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ABSTRACT

Context. Recent observations of hard X-rays and very high energy gamma-rays from a number of young shell type supernova rem-
nants indicate the importance of detailed quantitative studies of energy spectra of relativistic electrons formed via diffusive shock
acceleration accompanied by intense nonthermal emission through synchrotron radiation and inverse Compton scattering.
Aims. The aim of this work was derivation of exact asymptotic solutions of the kinetic equation which describes the energy distribu-
tion of shock-accelerated electrons for an arbitrary energy-dependence of the diffusion coefficient.
Methods. The asymptotic solutions at low and very high energy domains coupled with numerical calculations in the intermediate
energy range allow analytical presentations of energy spectra of electrons for the entire energy region.
Results. Under the assumption that the energy losses of electrons are dominated by synchrotron cooling, we derived the exact asymp-
totic spectra of electrons without any restriction on the diffusion coefficient. We also obtained simple analytical approximations which
describe, with accuracy better than ten percent, the energy spectra of nonthermal emission of shock-accelerated electrons due to the
synchrotron radiation and inverse Compton scattering.
Conclusions. The results can be applied for interpretation of X-ray and gamma-ray observations of shell type supernova remnants, as
well as other nonthermal high energy source populations like microquasars and large scale synchrotron jets of active galactic nuclei.
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1. Introduction

The nonthermal X-ray emission detected from a number of
young shell-type SNRs (for a review see e.g. Vink 2006) is
generally interpreted as synchrotron radiation of relativistic
electrons accelerated diffusively by shock waves to multi-TeV
energies (see e.g. Drury et al. 2001). Two other (alternative) ra-
diation mechanisms – the bremsstrahlung of subrelativistic elec-
trons and the inverse Compton (IC) scattering of moderately rel-
ativistic electrons – are not sufficiently effective to explain the
observed X-ray fluxes. The discovery of TeV gamma-rays from
young SNRs, in particular from Cas A (Aharonian et al. 2001),
RX J1713.7-3946 (Enomoto et al. 2002; Aharonian et al. 2004)
and RX J0852.0-4622 (Katagiri et al 2005; Aharonian et al.
2005) provides unambiguous evidence of acceleration of parti-
cles (electrons and/or protons) to energies 100 TeV and beyond.
Unfortunately even the very high quality morphological and
spectrometric studies of young SNRS in TeV gamma-rays per-
formed with the HESS array of imaging atmospheric Cherenkov
telescopes do not allow robust conclusions concerning the ori-
gin of gamma-rays. For example, in the case of the best stud-
ied gamma-ray emitting SNR, RX J1713.7-3946, the hadronic
model can explain satisfactorily both the overall energetics and
the spectral features of TeV gamma-ray emission. Nevertheless,
the inverse Compton origin of gamma-rays remains an alter-
native option, provided that the magnetic field in the gamma-
ray production region does not exceed 10 µG (Aharonian et al.
2006).

Power-law distributions of relativistic particles are readily
formed at astrophysical shocks, in particular in young shell type
SNRs, through the so-called diffusive shock acceleration (DSA)
mechanism (Krymsky 1977; Bell 1978; Axford et al. 1977). The
maximum energy of accelerated particles and the shape of the
spectrum around and beyond the maximum energy (the so-called
“cutoff region”) is determined by the competition between the
acceleration and escape rates, as well as, in the case of electrons,
by radiative (synchrotron and inverse Compton) energy losses.
In this regard, the most important information about the accel-
erator is contained in the energy distribution of particles in the
cutoff region. The spectrum of relativistic electrons in the cut-
off region is formed under conditions when particles gain en-
ergy during the shock crossing and lose energy simultaneously.
In young SNRs, the radiative cooling of electrons results in for-
mation of highest energy tails of synchrotron X-rays and inverse
Compton gamma-rays, at ≥1 keV and ≥10 TeV, respectively.
Thus, the comparison of hard X-ray and TeV gamma-ray obser-
vations with the spectral features predicted by the DSA model
in these energy bands gives direct information about the key pa-
rameters characterizing the process of particle acceleration. In
this regard, analytical presentations of the energy distributions
of high energy electrons and the spectra of their synchrotron and
IC radiation components provide effective tools for studies of
nonthermal processes in SNRs.

So far, analytical solutions for the electron spectra at the
plane shock have been derived only for a special case of energy-
independent diffusion coefficient (Bulanov & Dogiel 1979;
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Fig. 1. The shock speeds in the upstream and downstream regions (solid
lines) and the spatial distributions of electrons (dashed lines), acceler-
ated at the plane shock.

Webb et al. 1984; Heavens & Meisenheimer 1987). At the same
time, for typical shock speeds of several thousand km s−1 in
young SNRs, the particles, in particular electrons, have a chance
to be boosted to multi-TeV energies only if the acceleration pro-
ceeds in the most effective way, the so-called Bohm diffusion
limit. This implies strong energy-dependence of the diffusion co-
efficient, D(E) ∝ E. Therefore, it is important to derive analyti-
cal solutions for the electron spectra for a more realistic case of
diffusion.

