrillo (1942) as Equation (7) 

can be used for both surcharge and vacuum preloading applied simultaneously. 
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From Equation (7), the average excess pore pressure in the unit cell at a given time t is 

defined as: 
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Then substituting Equation (7) into Equation (1) yields: 
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where, wvhh mkc γ= and  wvvv mkc γ= are the radial and vertical coefficients of 

consolidation, respectively, wγ = is the unit weight of water, vm is the coefficient of 

soil compressibility, and hk and vk are the horizontal and vertical permeability, 

respectively. 

 

The problem has now been reduced into two problems for hu and vu . In summary, 

Equations (3)-(6), (11) and (12) define radial consolidation problem, whereas, 

Equations (2), (5), (6), (10) and (13) define vertical consolidation problem. 
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For radial consolidation analysis, the assumptions, the boundary conditions, and the 

initial conditions are similar to the solution proposed earlier by Indraratna et al. 

(2005). Based on the governing Equation (12), the boundary conditions (Equations 3-

5) and the initial condition (Equation 6), the average excess pore pressure ratio (
0

,

u
u th )

in the radial direction at a given time t is: 
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In the above equation, 
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where, ed = the diameter of soil cylinder dewatered by a drain, sd = the diameter of 

the smear zone, wd = the equivalent diameter of the drain, sk = horizontal soil 

permeability in the smear zone and wq = drain discharge capacity. For the above 

equation, the vacuum pressure ratio (VPR) for vacuum combined surcharge 

preloading can be introduced by the value of 00 up (i.e. applied vacuum 

pressure/initial excess pore pressure). For fully saturated clay, the value of 0u is equal 

to the preloading pressure. 
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Depending on the soil stiffness, the size and shape of the mandrel, and the installation 

method, the extent of the smear zone ( sd ) can usually be estimated by  

ms dd )32( −= , where dm is the equivalent diameter of mandrel (Hansbo 1981; 

Indraratna and Redana 1998; Bo et al. 2000). The value of sh kk typically falls in the 

range of 1-8, whereas the value of vk remains more or less constant in both smear and 

undisturbed zones  (Hansbo 1981; Indraratna and Redana 1998; Saye 2003). It can be 

seen that in Equation (14b), there are many factors controlling well resistance such as 

the discharge length ( l ), the drain discharge capacity ( wq ), and the soil permeability 

( hk ). In practice, the effect of well resistance can be neglected because modern PVDs 

usually provide a more than adequate wq . Holtz et al. (1988) suggested that as long as 

the working discharge capacity of PVD exceeds 150 m3/year after installation, the 

effect on consolidation due to well resistance (e.g. folding, increased lateral pressure, 

siltation etc.) may be insignificant. Indraratna and Redana (2000) described that long 

term well resistance becomes significant for PVD with a  qw less than 40-60  m3/year. 

 

For analysing consolidation by horizontal drainage, the assumptions and the initial 

condition are similar to Terzaghi’s one-dimensional consolidation theory (1943) 

except for the boundary condition of vacuum pressure (Mohamedelhassan and Shang, 

2002). The average excess pore pressure ratio (
0

,

u
u tv ) at a given time t, based on the 

governing Equation (13), the boundary conditions (Equations 4-5) and the initial 

condition (Equation 6) is: 
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Substituting Equations (14) and (15) into Equation (8), the average excess pore 

pressure ratio in both vertical and horizontal directions can be expressed by: 

(a) Preloading combined with vacuum application: 
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(b) Vacuum application only 
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where, the relevant dimensionless parameters are given by: 

[16c] vhvhvh kkccc ==

[16d] edlL =

[16e] 2/ ehh dtcT =

The advantage of the proposed Equations (16a) and (16b) is that the excess pore 

pressure both positive (due to surcharge load) and negative(due to vacuum pressure 

can be obtained simulteneuosly. 

The overall average degree of consolidation with time ( tU ) can now be evaluated 

conveniently by: 
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Substituting Equation (16) into Equation (17) gives: 
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Equation (18) shows that the total degree of consolidation at any vacuum condition 

( 0p ) is uniquely related to the time factor ( hT ), vertical drain system configuration 

and soil anisotropic permeability ( µ , L and vhc ).  

