
Analytical solutions for Newtonian and inelastic non-Newtonian flows with wall slip

L.L. Ferrás a, J.M. Nóbrega a,⇑, F.T. Pinho b

a IPC – Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
bCentro de Estudos de Fenómenos de Transporte, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

a r t i c l e i n f o

Article history:

Received 14 November 2011

Received in revised form 8 February 2012

Accepted 10 March 2012

Available online 21 March 2012

Keywords:

Analytical solutions

Couette and Poiseulle flows

Slip boundary condition

Generalized Newtonian fluid

a b s t r a c t

This work presents analytical solutions for both Newtonian and inelastic non-Newtonian fluids with slip

boundary conditions in Couette and Poiseuille flows using the Navier linear and non-linear slip laws and

the empirical asymptotic and Hatzikiriakos slip laws. The non-Newtonian constitutive equation used is

the generalized Newtonian fluid model with the viscosity described by the power law, Bingham,

Herschel–Bulkley, Sisko and Robertson–Stiff models. While for the linear slip model it was always possi-

ble to obtain closed form analytical solutions, for the remaining non-linear models it is always necessary

to obtain the numerical solution of a transcendent equation. Solutions are included with different slip

laws or different slip coefficients at different walls.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Wall slip occurs in many industrial applications, such as in poly-
mer extrusion processes, thus affecting the throughput and the
quality of the final product [1]. Therefore, analytical solutions of
slip in shear flows are important to solve relevant industrial prob-
lems and better understand them, but also for the assessment of
computational codes used in fluid flow simulations. There are
many exact solutions for fluid flow in the literature [2,3] some of
which are very simple, and others that use complex rheological
models [3]. Even though the simple exact solutions seem trivial,
they are the building blocks to the understanding of more complex
solutions. They usually rely on the Dirichlet type (no-slip) bound-
ary condition (u = 0, where u stands for the velocity at the wall).
However, there is experimental evidence suggesting that some flu-
ids do not obey this condition at the wall [4], and show instead slip
along the wall. For a review on wall slip with non-Newtonian flu-
ids, including slip laws and techniques to measure this property,
the works of Denn [1], Lauga et al. [4] and Hatzikiriakos [5] are
strongly advised.

Meijer and Verbraak [6] and Potente et al. [7,8] present analyti-
cal solutions for Poiseuille flow in extrusion using wall slip for
Newtonian and power law fluids. Chatzimina et al. [9] solves for
non-linear slip in annular flows and analyses its stability. Ellahi
et al. [10] presents an analytical solution for viscoelastic fluids de-
scribed by the 8-constant Oldroyd constitutive equation with
non-linear wall slip. Wu et al. [11] investigated analytically the

pressure driven transient flow of Newtonian fluids in microtubes
with Navier slip, whereas Mathews and Hill [12] presented analyt-
ical solutions for pipe, annular and channel flows with the slip
boundary conditions given by Thompson and Troian [13]. Yang
and Zhu [14], and the references cited therein, report analytical
solutions and theoretical studies of squeeze flow with the Navier
slip boundary condition. It is also worth mentioning the works on
the well-posedness of the Stokes equations with leak, slip and
threshold boundary conditions [15,16], which also included their
numerical implementation.

In spite of the wealth of solutions in the literature, there is a
wide range of slip conditions, which have not been addressed ana-
lytically. With the exception of the simple linear Navier slip, for
most other slip laws in the literature the analytical solutions for
the so-called indirect problem are missing. Here, the results are
dependent on the imposed flow rate. For the direct problem the lit-
erature is rich on the solutions [6–11] but lack the corresponding
reverse case, and this is not just a matter of inverting the final
expressions because of the non-linearity of the slip models and
of the constitutive equations. In fact, the inverse problem is invari-
ably more difficult to obtain than the solution of the direct prob-
lem. The main purpose of this paper is precisely to address these
issues and report some new analytical solutions in particular for
the inverse problem.

The remainder of this paper is organized as follows: Section 2
presents the governing equations and the employed slip models.
The study of Newtonian fluid flows with slip is presented first in
Section 3, starting with the simple Couette flow for the sake of
understanding and this is followed by the Poiseuille flow using lin-
ear and non-linear slip boundary conditions and different slip coef-
ficients at the upper and bottom walls (the existing relevant
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literature [6–8] is only concerned with the direct problem for melt
flow in extrusion screws). Section 3 ends with a study of Newto-
nian Poiseuille flow with the Hatzikiriakos and asymptotic slip
laws and is followed by Section 4 which describes solutions for
the generalized Newtonian model with the viscosity function given
by power law [17], Sisko [18], Herschel and Bulkley (Bingham) [19]
and Robertson and Stiff [20] models, both for linear and non-linear
slip models. The text ends with the conclusions, in Section 5.