In this paper we present exact asymptotic solutions for the
high-energy tails of distributions of electrons formed at the plane
shock, assuming arbitrary energy-dependencies of both the dif-
fusion coefficient and the energy lose rate of electrons. The spec-
trum of electrons in the low-energy domain where the radiative
cooling can be neglected, is well known from the solution of the
transport equation characterizing the acceleration at the shock
without losses. On the other hand, assuming that the cooling
of electrons at very high energies is dominated by synchrotron
losses, we obtained simple analytical expressions for the exact
asymptotic solutions in the high energy domain. In order to ex-
tend the analytic presentations to a broader energy range, we
should “glue” the asymptotic solutions applicable at very low
and very high energies, using numerical calculations performed
at intermediate energies. We treat separately the electron distri-
butions at the shock, as well as downstream and upstream of the
shock, and calculate the spectra of synchrotron and IC radiation
in these regions. We present these spectra in forms of simple
analytical approximations which appear significantly different
from ones often used in the literature for the fits of spectral mea-
surements and subsequent interpretations of the X-ray and TeV
gamma-ray observations of SNRs in terms of synchrotron and
IC radiation of multi-TeV electrons.

2. Asymptotic form of the electron spectra

Below we consider acceleration of electrons by the plane shock.
The upstream plasma moves with a speed u = u1 towards the
shock from −∞ of the x axis (see Fig. 1). Then, the downstream
speed is u2 = u1/σ, where σ is the shock compression ratio.
The electron momentum distribution N(p, x) obey the following

equation written in the shock frame upstream and downstream
of the shock:

∂

∂x
D
∂N
∂x
− u
∂N
∂x
+

1
p2

∂

∂p
p2b(p)N = 0. (1)

Here b(p) is the energy lose rate of particles (b > 0). Hereafter
we assume that the synchrotron losses dominate over the escape
of electrons from the system. The electron momentum distribu-
tion N(p) is normalized to n = 4π

∫
p2dpN(p), where n is the

number density of accelerated particles.
Boundary condition at the shock front, x = 0, can be writ-

ten as

u1
p
γs

∂N0

∂p
= D2

∂N
∂x

∣∣∣∣∣
x=+0
− D1

∂N
∂x

∣∣∣∣∣
x=−0
, (2)

where γs = 3σ/(σ − 1) is the power-law index of particles ac-
celerated at the absence of energy losses, N0(p) is the electron
distribution at the shock front, D1 and D2 are the diffusion coef-
ficients upstream and downstream of the shock, respectively.

Analytical solutions of Eqs. (1) and (2) can be obtained for
simplified conditions, e.g. at low energies when the radiative
energy losses can be neglected, or in the case of energy-
independent diffusion-coefficient. On the other hand, it is pos-
sible to derive asymptotic solutions for an arbitrary diffusion co-
efficient in the very high energy regime, where the energy losses
of particles dominate over their acceleration. In this regime, it
is convenient to present the solution for the steady-state energy
distribution of electrons in the following form:

N1,2 = K1,2(x, p) exp [S 1,2(x, p)], (3)

where indices 1, 2 correspond to the upstream and downstream
regions, respectively. In the asymptotic regime, when losses
dominate over the acceleration, the function S (x, p) obtains large
negative values. According to the standard asymptotic method
we assume that S (x, p) is proportional to b(x, p). After substi-
tution of Eq. (3) into Eq. (1) and keeping all terms which are
proportional to b2 and b, one finds

D1,2

(
∂S 1,2

∂x

)2

+ b1,2
∂S 1,2

∂p
= 0 (4)

D1,2K1,2
∂2S 1,2

∂x2
+ 2D1,2

∂K1,2

∂x

∂S 1,2

∂x

−u1,2K1,2
∂S 1,2

∂x
+

1
p2

∂

∂p
p2b1,2K1,2 = 0. (5)

Denoting by

S 0(p) = S 1(p)|x=0 = S 2(p)|x=0 , (6)

K0(p) = K1(p)|x=0 = K2(p)|x=0 , (7)

and performing the same expansion for the boundary condition
given by Eq. (2), we obtain

u1 p
γs

∂S 0

∂p
= D2

∂S 2

∂x

∣∣∣∣∣
x=0
− D1

∂S 1

∂x

∣∣∣∣∣
x=0
, (8)

u1 p
γs

∂K0

∂p
= D2

∂K2

∂x

∣∣∣∣∣
x=0
− D1

∂K1

∂x

∣∣∣∣∣
x=0
. (9)
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The derivatives of functions S 1 and S 2 on x and the derivative
∂S 0/∂p can be found from Eqs. (4) and (8):

∂S 1

∂x

∣∣∣∣∣
x=0
=
γs

u1 p

√
b1

D1

(√
b1D1 +

√
b2D2

)
, (10)

∂S 2

∂x

∣∣∣∣∣
x=0
= − γs

u1 p

√
b2

D2

(√
b1D1 +

√
b2D2

)
, (11)

∂S 0

∂p
= − γ

2
s

u2
1 p2

(√
b1D1 +

√
b2D2

)2
. (12)