 

Once tU is known, As suggested by Chai et al. (2005), the associated settlement at a 

given time (ρt) is then evaluated by the following conventional equation: 

[19a] ctt U ρδρ =

If the vacuum pressure is larger than the stress required to maintain a k0 condition of 

soil,  for isotropic consolidation α can be calculated by: 

[19b]     
µ
µδ

+
−

=
1
1

where, µ is the Poisson’s ratio of the soil skeleton 

In the case of no lateral strain, δ =1. 

For a soil thickness of l (= drain length), cρ = total primary consolidation settlement, is 

given by: 

[19b] lpumvc )( 00 +=ρ

In the above equation, vm is the average value corresponding to an effective stress 

increase from i'σ to 00' pui ++σ , where i'σ is the initial effective stress. 

 

Influence of vhc , L and vacuum pressure ratio 

In this section, the effects of vhc , L and vacuum pressure ratio (VPR) are discussed. 

Relavent parameters used in the analysis are given in Table 1. Figure 2 shows the 

comparison of the total degree of consolidation when L varies from 1 to 10 for 

vhc =1, as calculated by Equation (18). It is evident that when L increases, the radial 
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consolidation becomes prominent. If L is more than 10 (i.e. edl 10≥ ), the vertical 

consolidation can be neglected. Figure 3 illustrates the comparison of the degree of 

consolidation when vhc varies from 1 to 10 for L = 1. As vhvh ccc /= decreases, the 

influence of vertical consolidation becomes significant, as expected. A comparison of 

degree of consolidation, normalised settlement and average excess pore pressure with 

variation of VPR for normally consolidated clay is shown in Fig. 4 (Equations 16 to 

19) for L = 5, vhc =2, i'σ = 20kPa and 0u = 50kPa. The degree of consolidation versus 

time factor curve is independent of the vacuum pressure ratio (3 plots coincide). 

Normalised settlement is defined as the ratio of settlement at any given time divided 

by the ultimate settlement ( )(/ vacnoct ρρ ), where )( vacnocρ is based on the 

conventional method (no vacuum). As expected, the rate of settlement with a vacuum 

pressure is greater than conventional loading (surcharge only) without a vacuum 

pressure. Figure 4 also shows that, at the higher VPR, both the rate of settlement and 

the final settlement are increased. This is analogous to increasing the applied 

surcharge load without any increase in the initial excess pore pressure ( 0u ). Clearly, 

the application of a vacuum increases the lateral pore pressure gradient, thus 

promoting radial flow. From the analysis, it shows that for very long vertical drains 

( edl 10≥ ), the effect of vertical consolidation is insignificant, and the anisotropic soil 

permeability plays a significant role in controlling the consolidation.  
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Application to Case Histories 

The Port of Huanghua 

The Port of Huanghua is located about 90 km to the east of Cangchou in Hebei 

Province, China (Gao, 2004). The soil consists of a very soft hydraulic fill (dredged 

from the harbour basin) 4m in thickness, underlain by more than 16m of soft, thick 

clayey soil. Based on an in-situ investigation in a pilot area, the consolidation 

characteristics of the soil can be summarised as follows: the horizontal coefficient of 

consolidation ( hc ) ranges from 3×10-2 to 7×10-2 m2/day, and the undrained shear 

strength varies from 1.6 to 6.0 kPa.  It can be noted that the values of hc are very high 

at a depth of 4.30-7.60m and 9.40-12.10m ( /daym107 22−×≈hc ). In addition, 

preloading using surcharge fill cannot be applied in this area because the top soil layer 

has a very low shear strength. Therefore, vacuum preloading was considered to be the 

most appropriate method. PVDs 18.5m long were installed in a square pattern at a 

spacing of 1.5m. Subsequently, a perforated pipe system for water collection was 

installed after placing a sand layer. Airtight seals were provided by a membrane liner 

submerged in a trench at the border of the improved area. A vacuum pressure up to 

