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a b s t r a c t

Analytical and semi-analytical solutions are presented for the cases of channel and pipe flows with wall

slip for viscoelastic fluids described by the simplified PTT (using both the exponential and the linearized

kernel) and the Giesekus models. The slip laws used are the linear and nonlinear Navier, the Hatzikiriakos

and the asymptotic models. For the nonlinear Navier slip only natural numbers can be used for the expo-

nent of the tangent stress in order to obtain analytical solutions. For other values of the exponent and

other nonlinear laws a numerical scheme is required, and thus, the solution is semi-analytical. For these

cases the intervals containing the solution and the corresponding proof for the existence and uniqueness

are also presented. For the Giesekus model the influence of the wall slip on the restrictions of the slip

models is also investigated.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Analytical solutions are a valuable tool to understand the com-
plexity of fluid dynamics. The Cauchy equation together with a
rheological constitutive equation, allow the determination of the
flow characteristics of non-Newtonian fluids. However, these are
complex equations for which analytical solutions can only be ob-
tained for basic flows in simple geometries. Adding slip boundary
conditions to this system of equations increases the complexity
to obtain analytical solutions.

Understanding the influence of slip on the flow behavior is cru-
cial to comprehend some characteristics of industrial flows rele-
vant for the polymer processing industry [1]. The mathematical
study of Navier slip boundary conditions for Stokes fluids was car-
ried out by Fujita [2], who was only concerned with the wellposed-
ness of the system of equations. Mitsoulis and Hatzikiriakos [3]
have studied the application of these slip boundary conditions to
polymer extrusion using generalized Newtonian fluids. Later they
presented some analytical solutions for lubrication flows in con-
vergent channels and compared them with the corresponding
numerical results [4]. In this way they could identify the conditions
for validity of the analytical solution obtained using the lubrication
theory, for different degrees of contraction.

For viscoelastic materials described by a differential stress con-
stitutive equation, published work using slip boundary conditions
is scarce. Here, Pereira [5] studied microfluidic flows under slip of
Newtonian, generalized Newtonian and viscoelastic fluids gov-
erned by the linearized White–Metzner model using the Navier
slip boundary condition.

For the simplified Phan-Thien—Tanner (PTT) and Giesekus mod-
els no analytical solutions with slip boundary conditions have been
reported in the literature, but there are several analytical solutions
in the absence of wall slip. For the PTT fluid we single out the solu-
tions for Couette flow [6–8], and for channel and pipe flows [9]. For
the Giesekus model solutions exist for no slip channel and pipe
flows with the inclusion of a solvent contribution [10] as well as
without solvent [11]. There are also analytical solutions for no slip
planar Couette–Poiseuille flow [12], concentric annular flow
[13,14] and Taylor–Couette flow with inner cylinder rotation [15].

The aim of this work is then, to fill the gap of analytical solu-
tions for Couette and Poiseuille flows of viscoelastic fluids de-
scribed by the simplified PTT and Giesekus constitutive equations
considering slip velocity at the wall.

The paper is organized as follows: first, in Section 2, the govern-
ing equations are presented for both constitutive models and the
various slip models used are also presented and simplified for
the simple case of flow between parallel plates. These slip laws
are the linear and the nonlinear Navier, the Hatzikiriakos and the
asymptotic slip models. In Section 3 analytical solutions are given
for the Couette and the Poiseuille flows of a PTT fluid under various
conditions for the selected slip laws. For some cases like the Navier
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slip law, it is possible to present an analytical solution for the in-
verse problem (where the pressure gradient is computed as a func-
tion of the average velocity), but for the remaining cases the
numerical solution of an equation is required (semi-analytical
solution). In Section 4, the Giesekus model [16] is considered and
again the Couette and Poiseuille flows are studied for the various
slip laws. Section 5 concludes/summarizes the main findings of
this work.

2. Governing equations

It is assumed that the fluid is incompressible and governed by
the continuity (Eq. (1)) and momentum (Eq. (2)) equations,

r � u ¼ 0; ð1Þ

@ðquÞ
@t

þ qr � uu ¼ �rpþr � s; ð2Þ

together with a constitutive equation for the stress s. In Eqs. (1) and
(2), u is the velocity vector, p is the pressure and s is the deviatoric
stress tensor.

The simplified PTT constitutive model is given by the following
equation,

f ðtrsÞsþ k s
r ¼ gðruþ ðruÞTÞ; ð3Þ

where f(trs) is a function depending on the trace of the stress ten-
sor, k is the relaxation time, g is the viscosity coefficient and s

r

stands for Oldroyd’s upper convective derivative (Eq. (4)),

s

r ¼ @s

@t
þ u �rs� ½ðruÞT � sþ s �ru�: ð4Þ

The function f(trs) can take the form of the exponential equa-
tion [17],

f ðtrsÞ ¼ exp
ek
g
trs

� �

; ð5Þ

as well as the linearized function (Eq. (6)), presented by [18],

f ðtrsÞ ¼ 1þ ek
g
trs: ð6Þ

Parameter e is inversely proportional to the extensional viscos-
ity of the fluid and the linearized function only approaches well the
exponential form at low deformations.

The Giesekus constitutive model is given by,

sþ ak
g

ðs � sÞ þ k s
r ¼ gðruþ ðruÞTÞ; ð7Þ

where a is the so-called mobility parameter. This model is based on
molecular concepts and it reproduces well many of the characteris-
tics of polymeric fluids [16].