The solution of the last equation is

S 0 = −γ
2
s

u2

∫ p

0

dp′

p′2
(√

b1(p′)D1(p′) +
√

b2(p′)D2(p′)
)2
. (13)

Taking the first derivative of Eq. (4) on x, and using Eqs. (10)
and (11) we find

∂2S 1

∂x2

∣∣∣∣∣∣
x=0

= − b1

2D1

∂

∂p
ln

√
b1

p2D1

(√
b1D1 +

√
b2D2

)
, (14)

∂2S 2

∂x2

∣∣∣∣∣∣
x=0

= − b2

2D2

∂

∂p
ln

√
b2

p2D2

(√
b1D1 +

√
b2D2

)
. (15)

After substitution of these functions into Eq. (5), and using
Eq. (9), we arrive at the following ordinary differential equation

p
∂K0

∂p
K−1

0 = −
1
2
+

√
D2 p ∂

∂p

√
b2 +

√
D1 p ∂

∂p

√
b1√

b1D1 +
√

b2D2
, (16)

the solution of which can be written in the following form:

K0(p) ∝ p−1/2 exp
∫

dp

√
D2

∂
∂p

√
b2 +

√
D1

∂
∂p

√
b1√

b1D1 +
√

b2D2
· (17)

Equations (3), (13) and (17) determine the asymptotic form of
the electron spectrum at the shock front N0(p) for an arbitrary
diffusion coefficient. In the case of an energy-independent diffu-
sion, it coincides with the exact solution derived by Webb et al.
(1984).

These expressions can be significantly simplified in the case
of the same energy-dependence of the diffusion coefficient and
the energy lose rate upstream and downstream: b2 = b = ξb1,
D2 = D = κD1. In this case

K0(p) ∝ √
b/p, (18)

and Eq. (3) is reduced to

N0 ∝
√

b
p

exp

⎡⎢⎢⎢⎢⎢⎣−γ2
s

u2
1

(
1 +

1√
ξκ

)2 ∫ p

0

dp′

p′2
b(p′)D(p′)

⎤⎥⎥⎥⎥⎥⎦ . (19)

The integrations of F1 =
∫ 0

−∞ dxN(x, p) and F2 =
∫ ∞

0
dxN(x, p)

give the integrated electron spectra F1(p) and F2(p) in the up-
stream and downstream regions, respectively. They are of great
practical interest in many astrophysical situations. At large mo-
menta they are determined by the ratios of the electron spectrum
at the shock front to the absolute values of derivatives given by
Eqs. (10) and (11):

F1(p) =
ξ

1 +
√
κξ

u1 p
γsb(p)

N0(p), (20)

F2(p) =

√
κξ

1 +
√
κξ

u1 p
γsb(p)

N0(p). (21)

Equations (19)–(21) describe the form of the spectrum at large
energies. At small energies the losses are negligible and the elec-
tron spectrum is power-law with an index γs. In order to describe
the transition between this two extreme regimes, Eq. (1) has been
solved numerically using an implicit finite-difference scheme.

2.1. The case of Bohm diffusion

Below we consider the most interesting case which assumes that
the diffusion of electrons proceeds in the so-called Bohm diffu-
sion regime and the energy losses of electrons are dominated by
synchrotron radiation. We present the diffusion coefficient in the
form D = ηcrg/3, where rg = pc/qB is the gyroradius of par-
ticles, B is the magnetic field strength, q and m are the electric
charge and mass of the electron, respectively. The factor η ≥ 1
allows deviation of the diffusion coefficient from its minimum
value η = 1 (the nominal Bohm diffusion). The synchrotron loss
rate averaged over the pitch angles is b(p) = 4q4B2 p2/9m4c6.
Since the Bohm diffusion and synchrotron losses are determined
by the magnetic field strength, the parameter ξ = κ−2, where κ
is the ratio of the magnetic field upstream to the magnetic field
downstream, κ = B1/B2. Equation (19) shows that in the high
energy cut-off region the spectrum has a “Gaussian” type behav-
ior, N0 ∝ exp (−p2/p2

0), where

p0

mc
= (1 + κ1/2)−1 mcu1

γs

√
2ηq3B/27

=

2.86 × 108

γsη1/2(1 + κ1/2)

(
u1

3000 km s−1

) (
B

100 µG

)−1/2

· (22)

Here the shock speed u1 and the magnetic field in the down-
stream region B2 = B are normalized to 3000 km s−1, and
100 µG, which are quite typical for shells of young SNRs.

At p = p0, the characteristic lifetime of electrons due to the
synchrotron cooling is

τ = p0/b(p0) = 8.6γs(1 + κ1/2)η1/2

×
(

u1

3000 km s−1

)−1 (
B

100 µG

)−3/2

yr. (23)

The synchrotron losses have a strong impact on formation of
the energy spectrum of electrons at energies for which this time
is small compared to the characteristic dynamical times of the
source, e.g. the age of the accelerator. If this condition is ful-
filled, the electrons with such energies are concentrated in the
shock vicinity, and therefore the plane shock approximation is
well justified.