80kPa was applied for almost 3 months. The observations (i.e. degree of consolidation 

and pore pressure reduction) are compared with the analytical results in Fig. 5, based 

on Equations (16) and (18). An analysis is conducted for upper and lower bounds of 

hc (0.07 and 0.04 /daym2 ), and a prediction based on the average value of 

/daym05.0 2=hc is also plotted. The values of 3=s and 2/ =sh kk were applied in 

the analysis (Saye, 2003). It can be seen that the prediction of the total degree of 

consolidation using an average value of /day)m05.0( 2
hc slightly underestimates the 

field measurements (Fig. 5a). The observed pore pressure reductions at 0.75m away 
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from centreline and at 12m depth also match reasonbly well for average value of 

/daym05.0 2=hc (Fig. 5b). 

 

An oil storage station, Tainjin, China 

An oil storage station, constructed in 1996, is located near the coast of Tainjin, China 

(Chu et. al. 2000). At this site, the top 6m clay layer was reclaimed from soft clay 

with a very high water content taken from seabed. Underneath the soft clay layer, a 

marine clay deposit is found at a depth of 6-20m, underlain by a stiff sandy silt layer. 

The undrained shear strength of the soils was low (10-30 kPa). The coefficient of 

horizontal consolidation ( hc ) varied in the range of 0.01-0.03 m2/day. Vacuum 

preloading rather than conventional preloading by surcharge fill was considered to be 

a suitable method, because the shear strength of the soils was very low, especially 

near the ground surface. Treatment of the soft soil began by placing a 2m thick, dry 

clayey fill and a 0.3m sand blanket to serve as a firm platform. Subsequently, PVDs 

were installed in a square pattern at a spacing of 1m to a depth of 20m. Horizontal 

drains installed in a transverse and longitudinal direction linked PVDs to the vacuum 

pump. PVC membranes were placed on the surface to prevent air leaks. Instruments 

such as pore water pressure gauges and multi-level settlement points were installed in 

Section I and II. A vacuum of 80kPa was applied for almost 90 days. Figure 6 

illustrates field measurements (i.e. the degree of consolidation and pore pressure 

reduction) compared with the analytical results, based on Equations (16) and (18). 

Three different hc values (upper and lower bounds, and average value) were 

considered in the analytical model. The values of 3=s and 2/ =sh kk were assumed 

in the analysis. The settlement prediction using an average value of hc slightly 

underestimates the field measurements (Fig. 6a), and the prediction of average pore 
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pressure reduction compares well with the measured data points at 0.5m away from 

the centreline (Fig. 6b). This implies that the proposed solution is acceptable for 

predicting vacuum assisted preloading as long as the soil properties are accurately 

known. 

 
Design charts 

In practice, most design charts for vertical drains employ dimensionless horizontal 

time factor - consolidation curves (Th vs. Uh) to obtain the drain spacing (S) as a 

function of n (Barron 1948). Usually, a number of iterations have to be performed to 

obtain required parameters such as n (Hartlen and Wolski 1996, Bo et al. 2003).As the 

availability of the size of PVDs is limited by the manufacturer, the appropriate design 

charts should be re-established using the equivalent drain diameter (dw) as a known 

variable in order to determine the drain spacing (de or S). 

Rearranging Equation (18) gives: 
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Figure 7 shows the relationships between Tv and u* as represented by Equation (21). 

Figure 8 illustrates the contour plot of ξ (Equation 24b) when the values of 
s

h

k
k and s

are in the range of 1-8 and 2-8, respectively. To avoid the trial and error procedure, it 

is necessary to determine n as a function of γ (Equation 25 and Fig. 9). Employing a 

linear regression analysis (R2 > 0.99), n can be arbitrarily expressed  by: 

[25a] );lnexp( βγα +=n where,  

[25b] 
5.05.14

03714.010505.93938.0 ξξα +×−=
−

and  

[25c] 
5.023

5233.010456.14203.0 ξξβ −×+=
−

The values of ξ are in the range of 0 and 14, when the values of 
s

h

k
k and s fall 

between 2-8 and 3-8, respectively. Figure 9 shows a comparison between Equations 

(24) and (25) for a given ξ . It shows that in lieu of Equation (24), the proposed 

Equation (25) can be incorporated in the development of a convenient design 

procedure. The relationships of ξ, α and β based on Equations (25b) and (25c) are 

plotted in Fig. 10. Once γ is determined from Equation (20), n can be calculated 

based on Equation (25) via Fig. 10, or alternatively using Equations (25b) and (25c). 