Considering a Cartesian coordinate system with x, y, z in the
streamwise, transverse and spanwise directions, respectively, and
since the flows studied in this work are the fully developed Couette

and Poiseuille flows (cf. Fig. 1), the governing equations can be
simplified because,

@=@x ¼ 0 ðexcept for pressureÞ; @v=@y ¼ 0; @p=@y ¼ 0: ð8Þ

This implies the automatic satisfaction of the continuity equa-
tion, whereas the momentum equation simplifies and can be inte-
grated to become,

sxy ¼ pxyþ c1; ð9Þ

where px stands for the pressure gradient in the x direction, sxy is
the shear stress and c1 is a stress constant. Eq. (9) is valid regardless
of the rheological constitutive equation.

The simplified forms of the constitutive equations for the fully
developed flow conditions are somewhat different and they will
be presented later, at the beginning of the corresponding results
section.

The slip boundary conditions investigated here are the linear
and nonlinear Navier, the Hatzikiriakos and the asymptotic slip
laws.

For the nonlinear Navier slip law [19] the nonlinear power
function relating wall shear stress and wall slip is given by follow-
ing equation,

uw ¼ ð�sxy;wÞmk; ð10Þ

where m > 0ðm 2 RÞ. When m = 1 the Navier linear slip law [20] is
recovered. The signs � stand for the upper � and bottom + walls,
assuming there is flow between the parallel plates and the coordi-
nate system is given as in Fig. 1.

Hatzikiriakos [21] proposed a slip model based on Eyring’s the-
ory of liquid viscosity that provides a smooth transition from no-
slip to slip flow at the critical shear stress sc (positive constant).
The one dimensional Hatzikiriakos slip law is given by,

uw ¼
kH1 sinhð�kH2sxy;w � scÞ; if jsxyjP sc;

0; if jsxyj < sc;

�

ð11Þ

where kH1, kH2 e [0, +1[ are the friction coefficients. In this work we
have considered only a null critical stress (sc = 0).

The last slip model investigated here is the asymptotic slip law
[22], given for one dimensional flow by,

uw ¼ kA1 lnð�kA2sxy;w þ 1Þ; ð12Þ

with kA1, kA2 e [0, +1[.

3. Analytical solutions for the PTT fluid and discussion

For the fully developed Couette and Poiseuille flows (cf. Fig. 1),
the system of rheological constitutive equations for the simplified
PTT model is given by,

f ðsxx þ syyÞsxx ¼ 2ksxyð@u=@yÞ; ð13aÞ

f ðsxx þ syyÞsyy ¼ 0; ð13bÞ

(a) (b) (c)

Fig. 1. Geometry of the Couette (a), Poiseuille planar channel (b) and Poiseuille pipe (c) flows.
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f ðsxx þ syyÞsxy ¼ gð@u=@yÞ þ ksyyð@u=@yÞ; ð13cÞ

From Eq. (13b) one can see that f(sxx + syy) = 0 or syy = 0, but if
f(sxx + syy) = 0, unrealistic results would be obtained hence the only
possible solution is syy = 0.

Dividing Eq. (13a) by Eq. (13c), the former becomes
sxx ¼ 2k=gðsxyÞ2. If Eqs. (13a–c) are combined with the momentum
equation, the following system is obtained,

sxy ¼ pxyþ c1; ð14aÞ
sxx ¼ ð2k=gÞðsxyÞ2; ð14bÞ
syy ¼ 0; ð14cÞ
f ðsxx þ syyÞsxy ¼ gð@u=@yÞ; ð14dÞ

Length, velocity and stresses are scaled with h, U and gU/h,
respectively (U is the mean streamwise velocity), leading to the
dimensionless system of equations in Eq. (15), with
y0 ¼ y=h;u0ðy0Þ ¼ uðy0Þ=U; c01 ¼ c1=ðgU=hÞ and s0xx ¼ sxy=ðgU=hÞ,

s0xy ¼ p0
xy

0 þ c01; ð15aÞ

s0xx ¼ 2Wiðp0
xy

0 þ c01Þ
2; ð15bÞ

s0yy ¼ 0; ð15cÞ

ð@u0=@y0Þ ¼ f ½s0xx�ðp0
xy

0 þ c01Þ; ð15dÞ

togetherwith f ½s0xx� ¼ 1þ 2eWi
2ðp0

xy
0 þ c01Þ

2 for the linear PTT and the
function f ½s0xx� ¼ expð2eWi

2ðp0
xy

0 þ c01Þ
2Þ for the exponential PTT. In

the previous expressions Wi ¼ kU=h is the Weissenberg number.
The boundary conditions are written in a dimensionless form

for Couette flow in Eqs. (16a–c) for the nonlinear Navier, the Hat-
zikiriakos and the asymptotic slip laws, respectively,

u0
wð0Þ ¼ k

0
mðc01Þ

m; ð16aÞ

u0
wð0Þ ¼ k

0
H1 sinhðk

0
H2c

0
1Þ; ð16bÞ

u0
wð0Þ ¼ k

0
A1 lnð1þ k

0
A2c

0
1Þ; ð16cÞ

and correspondingly by Eqs. (17a–c) for Poiseuille flow

u0
wð�1Þ ¼ k

0
mð�p0

xÞ
m; ð17aÞ

u0
wð�1Þ ¼ k

0
H1 sinhðk

0
H2p

0
xÞ; ð17bÞ

u0
wð�1Þ ¼ k

0
A1 lnð1� k

0
A2p

0
xÞ; ð17cÞ

where k
0
m ¼ kU

m�1ðg=hÞm; k0H1 ¼ kH1=U; k
0
H2 ¼ kH2gU=h; k

0
A1 ¼ kA1=U;

k
0
A2 ¼ kA2gU=h 2 Rþ

0 ;m 2 Rþ.