In the case of standard shock acceleration in the Bohm diffu-
sion regime with κ = 1 and γs = 4, we combined the asymptotic
analytical solutions, obtained at low and very high energies, with
numerical calculations performed in the transition region. This
allows a simple analytical presentation of the electron spectrum
at the shock over the entire energy range:

N0(p) ∝ p−4
[
1 + 0.66(p/p0)5/2

]9/5
exp (−p2/p2

0). (24)

The spectrum of electrons given by Eq. (24) is shown in
Fig. 2. At low and large energies Eq. (24) coincides with
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Fig. 2. The electron distribution at the shock front (solid line) and the
spatially integrated spectrum of synchrotron radiation (dashed line) pro-
duced by electrons accelerated at the shock with compression ratio
σ = 4 and equal upstream and downstream magnetic fields (κ = 1).
The spectrum of synchrotron radiation obtained using the δ-function
approximation is also shown (dotted line).

the exact asymptotic solutions: N0(p) ∝ p−4 and N0(p) ∝
p1/2 exp (−p2/p2

0), respectively. In the cutoff region, the spec-
trum is proportional to the product of two terms – a power-
law term with a positive slop (p1/2) and an exponential term,
exp (−p2/p2

0). While the first term can be interpreted as a pile-
up1, it in fact does not sow-up because the second (exponential)
term effectively cancels this feature. As a result, an almost per-
fect power-law (p−4 type) spectrum is formed up to p ∼ p0, with
a super-exponential cutoff afterwards (see Fig. 2).

It is easy to relate, using Eq. (1) and boundary condition
given by Eq. (2) the integrated spectra in downstream, upstream
and the spectrum at the shock:

F2 + κ
2F1 = l

p0

p
N0(p), and l =

u1 p2

γsbp0
· (25)

This relation is valid for all energies. It implies that for κ = 1
(i.e. equal magnetic field strengths upstream and downstream)
the integrated spectrum F = F1 + F2 ∝ N0 p−1.

The case of different magnetic fields in the downstream and
upstream regions, more specifically, for the scenario when the
magnetic field downstream is stronger than magnetic field up-
stream by a factor of κ−1 =

√
11, is of practical interest, in par-

ticular for nonthermal emission of young supernova remnants.
This case, which corresponds to the increase of the isotropic
random B-field at the shock with the “standard” compression
factor σ = 4, can be described by the following analytical ap-
proximations for the electron distributions at the shock front:

N0(p) ∝ (p/p0)−4
[
1 + 0.523(p/p0)9/4

]2
exp (−p2/p2

0), (26)

and in the upstream region

F1(p) ∝ 0.70l(p/p0)−3
[
1 + 1.7(p/p0)3

]5/6
exp (−p2/p2

0). (27)

For the downstream, the integrated energy spectrum of electrons
can be found from Eq. (25):

F2(p) = N0(p)l
p0

p
− 0.09F1(p). (28)

1 The possible appearance of a pile-ups in the electron spectra within
the so-called “box” model of shock acceleration has been noticed by
Drury et al. (1999).
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Fig. 3. The integrated upstream (F1; dotted line) and downstream (F2;
dashed line) electron spectra given by Eqs. (27), (28), as well as the
overall F = F1 + F2 spectrum (solid line) for the shock with compres-
sion ratio σ = 4 and the ratio of the magnetic fields downstream and
upstream k−1 =

√
11. The spectra F1 and F2 obtained numerically are

also shown (thin solid lines).

Note that the spectrum integrated over the upstream region, at
small energies is very flat, F1 ∝ pN0(p) ∝ p−3. This has a sim-
ple explanation related to the spatial scale of the electron distri-
bution; in the upstream region it is proportional to the diffusion
coefficient.

The integrated spectra of electrons in the upstream and
downstream regions given by Eqs. (26)–(28) as well as results
obtained numerically are shown in Fig. 3.

The dependence of the spectra given by Eqs. (24), (26)–(28)
on the factor η is expressed through the momentum p0.

3. Synchrotron radiation

The synchrotron emissivity of electrons is determined as

ε(ω) =

√
3Bq3

2πmc2

∫
p2dpN(p)R(ω/ωc) (29)

where ωc is the characteristic frequency of synchrotron radiation
ωc = 1.5 qBp2/m3c3. The function R describes synchrotron ra-
diation of a single electron in magnetic field with chaotic direc-
tions. Crusius & Schlickeiser (1986) derived an exact expression
for R(ω/ωc) in terms of Whittaker’s function. With an accuracy
of several percent R(ω/ωc) can be presented in a simple analyti-
cal form

R(ω/ωc) =
1.81 exp (−ω/ωc)√

(ωc/ω)2/3 + (3.62/π)2
· (30)

These functions are compared in Fig. 4.
The energy flux (J(ω) = ωdNrad/dω) of synchrotron radia-

tion produced at the shock is determined by the integral of the
emissivity along the line of sight l and over the solid angle Ω
J(ω) =