When n is determined and the equivalent drain diameter, dw is already known, the 

diameter of the influence zone de, can be determined by de = ndw. Subsequently, when 

the drain pattern is chosen, the drain spacing, S can be obtained by knowing the 

diameter of the influence zone de
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Summary of the Design Steps: 

1. In-situ and soil laboratory testing to obtain the compressible soil properties. 

Determine the depth of installation (l), and the time (t) required for the 

consolidation process; 

2. Determine the required degree of consolidation Ut for surcharge only; 

3. In the case of a vacuum application, determine the vacuum pressure 0p , and 

then determine the new required degree of consolidation to obtain the same 

amount of settlement from )(/)(, vacvacnoUU cctvact ρρ= ;

4. Based on the value of cv, t and l, determine u* using Equation (21) or     Fig. 

7; 

5. Choose the size of the prefabricated vertical drains and then calculate the 

equivalent drain diameter, dw from dw =2(a+b)/π.; 

6. Determine hT ′ from Equation (23); 

7. Determine 






 −

′
−=

*
1ln

8

u
U

T
t

hγ for surcharge only or 








 −
′

−=

*
1

ln

8
,

u
U
T

vact

hγ for 

vacuum plus surcharge; 

8. Determine the diameter and permeability of the smear zone based on the 

vertical drain installation procedure, the size of mandrel and the type of soil; 

9. Calculate ξ by Equation (24b) or Fig. 89; 

10. Determine n from ξ using Equation (25) and Fig. 10; 

11. Determine the zone of influence (de = ndw), and; 

12. Select the drain pattern and calculate the drain spacing (d) from either d

=de/1.05 or d =de/1.128 for triangular or square grid pattern, respectively; 
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Example 

The methodology is illustrated by the following example. The required soil 

parameters for normally consolidated clay are assumed to be: 

Ut = 90%, l = 10m, dw = 0.06 m, ch = 2.0m2/year, cv = 1.0m2/year, kh/ks = 5, s = 3,       

t = 1 year, 0u = 40 kPa, δ = 1 and i'σ = 50 kPa. Well resistance is ignored. Determine 

the drain spacing (d), for (a) surcharge load only, and (b) surcharge loading plus a 

vacuum of 60 kPa 

Solution: 

(a) Surcharge load only

1. 01.01011 2 =×=vT

2. Determine *u using Equation (21) or Fig. 7, Hence, u*= 0.89 

3. 56.55506.0/10.2 22 =×==′ whh dtcT

4. 07.2036

89.0
9.01ln

56.5558

*
1ln

8
=







 −
×

−=






 −

′
−=

u
U

T
t

hγ

5. Use Fig. 8 or Eqaution (24b), 39.4=ξ

6. Use Fig. 10 or Equations (25b) and (25c) to find α and β . Hence, 463.0=α and 

649.0−=β .

7. From Equation (25a), 18)649.007.2036ln463.0exp()lnexp( =−×=+= βγαn

8. Determine de from de = 18×0.06 =1.08 m 

9. Therefore drain spacing = 1.03 m or 0.96 m for square or triangular patterns, 

respectively. 

 

(b) surcharge with a vacuum 60 kPa

1. 01.01011 2 =×=vT
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2. Determine *u using Equation (21) or Fig. 7, Hence, u*= 0.89 

3. 56.55506.0/10.2 22 =×==′ whh dtcT and the new required degree of consolidation is 

36.0
6040
40*9.0

, =
+

=vactU

4. 20.13478

89.0
36.01ln

56.5558

*
1

ln

8
,

=






 −
×

−=








 −
′

−=

u
U
T

vact

hγ

5. Use Fig. 8 or Eqaution (24b), 64.3=ξ

6. Use Fig. 10 or Equations (25b) and (25c) to find α and β . Hence, 463.0=α and 

649.0−=β .