3.1. Couette flow – linear and exponential PTT models

For the Couette flow (Fig. 1a) with slip velocity at the moving
wall, the only admissible solution for the velocity profile is the triv-
ial solution u0ðy0Þ ¼ 0 [23], regardless of the boundary condition at
the immobile wall.

For the Couette flow with slip velocity at the immobile wall and
no slip at the moving wall and since the pressure gradient is null
(by Eq. (15a) the shear stress is constant c01) the system of equa-
tions simplifies to following equation,

s0xy ¼ c01; ð18aÞ

s0xx ¼ 2Wiðc01Þ
2; ð18bÞ

s0yy ¼ 0; ð18cÞ

ð@u0=@y0Þ ¼ f ½c01�c01 ð18dÞ

with f ½c01� ¼ 1þ 2eWi
2ðc01Þ

2 for the linear PTT and f ½c01� ¼
expð2eWi

2ðc01Þ
2Þ for the exponential PTT.

Integrating Eq. (18d) and applying the Dirichlet boundary con-
dition at the upper wall,

u0
wð1Þ ¼ 1; ð19Þ

together with one of the slip boundary conditions (Eqs. (16a–c)) at
the lower wall, the velocity profile u0ðy0Þ and c01 are given by Eqs.
(20) and (21) for the linear PTT model

u0ðy0Þ ¼ ½c01 þ 2eWi
2ðc01Þ

3�ðy0Þ þ u0
wð0Þ; ð20Þ

C 0
1 þ 2eWi

2ðc01Þ
3 þ u0

wð0Þ � 1 ¼ 0; ð21Þ

and by Eqs. (22) and (23) for the exponential PTT model

u0ðy0Þ ¼ expð2eWi
2ðc01Þ

2Þc01y0 þ u0
wð0Þ; ð22Þ

expð2eWi
2ðc01Þ

2Þc01 þ u0
wð0Þ � 1 ¼ 0: ð23Þ

Due to nonlinearities, the full analytical solutions are obtained
only for the following few cases: the linear PTT model with Navier
slip law and exponentsm = 1, 2, 3, and the exponential PTT with no
slip velocity.

For the linear PTT with m = 1, we have that,

c01 ¼ ð4eWi
2Þ�1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðð4eWi
2Þ�1Þ2 þ 1þ k

0
m

6eWi
2

� �3
s0

@

1

A

1=3

þ ð4eWi
2Þ�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðð4eWi
2Þ�1Þ2 þ 1þ k

0
m

6eWi
2

� �3
s0

@

1

A

1=3

ð24Þ

whereas for exponential PTT with k
0
m ¼ 0; c01 is given by,

c01 ¼ ½2ðeWi
2
=Wð4eWi

2ÞÞ0:5��1: ð25Þ

Substitution of Eqs. (24) and (25) on the expressions for the
velocity profile Eqs. (20) and (22) (for the linear and exponential
PTT, respectively) gives the final solution. Note that the latter solu-
tion depends on the Lambert function W, that can be expressed as
the solution of Eq. (26).

WðxÞeWðxÞ ¼ x: ð26Þ

These results show that the stress c01 will be influenced by the
presence of slip. The analytical solutions for the nonlinear Navier
slip model with m = 2, 3 can be found in Appendix A, which in-
cludes the proof for the existence and uniqueness of solutions for
other values of m and for the Hatzikiriakos and asymptotic slip
models, together with the corresponding interval where the solu-
tions are located.

The relationship between slip velocity, stress and eWi2 was
studied for both PTT models with linear Navier slip law, and is plot-
ted in Fig. 2.

As the slip velocity increases to total slip, the dimensionless
shear stress decreases to zero, regardless of the slip model and
Weissenberg number (for full slip conditions, the velocity profile
is a plug flow since there is no shear and the normal stresses are
null).

Lower shear stresses are obtained for the exponential PTT when
compared with the linear PTT especially as the no-slip condition is
approached. As slip increases the shear rates are smaller and under
these conditions the linear stress function (first two terms of a Tay-
lor expansion) approaches well the exponential stress function. It
is also shown that the shear stress decreases with the increase of
Wi on account of shear thinning behavior.
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3.2. Planar channel flow with the linear PTT model

For the Poiseuille flow (Fig. 1b) it is assumed that the same
boundary condition is applied at the top and bottom walls leading
to a symmetric flow, hence from Eq. (15a) c01 ¼ 0.

From Eq. (15d) one obtains,

ð@u0=@y0Þ ¼ p0
xy

0 þ 2eWi
2ðp0

xy
0Þ3; ð27Þ

that after integration gives,

u0ðy0Þ ¼ 0:5p0
xy

02 þ 0:5eWi
2ðp0

xÞ
3y04 þ c; c 2 R; ð28Þ

where there are two unknowns, the pressure gradient p0
x and c. In

order to obtain a unique solution and determine c, a boundary con-
dition given by any of the Eqs. (17a-c) must be provided, here rep-
resented by u0

wð1Þ. The velocity profile is then given by the following
equation,

u0ðy0Þ ¼ 0:5p0
xðy02 � 1Þ þ 0:5eWi

2ðp0
xÞ

3ðy04 � 1Þ þ u0
wð1Þ: ð29Þ

By applying a constant flow rate Q = Uh (with U the imposed
average velocity) and integrating Eq. (29) over half of the channel
width, the following equation is achieved for the pressure gradient,

Z 1

0

u0ðy0Þdy0 ¼ 1 ) ð�2=5ÞeWi
2ðp0

xÞ
3 þ p0

xð�1=3Þ � 1þ u0
wð1Þ

¼ 0 ð30Þ

The nonlinearity of Eq. (30) (u0
wð1Þ depends on p0

x, cf. Eqs. (17a–
c) reduces the existence of full analytical solutions to just a few
cases, m = 1, 2, 3.