∫
dldΩε. This means that it is determined by the inte-

grated spectrum F(p).
The integration of Eq. (29), using Eqs. (24)

and (30), results in the energy flux of radiation J(ω) =∫
dpa(p, ω) exp (−g(p, ω)), where g(p, ω) = ω/ωc + p2/p2

0,
a(p, ω) ∝ p2F(p)R(ω/ωc) exp (g(p, ω)). At large frequencies,
when the argument of the exponent is large this integral is
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Fig. 4. Comparison of the function R(ω/ωc) tabulated by Crusius &
Schlickeiser (1986) (dotted line) and the function given by the approxi-
mate expression (30) (solid line).

mostly determined by the momentum interval around the
momentum p∗ which minimizes the function g(p, ω). Thus at
large frequencies the energy flux of radiation can be written as
J(ω) = a(p∗, ω) exp (−g(p∗, ω))

√
2π/g′′(p∗, ω). Here g′′ is the

second derivative of g on p. The momentum p∗ is given by the
expression:

p∗
mc
=

⎛⎜⎜⎜⎜⎝9ωm3c3u2
1

ηγ2
s q4B2

⎞⎟⎟⎟⎟⎠1/4
1√

1 + κ1/2
= 8.3 × 107

× (�ω/1 keV)1/4

γ1/2
s η1/4

√
1 + κ1/2

( u1

3000 km s−1

)1/2
(

B
100 µG

)−1/2

· (31)

Note that at the fixed ω, the characteristic frequency of the syn-
chrotron radiation ωc corresponding to p∗, is smaller than ω.

In the regime of Bohm diffusion the energy flux of syn-
chrotron radiation has an asymptotic form

J ∝ ω3/8 exp
(
−√
ω/ω0

)
, (32)

where

ω0 =
81

16
(
1 + κ1/2

)2

u2
1mc

ηγ2
s q2
, (33)

or for the corresponding energy of synchrotron photons

ε0 = �ω0 =
2.2 keV
η(1 + κ1/2)2

( u1

3000 km s−1

)2 16

γ2
s
· (34)

At small energies the integrated downstream synchrotron spec-
trum is proportional to ω−

γs−2
2 . In order to describe analytically

the synchrotron spectrum over the entire energy range, which
should coincide with the exact asymptotic spectra at low and
high energies, we use numerical calculations performed in the
intermediate energy range. In particular, in the case of γs = 4
and κ = 1, we suggest the following approximate formula

J(ω) ∝ ω0

ω

⎡⎢⎢⎢⎢⎢⎣1 + 0.46

(
ω

ω0

)0.6⎤⎥⎥⎥⎥⎥⎦
11/4.8

exp
(
−√
ω/ω0

)
, (35)

which provides an accuracy better than 10 percent.
The energy spectrum of electrons at the shock N0(p) (see

Eqs. (24)), is shown in Fig. 2. Because the cooling length of
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Fig. 5. The energy spectra of synchrotron radiation given by
Eqs. (36), (37) and produced by electrons in downstream (dashed line)
and upstream (dotted line) regions of the shock with compression ra-
tio σ = 4 and the ratio of the magnetic fields downstream and upstream
κ−1 =

√
11. The corresponding spectra obtained numerically are also

shown (solid lines).

electrons downstream the shock is inversely proportional to the
momentum, the spatially integrated electron spectrum appears
steeper, in particular, in the case of κ = 1, F(p) = F1(p) +
F2(p) ∝ N0(p)/p. Note that below the cutoff region F(p) ∝ p−5.
The corresponding spectrum of synchrotron radiation of these
electrons is shown in Fig. 2. At small frequencies, J(ω) ∝ ω−1.

The synchrotron spectrum obtained using the so-called δ-
function approximation is also shown in Fig. 2. It is assumed,
that the synchrotron emission of the electron is concentrated at
the frequency ω = 0.29ωc. This corresponds to the function
R(ω/ωc) ∝ δ(0.29 − ω/ωc). Obviously this approximation does
not provide a satisfactory fit.

In the case of γs = 4, κ = 1/
√

11 we found the following
spectra produced upstream and downstream the shock:

J1(ω) ∝ 0.58

⎡⎢⎢⎢⎢⎢⎣1 + 1.27

(
ω

ω0

)3/4⎤⎥⎥⎥⎥⎥⎦
1/2

exp

(
−

√
3.32

ω

ω0

)
, (36)

J2(ω) ∝ ω0

ω

[
1 + 0.38

√
ω

ω0

]11/4

exp

(
−

√
ω

ω0

)
· (37)

Note that the spectrum of synchrotron radiation produced up-
stream the shock at small frequencies is very flat, J(ω) = const.,
which reflects the hard electron spectrum in that region (see
Eq. (27) and Fig. 3).

The spectra of synchrotron radiation in the upstream and
downstream regions given by Eqs. (36) and (37) are shown in
Fig. 5. The synchrotron flux in the downstream region is signif-
icantly enhanced because of the larger (compressed) magnetic
field. The corresponding spectra obtained numerically are also
shown.