7. 43)649.020.13478ln463.0exp()lnexp( =−×=+= βγαn

8. Determine de from de = 43×0.06 =2.58 m 

9. Therefore the drain spacing = 2.45 m or 2.29 m for square or triangular patterns, 

respectively. 

 

Conclusions 

A system of vertical drains combined with vacuum preloading is an effective method 

for accelerating soil consolidation. In this study, an analytical model for consolidation 

for both vertical and radial drainage incorporating vacuum preloading as well as 

smear and well resistance was developed. The consolidation of soil with vertical and 

horizontal drainage is governed by the dimensionless parameters L , vhc and VPR. It 

was found that L (= edl ), which is the ratio between the length of vertical drains l

and diameter of influence zone ed , is an important parameter influencing the 

effectiveness of vertical consolidation. When L is equal to 10 or more, vertical 

consolidation can be neglected. When vhc is 10 or greater, the effect of vertical 
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consolidation may be insignificant. It is noted from the findings of this study that if 

the vacuum pressure ratio (VPR) is less than 0.25, the effect of vacuum preloading is 

insignificant. The predictions of the proposed analytical solutions for vacuum assisted 

consolidation were compared, and they agreed with the actual field data.  

 

Suitable design charts for vertical drains were developed considering both vertical and 

horizontal drainage. As a result, the conventional and often cumbersome trial and 

error methods to estimate the appropiate parameters could be avoided. Once the 

equivalent drain diameter wd and other relevant parameters are known, the influence 

zone diameter ed can be readily obtained without any further iterations or 

interpolations. By employing these design charts, even  manual calculation can be 

done rapidly without the aid of a computer. These preliminary design charts were 

extended to represent a larger array of soil properties and drain patterns, on the basis 

of the same governing equations presented here.  
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Notations 
a = width of vertical drain (m) 

b = thickness of vertical drain (m) 

hc = coefficient of consolidation for radial (horizontal) drainage (m2/s) 

( wvhh mkc γ= )

vc = coefficient of consolidation for vertical drainage (m2/s) 

( wvvv mkc γ= )

vhc = vhvh kkcc =

ed = diameter of influence zone (m) 

dm = equivalent diameter of mandrel (m) 

sd = diameter of smear zone (m) 

wd = equivalent diameter of vertical drain (m) 

0e = average void ratio at initial in-situ effective stress 

hk = coefficient of horizontal permeability in the undisturbed zone (m/s) 

vk = coefficient of vertical permeability (m/s) 

sk = coefficient of horizontal permeability in the smear zone (m/s) 

l = vertical drain length = soil thickness (m) 

L = edl

m = integer 

vm = coefficient of soil compressibility (m2/kN) 

n = dimensionless parameter we ddn =

p'c = preconsolidation pressure (kPa) 

0p = applied vacuum pressure (kPa) 
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wq = drain discharge capacity (m3/s) 

r = radius; coordinate in the cylindrical coordinate system (m) 

er = radius of influence zone (m) 

sr = radius of smear zone (m) 

wr = equivalent radius of vertical drain (m) 

s = dimensionless smear ratio ws dds =

S = drain spacing (m) 

t = elapsed time (s) 

reqt = required time of consolidation 

hT = dimensionless time factor ( 2/ ehh dtcT = )

hT ′ = modified horizontal time factor in terms of dw 2
whh dtcT =′

vT = dimensionless vertical time factor ( 2ltcT vv = )

),,( tzru = excess pore pressure (kPa) 

thu , = average horizontal excess pore pressure (kPa) 

( )truh , = excess pore pressure for pure radial consolidation(kPa) 

tvu , = average vertical excess pore pressure (kPa) 

( )tzuv , = excess pore pressure for pure vertical consolidation (kPa) 

tu = overall average excess pore pressure (kPa) 

( )tzru ,, = overall excess pore pressure (kPa) 