Assuming m = 1 in Eq. (17a), Eq. (30) can be rewritten after
some algebra as,

ðp0
xÞ

3 þ p0
x

ð1=3þ k
0Þ

ð2=5ÞeWi
2

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

R

þ ð2=5ÞeWi
2

� ��1

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Q

¼ 0 ð31Þ

According to the Cardano–Tartaglia formula [24] this cubic
equation has the following real solution for the pressure gradient
as a function of the imposed flow rate,

p0
x ¼ �Q=2þ ½ðQ=2Þ2 þ ðR=3Þ3�1=2

� �1=3

þ �Q=2� ½ðQ=2Þ2 þ ðR=3Þ3�1=2
� �1=3

; ð32Þ

with R and Q defined in Eq. (31).
With this explicit formula, the velocity profile (Eq. (29)) will no

longer depend on the pressure gradient, and it can be written (Eq.
(33)) as a function of the y0 coordinate (assuming all the parame-
ters are known),

u0ðy0Þ ¼ ðaþ bÞ1=3 þ ða� bÞ1=3
� �

½0:5ðy02 � 1Þ � k
0�

þ ðaþ bÞ1=3 þ ða� bÞ1=3
� �3

0:5eWi
2ðy04 � 1Þ; ð33Þ

where

ða�bÞ1=3 ¼ �ðð4=5ÞeWi
2Þ�1 � ðð4=5ÞeWi

2Þ�2 þ 1

3

ð1=3þ k
0Þ

ð2=5ÞeWi
2

 !3
2

4

3

5

1=2
0

B
@

1

C
A

1=3

:

For m = 2, Eq. (30) can be rearranged and rewritten as Eq. (34),

ðp0
xÞ

3 þ k
0
m

ð�2=5ÞeWi
2
ðp0

xÞ
2 þ ð1=3Þ

ð2=5ÞeWi
2
p0
x þ ½ð2=5ÞeWi

2��1 ¼ 0 ð34Þ

The solution of the Cardano–Tartaglia formula shows that the
real roots of this cubic equation are different.

For m = 3, the cubic Eq. (35) for the pressure gradient is similar
to Eq. (31) and its real solution is also given by Eq. (32), with the
new definitions of R and Q.

ðp0
xÞ

3 þ p0
x

ð1=3Þ
ð2=5þ k

0
mÞeWi

2

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

R

þ ½ð2=5þ k
0
mÞeWi

2��1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

q

¼ 0 ð35Þ

Hence, the velocity profile can be computed by following
equation,

u0ðy0Þ ¼ ðaþ bÞ1=3 þ ða� bÞ1=3
� �

½0:5ðy02 � 1Þ�

þ ðaþ bÞ1=3 þ ða� bÞ1=3
� �3

0:5eWi
2ðy04 � 1� k

0
mÞ ð36Þ

where ða� bÞ1=3 ¼
 

� ð4=5þ k
0
mÞeWi

2
� ��1

�
"

ð4=5þ k
0
mÞeWi

2
� ��2

þ

1
3

ð1=3Þ
2=5þk0mð ÞeWi2

� �3
#1=2!1=3

.

For the Hatzikiriakos and asymptotic models and for other non-
linear slip exponents, the solution is semi-analytical and requires a
procedure like the one adopted in Appendix A. Incidentally, for
m = 4 it is still possible to obtain a closed form analytical solution.
In the Supplementary material appended to this work we give the
solution for the pressure gradient equation (Eq. (34)) for the four
different slip boundary conditions and for different values of
eWi

2
; k

0
m; k

0
H1; k

0
H2; k

0
A1 and k

0
A2.

3.3. Planar channel flow with the exponential PTT model

Eq. (15d) for the exponential PTT model (Eq. (5)) and consider-
ing symmetry on the centreplane leads to

@u0

@y0
¼ expð2eWi

2ðp0
xy

0Þ2Þp0
xy

0: ð37Þ

After integration and application of the boundary condition u0
wð1Þ

the velocity profile is

0 1 2 3 4 5

0

0,30

0,35

0,40

0,45

0,50

0,55

1́
c

´
m

k

0.5

0.5

0.4

0.3

0.2

1́
c

´
m

k

1.0 1.5 2.0

2
1, 2,3, 4,5Wiε =

1
1

2

23

4

35
4

5

exp.PTT

lin.PTT

Fig. 2. Variation of c01 as a function of slip k
0
m and eWi2 for Couette flow with slip at

the fixed wall and no-slip at the moving wall. The eWi2 numbers are given next to

the graph in the zoomed view.

100 L.L. Ferrás et al. / Journal of Non-Newtonian Fluid Mechanics 171–172 (2012) 97–105



u0ðy0Þ ¼ ½4eWi
2ðp0

xÞ�
�1ðexpð2eWi

2ðp0
xy

0Þ2Þ�expð2eWi
2ðp0

xÞ
2ÞÞþu0

wð1Þ
ð38Þ

where u0
wð1Þ is the boundary condition given by any of the Eqs.