We should note that the exponential terms in Eqs. (35)–(37)
are relatively slow functions (proportional to exp [−(ω/ω0)1/2]).
Moreover, these exponential terms are multiplied to power-law
terms (ω/ω0)s with positive indices, s ≥ 0, which effectively
compensate the exponential terms at frequencies ω ∼ ω0. For
that reason the parameter ω0 only formally can be treated as
a cutoff frequency. In reality, the breaks (cutoffs) in the syn-
chrotron spectra appear at much higher frequencies, namely at
ω ≥ 10ω0.
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The integrated downstream electron spectrum F2 in Fig. 3
and the corresponding synchrotron spectrum J2 in Fig. 5 may
be applied to the supernova remnants with ages lager than the
cooling time given by Eq. (23), i.e. when the electron spec-
trum in the cut-off region is determined by the energy losses of
electrons. Electrons with energies below cut-off energy are ac-
celerated with power-law spectrum and advected downstream.
It was also assumed that these electrons lose all their energy
downstream that is of course valid for energies larger than the
energy of the electron which has the cooling time compara-
ble with the age of the remnant. For smaller energies a three-
dimensional geometry of the shock wave should be taken into
account. Consequently, the integrated downstream electron
spectrum and the corresponding synchrotron radiation spectrum
appear flatter compared to the ones shown in Figs. 3, 5.

3.1. The radiation zones

The asymptotic solutions derived in Sect. 2 can be used for
study of coordinate-dependence of electron distributions. Near
the shock front, the spatial distribution of electrons has an expo-
nential dependence. The inverse exponential lengths in the up-
stream and downstream regions are given by Eqs. (10) and (11).
Since the synchrotron radiation is produced mainly by electrons
with momentum p∗, the exponential lengths of emissivity (29)
in the upstream lu and downstream ld regions of the shock can
be found from Eqs. (10), (11) and (31):

ld =
9

4
√

3(1 + κ1/2)

⎛⎜⎜⎜⎜⎝ m9c17u2
1η

ωq12B6γ2
s

⎞⎟⎟⎟⎟⎠1/4

, (38)

and

lu = ldκ
−5/4. (39)

In particular, for γs = 4 we have

ld =
1.4 × 1017 cm√

1 + κ1/2
η1/4

( u1

3000 km s−1

)1/2

×
(

B
100 µG

)−3/2 (
� ω

1 keV

)−1/4

, (40)

for the radiation width in downstream, and a factor of κ−5/4 larger
in upstream. Note that the above equations are correct only for
large frequencies, ω > ω0.

The radiation width in downstream (40) is relatively small.
This permits to explain the narrow X-ray filaments observed
in SNRs and to estimate the magnetic field strength (see e.g.
Berezhko et al. 2002; Völk et al. 2005).

4. Inverse Compton scattering

In the isotropic photon field, the emissivity of the inverse
Compton radiation of an electron with Lorentz factor γ is de-
scribed as (Blumenthal & Gould 1970)

εIC(ω) = 2�cr2
e

∞∫
ω

4γ2
(
1− �ω
γmc2

)
dω′n(ω′)

ω

4γ2ω′

[
1 − 2

ω2

ω2
c
+

ω

ωc

(
1 + 2 ln

ω

ωc

)
+

�
2ω2

2m2c4γ2
(
1 − �ω

γmc2

) (
1 − ω
ωc

)⎤⎥⎥⎥⎥⎥⎥⎥⎦ · (41)

Here ωc = 4ω′γ2(1− �ω
γmc2 ), re = q2/mc2 is the classical electron

radius and n(ω) is the energy distribution of the target photons.
Hereafter we assume that the target photons are described by a
Planckian distribution

n(ω) =
ω2/(c3π2)

exp (�ω/κBT ) − 1
, (42)

where T is the temperature of radiation and κB is the Boltzman
constant. It is easy to show, using Eqs. (41) and (42), that at large
frequencies ω 	 γ2κBT/� the IC emissivity in the Thompson
regime behaves as εIC(ω) ∝ ω exp (−�ω/4γ2κBT ). At very high
energies the integration over the electron energy distribution at
the shock and the use of the method described in the Sect. 3,
give the following asymptotic form of the IC spectrum in the
Thompson limit:

JIC ∝ ω7/8 exp (−√
ω/ωb), (43)

with

ωb =
27

2η
(
1 + κ1/2

)2

κBTu2
1m2c2

�γ2
s q3B

, (44)

or, in terms of energy of gamma-rays, εb = �ωb, we have:

εb =
1.2 TeV
η(1 + κ1/2)2

(
u1

3000 km s−1

)2 100 µG
B

T
2.7 K

16

γ2
s
· (45)

As before, it is assumed that synchrotron losses dominate over
IC losses, i.e. the energy density of the background radiation
Urad 
 B2/8π. In the case of 2.7 K CMBR this implies B ≥
3 µG.