0u = initial excess pore pressure (kPa) 

hU = average degree of horizontal consolidation 

tU = overall average degree of consolidation 
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VPR = vacuum pressure ratio ( 00 up )

z = depth (m) 

Greek letters 

δ = a modified factor for settlement 

wγ = unit weight of water (kN/m3)

βαξγ ,,, = modified smear and well resistance factor 

tρ = settlement at a given time (m) 

cρ = total primary consolidation settlement (m) 

µ = smear and well resistance factor 

i'σ = in-situ vertical effective stress or initial vertical effective stress (kPa) 



24

References: 
 
Barron, R. A. 1948. The influence of drain wells on the consolidation of fine-grained 

soils. Diss., Providence, U S Eng. Office. 

Bo, M.W., Bawajee, R., Chu, J., and Choa, V. 2000. Investigation of smear zone 

around vertical drain. In Proceedings of the Third International Conference on 

Ground Improvement Techniques, Sigapore. pp. 109-114. 

Bo, M.W., Chu, J., Low, B.K. and Choa, V. 2003. Soil improvement; prefabricated 

vertical drain techniques. Thomson Learning, Singapore, 341 p. 

Carrillo, N. 1942. Simple two - and three-dimensional cases in the theory of 

consolidationof soils. Journal of Mathematical Physics, 21: 1-5. 

Chai, J.C., Carter, J.P., and Hayashi, S. 2005 Ground deformation induced by vacuum 

consolidation. Journal of Geotechnical and Geoenvironmental Engineering, 

131(12):1552-1561.   

Choa, V. 1989. Drains and vacuum preloading pilot test. In Proceedings of the 12th 

ICSMFE, Rio de Janeiro. pp. 1347–1350. 

Chu, J., Yan, S.W. and Yang, H. 2000. Soil improvement by the vacuum preloading 

method for an oil storage station.  Geotechnique, 50(6): 625-632. 

Cognon, J. M., Juran, I., and Thevanayagam, S. 1994. Vacuum consolidation 

technology- principles and field experience. In Proceedings of conference on 

vertical and horizontal deformations of foundations and embankments 

deformations, College station, Texas. pp. 1237-1248. 

Gao, C. 2004. Vacuum preloading method for improving soft soils of higher 

permeability. Ground Improvement, 8(3): 101-107. 



25

Hansbo, S. 1981. Consolidation of fine-grained soils by prefabricated drains. In 

Proceedings of 10th International Conference on Soil Mechanics and 

Foundation Engineering, Stockholm, Balkema, Rotterdam. 3. pp. 677-682. 

Hartlen, J. and Wolski, W.  1996. Embankments on Organic Soils. Elsevier, 424 p. 

Holtan, G.W. 1965. Vacuum stabilization of subsoil beneath runway extension at 

Philadelphai International Airport. In Proc. of 6th ICSMFE, 2. 

Holtz, R.D., Jamiolkowski, M.B., Lancellotta, R., and Pedroni, R. 1988. Behavior of 

bent prefabricated vertical drains. In the Proceedings of 12th International 

Conference on Soil Mechanics and Foundation Engineering. Rio de Janeiro. 3. 

pp. 1657-1660. 

Indraratna B., and Redana I.W. 1998. Laboratory determination of smear zone due to 

vertical drain installation. Journal of Geotechnical and Geoenvironmental 

Engineering, ASCE, 124(2): 180-184. 

Indraratna B., and Redana I.W. 2000. Numerical modeling of vertical drains with 

smear and well resistance installed in soft clay. Canadian Geotechnical 

Journal. 37: 133-145. 

Indraratna, B., Bamunawita, C., and Khabbaz, H. 2004. Numerical modeling of 

vacuum preloading and field applications. Canadian Geotechnical Journal.

41(6): 1098-1110. 

Indraratna, B., Sathananthan I., Rujikiatkamjorn, C., and Balasubramaniam, A. S. 

2005. Analytical and numerical modeling of soft soil stabilised by PVD 

incorporating vacuum preloading. International Journal of Geomechanics. 

5(2): 114-124. 