(17a–c).
The solution of the inverse problem is achieved as for the linear

PTT model, i.e. integrating the velocity profile of Eq. (38) now lead-
ing to,

Z 1

0

expð2eWi
2ðp0

xy
0Þ2Þdy0 ¼ expð2eWi

2ðp0
xÞ

2Þ þ 4eWi
2ðp0

xÞ

� 4eWi
2ðp0

xÞu0
wð1Þ: ð39Þ

and then solving in order to the pressure gradient. To evaluate the
left hand side (lhs) of Eq. (39) use is made of the definition of the
error function (erf), giving

� i
ffiffiffiffi
p

p

2
ffiffiffiffi

G
p erf i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eWi
2ðp0

xÞ
2

q� �

¼ expð2eWi
2ðp0

xÞ
2Þ þ 4eWi

2ðp0
xÞ

� 4eWi
2ðp0

xÞu0
wð1Þ: ð40Þ

Eq. (40) can be further simplified and written as,

X1

k¼0

ð2eWi
2ðp0

xÞ
2Þk

ð2kþ 1Þk!
¼ expð2eWi

2ðp0
xÞ

2Þ þ 4eWi
2ðp0

xÞ

� 4eWi
2ðp0

xÞu0
wð1Þ: ð41Þ

This series is convergent and since it calculates the area under a
known function, it can be shown that the lhs of Eq. (41) is a mono-
tonic function in the range p0

x 2� �1;0�. To obtain the pressure gra-
dient the range containing the solution must be known and the
bisection method is then applied. Care must be taken because of
the sharp changes occurring while changing the slip friction
coefficient.

Tables are given as Supplementary material containing the
solution for the pressure gradient equation (Eq. (41)) for the four
different slip boundary conditions and for different values of
eWi

2
; k

0
m; k

0
H1; k

0
H2; k

0
A1 and k

0
A2.

The results for the Poiseuille flow with the linear and exponen-
tial PTT models can be summarized as follows. For the linear PTT
model with linear Navier slip, the absolute value of the pressure

drop decreases (tends to zero) with the increase of both slip and
eWi

2, as observed in Fig. 3. So, the effect of slip on p0
x is as in Couette

flow. An increase in eWi
2 increases the shear rate, while imparting

shear-thinning behavior to the fluid so that ultimately it reduces
significantly its shear viscosity as shown in Fig 4a in terms of the
shear stress s0xy. The corresponding normal stress s0xx variation is
shown in Fig. 4b and is similar to that of the shear stress since they
are proportional. In the absence of slip the results match those of
Oliveira and Pinho [9].

As in the Couette flow, and for the same reasons, the exponen-
tial PTT model exhibits lower stresses than the corresponding lin-
ear PTT model.

The solution for the Poiseuille pipe flow of a PTT fluid (linear
and exponential) is given in Appendix B.

4. Analytical solutions for the Giesekus fluid and discussion

The derivation of the equations is well explained by Yoo and
Choi [10], Schleiniger and Weinacht [11] and Raisi et al. [12] and
here we follow the same sequence as in Section 3 for the PTT
model.

Based on the simplifications for fully developed flow in the
geometries of Fig. 1, the dimensionless momentum and constitu-
tive equations become (h, U and gU/h are the length, velocity and
stress scales, respectively),

@s0xy
@y0

¼ p0
x ð42aÞ

´xxτ

´y 0ḿk =

1E-1ḿk =

1ḿk =

0ḿk =

1E-1ḿk =

1ḿk =

´xyτ

´y 0

1E-1

1

´

´

´

m

m

m

k

k

k

=

=

=

0

1E-1

1

´

´

´

m

m

m

k

k

k

=

=

=

(a)

(b)

Fig. 4. Variation of s0xx (a) and s
0
xy (b) along the channel half width y0 for a Poiseuille

flow of a PTT model with different values of k
0
m and constant eWi2 = 1.
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Fig. 3. Variation of p0
x as a function of k

0
m and eWi2 for a Poiseuille planar channel
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next to each graph in the zoomed view.
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2Des0xy
@u0

@y0
¼ s0xx þ aWiðs02xx þ s02yyÞ ð42bÞ

ð1þWis0yyÞ
@u0

@y0

� �

¼ s0xy þ aWis0xyðs0xy þ s0xxÞ ð42cÞ

aWiðs02xy þ s02yyÞ þ s0yy ¼ 0 ð42dÞ

where Wi ¼ kU=h is the Weissenberg number.
Redefining dimensionless quantities as

u� ¼ Wiu
0
; s�xx ¼ Wis0xx; s

�
yy ¼ Wis0yy and s�xy ¼ Wis0xy the previ-

ous system of equations (Eq. (42)) can be integrated and presented
as in the following equation,

s�xy ¼ Wiðp0
xy

0 þ c02Þ ð43aÞ

@u�

@y0
¼ 2as�xy

1� ð2a� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4a2ðs�xyÞ
2

q� �

ð2a� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4a2ðs�xyÞ
2

q

Þ2
ð43bÞ

s�xx ¼
ð1� aÞð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4a2ðs�xyÞ
2

q

Þ þ 2a2ðs�xyÞ
2

h i

að2a� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4a2ðs�xyÞ
2

q

Þ
ð43cÞ

s�yy ¼
ð�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4a2ðs�xyÞ
2

q

Þ
2a

ð43dÞ

Eqs. (43b,c) require 1� 4a2ðs�xyÞ
2 > 0 and in addition, thermo-

dynamic considerations [10] require a positive first normal stress
difference ðs�xx � s�yy P 0Þ. This inequality can be further simplified
[10] leading to 2a� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� 4a2ðs�xyÞ
2Þ

q

> 0.
These restrictions on the system of equations bring two sets of

solutions [10], the so-called upper branch solution, where

s�xy <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=a� 1
p

for a 2�0;1=2�
s�xy 6 1=2a for a 2�1=2;1�

(

ð44Þ

and the lower branch solution for which
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=a� 1
p

< s�xy 6 1=2a for a 2�1=2;1�: ð45Þ

These restrictions imply that for some values of the Weiss-
enberg number the solutions for Couette and Poiseuille flows with
no slip may not exist as already shown by Yoo and Choi [10]. Next
we analyse the cases with slip but since the lower branch solution
presents physically unrealistic solutions [10] only the upper
branch solution needs to be considered.