Using the exact asymptotic spectra at low and high ener-
gies, and the results of numerical calculations at intermediate
energies, we can describe the broad-band energy flux of the in-
verse Compton (Thompson) scattering by simple analytical ex-
pressions. In particular, for κ = 1 one has

JIC(ω) ∝ ωb

ω

⎡⎢⎢⎢⎢⎢⎣1 + 0.36

(
ω

ωb

)0.7⎤⎥⎥⎥⎥⎥⎦
15/5.6

exp

(
−

√
ω

ωb

)
· (46)

For the “standard” scenario of shock acceleration with γs = 4
and κ = 1/

√
11, we obtain the following IC spectra produced

upstream and downstream the shock:

JIC
1 (ω) ∝ 0.20

⎡⎢⎢⎢⎢⎢⎣1 + 0.75

(
ω

ωb

)7/8⎤⎥⎥⎥⎥⎥⎦ exp

(
−

√
ω

ωb

)
, (47)

JIC
2 (ω) ∝ ωb

ω

⎡⎢⎢⎢⎢⎢⎣1 + 0.31

(
ω

ωb

)0.6⎤⎥⎥⎥⎥⎥⎦
25/8

exp

(
−

√
ω

ωb

)
· (48)

The spectra given by Eqs. (47) and (48) are shown in Fig. 6.
They are derived under the assumption that the Compton scat-
tering occurs in the Thompson regime. However, in many cases
one should take into account the Klein-Nishina effect. The im-
portance of this effect in the case of black-body radiation field is
determined by the parameter

bKN = 4
κBT p0

m2c3
=

0.52
γsη1/2(1 + κ1/2)

×
(

u1

3000 km s−1

) (
B

100 µG

)−1/2 T
2.7 K

· (49)
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Fig. 6. The spectrum of IC radiation given by Eqs. (47), (48) and pro-
duced by electrons accelerated downstream (dashed line) and upstream
(dotted line) the shock with compression ratio σ = 4 and the ra-
tio of the magnetic strength downstream and upstream

√
11. The sum

JIC = JIC
1 + JIC

2 is shown by the solid line. It is assumed that IC scat-
tering proceeds in the Thompson limit, bKN = 0, and that synchrotron
losses dominate over the IC loses. The corresponding spectra obtained
numerically are also shown (thin solid lines).
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Fig. 7. The spectra of IC radiation produced by electrons accelerated
at the shock with compression ratio σ = 4 and the ratio of the mag-
netic strength downstream and upstream

√
11 for different values of

bKN: bKN = 0 (solid line), bKN = 0.1 (dashed line), bKN = 0.3 (dot-
ted line), bKN = 1.0 (thin solid line), bKN = 3.0 (thing dashed line)
and bKN = 10.0 (thin dotted line). The case of dominating synchrotron
losses is considered.

The Thompson limit corresponds to bKN 
 1, while the Klein-
Nishina effect becomes significant already at bKN ≥ 0.1. The IC
spectra of electrons calculated for different values of the param-
eter bKN are shown in Fig. 7.

As long as the energy losses of electrons are dominated by
synchrotron radiation, the Klein-Nishina effect makes steeper
the spectrum of IC gamma-rays. In particular, it moves the re-
gion of the spectral cutoff to lower energies. Below the cut-
off region, the energy spectrum of IC gamma-rays still can
be described by a (quasi) power-law. The Klein-Nishina effect
changes the slope of the gamma-ray spectrum significantly, even
for relatively small values of the parameter bKN.

5. Discussion

The detection of nonthermal X-ray emission of synchrotron ori-
gin clearly demonstrates the existence of multi-TeV electrons in
different astrophysical source populations like shell type SNRs
– pulsar wind nebulae, microquasars, small and large scale jets
in AGN, etc. Given the severe synchrotron losses of electrons,
which increase with energy as dE/dt ∝ E2, the acceleration ef-
ficiency in these objects should be very high in order to boost
the electrons to energies well beyond 1 TeV. In particular, in
young SNRs with typical shock speeds u1 ∼ 2000–3000 km s−1,
which are established as prominant nonthermal X-ray emitters,
the diffusive shock acceleration of electrons should proceed in
the regime close to the Bohm diffusion limit, otherwise the syn-
chrotron spectrum would break before achieving the X-ray do-
main.

Although the basic concepts of diffusive shock accelera-
tion are deeply studied and well understood (see e.g. Malkov
& Drury 2001), many important details remain unexplored. This
concerns, in particular the radiation features of the shock accel-
erated electrons. Over the recent years, several numerical calcu-
lations of high energy radiation by particles accelerated in young
SNRs have been performed with emphasis on the non-linear ef-
fects caused by protons and nuclei on the shock structure (see
e.g. Ellison et al. 2000; Berezhko & Völk 2004).

The shock accelerated electron spectra have been studied an-
alytically (e.g. by Webb et al. 1984), but only for the case of
energy-independent diffusion coefficient. Therefore the results
of these early works generally cannot be applied to the most
interesting sources with synchrotron X-ray emission. These
sources, as noticed above, require diffusive shock acceleration
of electrons in the regime close to the Bohm diffusion which is
characterized by a diffusion coefficient D(E) ∝ E.