26

Kjellman, W. 1952. Consolidation of clayey soils by atmospheric pressure. In 

Proceedings of a conference on soil stabilisation, Massachusetts Institute of 

Technology, Boston. pp. 258-263. 

Kreyszig, E. 1999. Advanced engineering mathematics. 8th Edition, John Wiley and 

Sons, New York.  

Mohamedelhassan, E., and Shang, J.Q. 2002. Vacuum and surcharge combined one-

dimensional consolidation of clay soils. Canadian Geotechnical Journal. 39:

1126-1138. 

Onoue, A. 1988. Consolidation by vertical drains taking well resistance and smear 

into consideration. J. Soils and Foundations, 28(4): 165-174. 

Qian, J.H., Zhao, W.B., Cheung, Y.K. and Lee, P.K.K. 1992. The theory and practice 

of vacuum preloading. Computers and Geotechnics, 13: 103-118. 

Rixner, J.J., Kraener, S.R., and Smith, A.D. 1986. Prefabricated vertical drains. 

Report FHWA-RD-86-169. Federal Highway Administration, U.S. Department 

of Commerce, Washington DC. 433 p. 

Saye, S.R. 2003. Assessment of soil disturbance by the installation of displacement 

sand drains and prefabricated vertical drains. Geotechnical Special Publication 

No. 119. ASCE. 325-362. 

Shinsha, H., Watari, Y., and Kurumada, Y. 1991. Improvement of very soft ground by 

vacuum consolidation using horizontal drains. In Proceedings of the 

International Conference on Geotechnical Engineering for Coastal 

Development (Geo-Coast 91), Port and Harbor Research Institute, Yokohama, 

Japan. 1. pp. 387–392. 



27

Song, Y.S., and Kim, T.H. 2004. Improvement of estuarine marine clays for coastal 

reclamation using vacuum-applied consolidation method. Ocean Engineering, 

31: 1999–2010. 

Terzaghi, K. 1943. Theoretical Soil Mechanics, John Wiley and Sons, New York. 

Yan, S.W. and Chu, J. 2003. Soil improvement for a road using a vacuum preloading 

method. Ground Improvement, 7(4): 165-172. 

Yoshikuni, H., and Nakanodo, H. 1974. Consolidation of Fine-Grained Soils by Drain 

Wells with Finite Permeability. Japan Soc. Soil Mech. and Found. Eng. 14(2): 

35-46. 

 



28

List of Figures 

 

Fig. 1. Vertical drain system (a) Triangular grid pattern, (b) Square grid pattern, (c) 

Typical cylindrical cell representing a vertical drain surrounded by a smear 

zone. 

Fig. 2 Effect of L on the degree of consolidation 

Fig. 3 Effect of vhc on the degree of consolidation 

Fig. 4. Effect of VPR (a) total degree of consolidation; (b) normalized settlement; and 

(c) average excess pore pressure ratio 

Fig. 5. Comparison between measured and predicted results (a) Total average degree 

of consolidation and (b) pore water pressure reduction (Huanghua Port project, 

China, Gao, 2004) 

Fig. 6. Comparison between measured and predicted results (a) Total average degree 

of consolidation and (b) pore water pressure reduction (Oil storage station 

project, China, Chu et. al, 2000) 

Fig. 7. Relationship between Tv and u* 

Fig. 8. Contour plot of ξ based on Equation (24b) 

Fig. 9. Comparison between approximation solution and exact solution 

Fig. 10. Relationships of ξ, α and β



29

Table 1. Parameters used to compare the effects of vhc , L and VPR 

Parameters Value 
n = de/dw 10 
s = ds/dw 3

Radial coefficient of consolidation, ch (m2/yr) 3.0 
de (m)             1.5 
kh/ks 3.0 
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Fig. 5. Comparison between measured and predicted results (a) Total average degree 

of consolidation and (b) pore water pressure reduction (Huanghua Port project, China, 

Gao, 2004) 
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Fig. 6. Comparison between measured and predicted results (a) Total average degree 

of consolidation and (b) pore water pressure reduction (Oil storage station project, 

China, Chu et. al, 2000) 
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