4.1. Couette flow

Following Yoo and Choi [10] let w ¼ 2as�xy, p
0
x ¼ 0 in Couette

flow, so w can be written as w ¼ 2aWic
0
2 (with the help of Eq.

(43a)) and integrate Eq. (43b) to obtain the following velocity
profile

u�ðy0Þ ¼
w 1� ð2a� 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� w2
q� �

2a� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� w2
q� �2

y0 þ c: ð46Þ

where c is the constant of integration determined by the lower wall
slip boundary conditions with the proper normalization (Eqs. (16a–
c)) multiplied by Wi (Eqs. (47a–c)). These are given by,

u�
wð0Þ ¼ Wik

0
m

w

2aWi

� �m

; ð47aÞ

for the (non)linear Navier slip law,

u�
wð0Þ ¼ Wik

0
H1 sinh k

0
H2

w

2aWi

� �

; ð47bÞ

for the Hatzikiriakos slip law, and

u�
wð0Þ ¼ Wik

0
A1 ln 1� k

0
A2

w

2aWi

� �

; ð47cÞ

for the asymptotic slip law.
At the upper wall there is no slip (cf. Section 3.1 for the justifi-

cation) and the Dirichlet boundary condition is

u�
wð1Þ ¼ Wi; ð48Þ

and this condition together with Eq. (46) provides the following im-
plicit equation relating the Weissenberg number and c02 (note that
W ¼ 2aWic

0
2)

2aWic
0
2

1� ð2a� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2aWic
0
2

	 
2
q� �

2a� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2aWic
0
2

	 
2
q� �2

þ u�
wð0Þ �Wi ¼ 0: ð49Þ

This equation must be solved numerically with the following
restriction on Wi,

Wi � c02 6
1

2a
: ð50Þ

For the special case of the linear Navier slip law it is possible to
analytically find the limiting admissible values for Wi and c02. Based
on the definition of w, the upper branch solution (Eq. (44)) can be
rewritten as,

w < 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=a� 1
p

for a 2�0;1=2�;
w 6 1 for a 2�1=2;1�;

(

ð51Þ

Eq. (49) with the Navier slip boundary condition can be rewrit-
ten as,

WiðwÞ ¼
w 1� ð2a� 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� w2
q� �

2a� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� w2
q� �2

þ wk
0
m

2a
; ð52Þ

WiðwÞ ¼ @u�

@y0
þ wk

0
m

2a
: ð53Þ

Physical reasons require the solution to verify
@ð@u�=@yÞ=@s�xy ¼ 2a@ð@u�=@yÞ=@w > 0 [10], i.e., shear rate in-
creases with shear stress and this is verified by the upper branch
solution. Since @ð@u0=@yÞ=@W > 0 and @ðWk

0
m=2aÞ=@W > 0, by Eq.

(53) o(Wi(w))/ow > 0 meaning that Wi(w) is a monotonically
increasing function of w. Thus, for a 2�1=2;1� and considering Eq.
(52), the restrictions are given by,

lim
w!1

WiðwÞ ¼ 1

ð2a� 1Þ2
þ k

0
m

2a
; ð54Þ

for the Weissenberg number and by

2a

ð2a� 1Þ2
þ k

0
m

 !�1

6 c02 < 1: ð55Þ

for the stress coefficient c02 (obtained combining Eqs. (52)–(54).
Note that c02 < 1 because the fluid is shear thinning [10]. For the
range a e ]0; 1/2] there are no restrictions.

As shown by Eqs. (54) and (55), increasing the slip velocity
smoothes the restriction on Wi and c02. For the other slip laws, it
is more difficult to determine these restrictions on the Weiss-
enberg number and stress constants. Although those slip laws

102 L.L. Ferrás et al. / Journal of Non-Newtonian Fluid Mechanics 171–172 (2012) 97–105



can be written using w, they always depend on Wi or c02, so the
same approach cannot be used to identify those restrictions.

It was shown that limiting values of Wi and c02 depend on slip.
Increasing the slip coefficient, a higher limiting value for Wi is
obtained and the range of admissible solutions for the stress coeffi-
cient c02 also increases, because the admissible valuesofWi and c02 are
inversely proportional to each other. Table 1 presents a set of limit-
ing values forWi and c02 as a function of a and the slip coefficient.

Although the existence of slip seems to smooth the problem of
nonexistence of analytical solutions, such limitation continues to
exist, at least for specific cases. In fact, as the Weissenberg number
is increased a larger slip velocity is required to guarantee the exis-

tence of solution. From Eq. (52) withWi ¼ 1;a ¼ 1; k
0
m ¼ 0:1 (linear

Navier slip) and some manipulation, the result is,

1=ð2c02Þ � 1=20 ¼ 1=ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4ðc02Þ
2Þ

q

an equation without a real

number solution, i.e., although slip widens the range of conditions
for a solution to exist with the Giesekus model, by itself it does not
guarantee its existence.