The aim of this paper was a fully analytical treatment of
the energy spectra of shock-accelerated electrons and their syn-
chrotron and inverse Compton radiation for an arbitrary energy-
dependent diffusion coefficient. In particular, under the assump-
tion of dominance of synchrotron losses, we derived exact
asymptotic solutions in the high energy region. For the energy-
dependent diffusion coefficient written in a rather general form
D ∝ pα, the electron spectrum contains an exponential term
exp [−(p/p0)β] with β = α + 1 (see Eq. (19)). Thus, only in the
case of energy-independent diffusion (α = 0) the electron spec-
trum is characterized by an exponential cutoff. In the most inter-
esting case of Bohm diffusion, the spectral cut-off is of Gaussian
type, exp [−(p/p0)2]. The corresponding cutoff in the spectrum
of syncrotron radiation appears much smoother (see also Fritz
1989 for discussion of this effect). It is described by an ex-
ponential term exp [−(ω/ω0)β/(2+β)] = exp [−(ω/ω0)(α+1)/(α+3)].
For the energy independent diffusion coefficient we have J(ω) ∝
exp [−(ω/ω0)1/3], while in the case of Bohm diffusion J(ω) ∝
exp [−(ω/ω0)1/2].

We should note that the exp [−(ω/ω0)1/2] type behavior of
the synchrotron spectrum in the cutoff region formally is similar
to the one derived for the generally assumed “power-law with ex-
ponential cutoff” electron spectrum, N0(p) ∝ p−Γ exp (−p/p0),
and using the δ-function approximation for calculation of the
synchrotron radiation (see e.g. Reynolds 1998). However, this
is simply a coincidence. First of all, the δ-functional approx-
imation leads to a wrong synchrotron spectrum; the exponen-
tial cut-off in the electron spectrum results in the synchrotron
spectrum with a exp (−ω1/3) type cut-off. More importantly,
the spectra of shock accelerated electrons given by Eq. (26)–
(28) are quite different from the simplified “power-law with
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exponential cutoff” assumption. Correspondingly, because of the
dependenceωc ∝ p2B, the effect on the spectrum of synchrotron
radiation appears even more pronounced (see Fig. 2).

Exact solutions for electrons are possible only at low and
high energies, namely in the energy intervals where (i) the ra-
diative losses of electrons are negligible, and (ii) the radiative
energy loss rate exceeds the acceleration rate. The indices of
the power-law factors in the asymptotic solutions (19), (32) and
(43) significantly differ from the power-law indices of the elec-
trons, as well as the synchrotron and IC spectra below the cut-
off regions. In order to connect these solutions we performed
numerical calculations in the intermediate energy intervals. This
allowed us to obtain, within accuracy better than 10 percent, sim-
ple analytical presentations for the spectra of electrons and their
synchrotron and inverse Compton radiation components.

Equations (35)–(37) and Eqs. (46)–(48) properly describe
the relative contributions of radiation from the regions upstream
and downstream the shock. At the same time, they do not al-
low direct calculations of the absolute synchrotron and inverse
Compton luminosities. However, the normalisation constants
can be easily calculated from the total energy release through
the synchrotron and inverse Compton channels.

It should be noted that in this paper the momentum p0 in the
electron spectrum, and the corresponding frequenciesω0 and ωb
which characterize the positions of cut-offs in the spectra of syn-
chrotron and IC radiation components, are found from the exact
asymptotic solutions of kinetic equations. Interestingly, the re-
sults appear quite close, within a factor of 2, to the estimates
derived from the condition “acceleration rate = synchrotron
cooling rate”. However, as it follows from Figs. 2–6, the real
cut-offs appear, in fact, at much higher frequencies. In the case
of synchrotron radiation, the spectrum continues without an indi-
cation of a break or a cutoff up to 20ω0. The spectrum of inverse
Compton gamma-rays turns down also at ω ∼ 20ωb (in the case
of constant magnetic field), or it continues up to ∼50ωb (in the
case of different magnetic fields upstream and downstream). The
more effective extension of the hard spectrum of IC radiation is
explained by the larger spatial scale of electron distribution up-
stream the shock. This is not important for the synchrotron radi-
ation the contribution of which from the upstream region is sup-
pressed by an order of magnitude. On the other hand, because of
the homogeneous distribution of the target radiation field, 2.7 K
CMBR, the IC gamma-ray contribution at highest energies from
the upstream region dominates over the contribution from the
downstream region.

The results obtained in this paper can be used to fit the X-ray
spectra observed from young supernova remnants. The value of

the parameter ω0 found from the fitting procedure should be
compared with the theoretical value given by Eq. (33). For the
known shock velocity of a given supernova remnant, this would
allow an important estimate of deviation of the diffusion regime
from the extreme Bohm limit. The dependence of the energy
spectra on the factor η is expressed via parameters p0, ω0, ωb.
If the width of X-ray filaments is known, the magnetic field
strength may be found from Eq. (40). All this in turn would pro-
vide reliable estimates of the maximum energy of protons and
nuclei accelerated in supernova remnants.

Finally, we note that the results of this paper are applicable
for nonrelativistic shocks with velocities up to u1 ∼ (0.1–0.3)c.
The derived analytical approximations do not take into account
possible nonlinear effects which can somewhat modify the spec-
tra of electrons at low and high energies.
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