4.2. Planar channel flow

The symmetry condition of planar Poiseuille flow (see Fig. 1b),
defines the shear stress distribution given by s�xy ¼ Wip

0
xy

0 (see
Eq. (43a). Using / ¼ �2aWið�p0

xÞ the differential equation for the
velocity derivative (Eq. (43b)) becomes (see [10] for more details),

@u�ðy0Þ
@y0

¼ �
/y0 1� ð2a� 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� /2y0 2

q� �

2a� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� /2y0 2

q� �2
: ð56Þ

The solution of the direct problem with wall slip is,

u�ðy0Þ ¼ að/Þ
/

þ uw
�ð1Þ ð57Þ

with

að/Þ ¼ð1� 2b2Þ ln
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� /2y0 2

q

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� /
2

q

2

6
4

3

7
5þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� /2y0 2

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� /2

q� �

þ bð1� b
2Þ 1

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� /2y0 2

q � 1

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� /2
q

2

6
4

3

7
5

and b = 2a � 1.

The solution for the inverse problem is obtained as for the PTT
fluid, integrating the velocity profile, here with the modified
dimensionless velocity

Table 1

Minimum and maximum admissible values for c02 and Wi as a function of a and k
0
m for Couette flow of Giesekus model with the linear Navier slip law.

k0m 0 1 2 3 4 5

a C0
2;min C0

2;min
Wimax C0

2;min
Wimax C0

2;min
Wimax C0

2;min
Wimax C0

2;min
Wimax

0.6 0.033 25.000 0.032 25.833 0.031 26.667 0.030 27.500 0.032 26.200 0.029 29.167

0.7 0.114 6.250 0.103 6.964 0.103 6.950 0.098 7.300 0.093 7.650 0.089 8.000

0.8 0.225 2.778 0.184 3.403 0.175 3.578 0.157 3.978 0.143 4.378 0.131 4.778

0.9 0.356 1.563 0.262 2.118 0.226 2.463 0.191 2.913 0.165 3.363 0.146 3.813

1 0.500 1.000 0.333 1.500 0.250 2.000 0.200 2.500 0.167 3.000 0.143 3.500

Table 2

Variation of p0
x with different values of a, k0m and constant Wi = 1 for a Poiseuille flow

with the Giesekus model with the linear Navier slip law.

a k
0
m

1 2 3

0.6 0.666951 0.420398 0.298136

0.7 0.653780 0.419802 0.298037

0.8 X 0.419456 0.298005

0.9 X 0.419394 0.298044

1 X 0.419677 0.298163
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Fig. 5. Variation of s0xx (a), s0xy (b) and s0yy (c) along the channel half width y0 for a

Poiseuille flow of a Giesekus model with different values of a, k0m and for a constant

Wi = 1.
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Z 1

0

u�ðy0Þdy0 ¼ Wi: ð58Þ

Once again the only physically acceptable solution is the upper
branch here is given as,

j/y0j < 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=a� 1
p

for a 2�0;1=2�;
j/y0j 6 1 for a 2�1=2;1�;

(

ð59Þ

for a fixed y0. As expected, restrictions on the admissible Weiss-
enberg number Wi and pressure gradient �p0

x arise.
For Poiseuille flow, slip also relaxes the Weissenberg number

restriction and in order to obtain the pressure gradient the nonlin-
ear Eq. (58) must be solved numerically.

Assuming that Wi = 1 Yoo and Choi [10] showed that there
should be no solution for Eq. (58), but its existence can be proved
for some cases with slip even though it has to be determined
numerically. For this particular case, Table 2 lists the pressure gra-
dient for different values of a and k

0
m. No solution exists for

a = 0.8; 0.9; 1.0 and k
0
m ¼ 1 and the pressure gradient decreases

when a increases.
The variation of the shear stress s�xy (and of the other stress com-

ponents) with slip, shown in Fig. 5, is qualitatively similar to that for
the PTTmodels. For the normal stress s�xx the Giesekusmodel exhib-
its lower values than the corresponding PTTmodels, everything else
being the same. Even though the effect ofa on both s�xy and s

�
xx is very

small, it leads to a non-zero second normal stress difference (here
N2 ¼ �s�yy) that decreases with slip as shown in the plots of s�yy of
Fig. 5c (s�yy ¼ 0 for any of the simplified PTT models).

The solution for the Poiseuille pipe flow of a Giesekus fluid is gi-
ven in Appendix B.

5. Conclusions

Analytical and semi-analytical solutions (for the direct and in-
verse problems) are presented for the Couette and Poiseuille flows
of linear and exponential simplified PTT fluids, together with an
analysis of the existence of solutions for the one mode Giesekus
model.

For the sPTT fluids it could be proved that for the four slip mod-
els presented there is always a unique solution for the flow be-
tween parallel plates, but full analytical solutions could only be
found for special values of the exponent in the nonlinear Navier
slip law.

For the Giesekus fluid, the procedure to obtain the solution is
very similar as the one employed for the sPTT fluid. The proof of
existence of solutions (that could not exist without slip velocity)
is made analytically for the Couette flow and is studied numeri-
cally for the Poiseuille flow. For both flows this study is carried
out for the Navier slip law, although, for the other nonlinear laws
the results are qualitatively similar.

Acknowledgments

The authors would like to acknowledge the financial support
provided by Fundação para a Ciência e Tecnologia under the Project
SFRH/BD/37586/2007.

Appendix A

A.1. Solutions for the Couette flow and nonlinear Navier slip with the

PTT models

The nonlinear Navier slip law is given by the following equation,

u0 ¼ k
0
m c01
	 
m

; m 2 Rþ; ðA1Þ

where k
0
m ¼ kU

m�1ðg=hÞm. The velocity profile is obtained by solving
the following two systems of equations. For the linear PTT model
they are,

u0ðy0Þ ¼ c01 þ 2eWi
2
c01
	 
3

h i

ðy0Þ þ k
0
m c01
	 
m

; ðA2Þ

2eWi
2
c01
	 
3 þ c01 þ k

0
m c01
	 
m � 1 ¼ 0: ðA3Þ

Let gðc01Þ ¼ 2eWi
2ðc01Þ

3 þ c01 þ kmðc01Þ
m � 1, then, the derivative of

gðc01Þ is positive and given by,

dg c01
	 


dc
0
1

¼ 6eWi
2
c01
	 
2 þm� k

0
m c01
	 
m�1 þ 1 > 0: ðA4Þ

Since g(0) = �1 and gð1Þ ¼ 2eWi
2 þ km > 0, Bolzano and Rolle

theorems imply a unique solution in the range [0; 1].
For the special case ofm = 3, the solution is given by Eq. (A5) ob-

tained with the help of the Cardan–Tartaglia formula,

c01 ¼ 2eWi
2 þk

0
m

� ��1

=2þ �2eWi
2 �k

0
m

� ��1

=2

� �2
" 

þ �2eWi
2 þk

0
m

� ��1

=3

� �3
#1=2

1

A

1=3

þ 2eWi
2 �k

0
m

� ��1

=2

�

� �2eWi
2 � k

0
m

� ��1

=2

� �2

þ 2eWi
2 þk

0
m

� ��1

=3

� �3
" #1=2

1

A

1=3

:

ðA5Þ
For the special case of m = 2, the analytical solution is obtained

as a general solution of a cubic equation [24].
The system of equations for the exponential PTT is,

u0ðy0Þ ¼ exp 2eWi
2
c01
	 
2

� �

c01y
0 þ k

0
m c01
	 
m

; ðA6Þ

exp 2eWi
2
c01
	 
2

� �

c01 þ k
0
m c01
	 
m � 1 ¼ 0: ðA7Þ

Let gðc01Þ ¼ expð2eWi
2ðc01Þ

2Þc1 þ k
0
mðc01Þ

m � 1, the derivative of gðc01Þ
is positive and given by following equation,

dg c01
	 


dc
0
1

¼ exp 2eWi
2
c01
	 
2

� �

1þ 4eWi
2
c01
	 
2

� �

þm� k
0
m c01
	 
m�1

> 0 ðA8Þ

Since g(0) = �1 and gðk0�1=m
m Þ ¼ expð2eWi

2ðk0mÞ
�2=mÞk0�1=m

m > 0,
we have, once again by Bolzano and Rolle theorems, a unique solu-
tion in the interval ½0; k

0�1=m
m �.

For the other two slip boundary conditions given by Eq. (16b)
and (16c) we have similar results. For the linear PTT let
gðc01Þ ¼ 2eWi2ðc01Þ

3 þ c01 þ u0
wð0Þ � 1, then the following positive

derivative is obtained,

dg c01
	 


dc
0
1

¼ 6eWi
2
c01
	 
2 þ du

0
wð0Þ
dc

0
1

þ 1 > 0: ðA9Þ

For the exponential PTT let gðc01Þ ¼ 2eWi
2ðc01Þ

2Þc01 þ u0
wð0Þ � 1,

then,

dg c01
	 


dc
0
1

¼ expð2eWi
2
c01
	 
2Þ 1þ 4eWi

2
c01
	 
2

� �

þ du
0
wð0Þ
dc

0
1

> 0: ðA10Þ

Since g(0) < 0 and g(1) > 0 for both the linear and the exponen-
tial PTT once again it is proved the existence of a unique solution in
the range [0; 1].
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Appendix B. Pipe flow for the sPTT and Giesekus models

B.1. sPTT

The solutions for the pipe flow (Fig. 1c) are very similar to those
of channel flow. A practical way to obtain the simplified governing
equations is to substitute y0 by r0/2 in Eq. (15) leading to,

s0rx ¼ p0
xðr0=2Þ; ðB1aÞ

s0xx ¼ ð2k=gÞðp0
xÞ

2r0 2=4; ðB1bÞ

s0rr ¼ 0; ðB1cÞ

ð@u0=@r0Þ ¼ f ðð2k=gÞðp0
xÞ

2r0 2=4Þp0
xðr=ngÞ: ðB1dÞ

The solution for the direct problem is given by Eqs. (B2) and (B3) for
the linear and the exponential models, respectively.

u0ðr0Þ ¼ 0:125p0
xðr02 � 1Þ þ 0:0625eWi

2ðp0
xÞ

3ðr04 � 1Þ þ u0
wð1Þ ðB2Þ

u0ðy0Þ ¼ ½2eWi
2ðp0

xÞ�
�1ðexpð0:5eWi

2ðp0
xÞ

2r02Þ
� expð0:5eWi

2ðp0
xÞ

2ÞÞ þ u0
wð1Þ ðB3Þ

The term u0
wð1Þ is once again given by any of the Eqs. (17a–c). The

solution for the inverse problem is very similar to the channel flow.

B.2. Giesekus

For the pipe flow, the solution is very similar to that in the pres-
sure-driven channel flow. The main difference is that y0 is replaced
by r0, and / gives place to W ¼ aWið�p0

xÞ.

u�ðr0Þ ¼ aðw1Þ
w1

þ u�
wð1Þ: ðB4Þ

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jnnfm.2012.01.009.
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