2. Theory

2.1. Governing equations

This work concerns incompressible fluids which are governed
by the continuity equation

r � u ¼ 0; ð1Þ

and the momentum equation

@ðquÞ
@t

þ qr � uu ¼ �rpþr � s: ð2Þ

In Eq. (2) u is the velocity vector, p is the pressure, s is the deviatoric
stress tensor and the gravity contribution is incorporated in the
pressure. All equations are written in a coordinate free form. The
stress tensor obeys the following law for generalized Newtonian
fluids

s ¼ 2gð _cÞD ð3Þ

with the rate of strain tensor D given by

D ¼ 1

2
ð½ru� þ ½ru�TÞ; ð4Þ

and gð _cÞ representing the fluid viscosity function.
Considering steady, incompressible, laminar flow (in the

streamwise x direction) between two infinite parallel horizontal
plates, with no movement in the y direction (Fig. 1), the momen-
tum equation (Eq. (2)) written in a Cartesian coordinate system re-
duces to

d

dy
gð _cÞ du

dy

� �

¼ px ð5Þ

where px = dp/dx. This equation is valid for both planar Couette and
Poiseuille flow.

For fluids described by the Generalized Newtonian model, the
empirical viscosity function gð _cÞ can be given by any of the models
in Eqs. (6)–(10). These are the power law model

gð _cÞ ¼ aj _cjn�1 ð6Þ

and the Sisko model

gð _cÞ ¼ l1 þ aj _cjn�1; ð7Þ

where _c is the shear rate obtained from the following definition
involving the second invariant of the rate of deformation tensor
j _cj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DijDij=2

p� �
and a, n are the consistency and power law indices

with nP 0, and l1 is the viscosity at a very large shear rates.
Analytical solutions are also presented for yield stress fluids de-

scribed by the following two models:

Herschel—Bulkley model :
s ¼ 2 l0j _cj

n�1 þ s0
j _cj

� �

D if jsj > s0

D ¼ 0 if jsj 6 s0

(

ð8Þ

Robertson—Stiff model :
s ¼ l1=n

0 j _cjðn�1Þ=n þ s0
j _cj

� �1=n
� �n

D if jsj > s0

D ¼ 0 if jsj 6 s0

8

<

:

ð9Þ

where s0 is the yield stress and l0P 0. For n = 1 the Herschel–Bulk-
ley model reduces to the Bingham model. For the yield stress mod-
els |s| is the second invariant of the deviatoric stress tensor
jsj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sijsij=2

p
.

2.2. Boundary conditions

The specification of boundary conditions is mandatory to guar-
antee the wellposedness of the problem. As mentioned before,
most solutions in the literature are for the Dirichlet type no-slip
wall boundary condition

u ¼ 0: ð10Þ

This imposes that the fluid adheres to the wall, together with
the impermeability condition.

However, this boundary condition cannot be derived from first
principles [4]. Lamb [21], Batchelor [22] and Goldstein [23] men-
tion that slip may be wrong and that the use of no-slip stems from
the need to agree predictions with experiments (some of the
experiments referred to were not carried out carefully and conse-
quently their results are contradictory). Several authors [4] try to
explain the existence of slip and its dependence on parameters like
surface roughness, dissolved gas and bubbles attached to the wall,
wetting characteristics, shear rate, electrical properties and pres-
sure, and this list keeps increasing with time.

In any case it is now an established fact that for macro geome-
tries the interaction between small fluid molecules and walls is
equivalent to a no-slip condition for most fluid-wall pairs. How-
ever, as the Knudsen number (the ratio between the mean free

Fig. 1. (a) Velocity profile across the flow channel assuming Couette–Poiseuille flow and slip at the wall (b) Different slip lengths 0 ¼ �k0 < �k1 < �k2 (zoom of the channel near

the wall).
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path and the characteristic flow size) increases, slip effects become
more important ([4] and references cited therein). Regarding long
molecules, such as the ones found in polymer melts, slip effects
can actually be found also at the macro scale leading to some flow
instabilities reviewed by Denn [1], such as sharkskin, stick–slip and
gross melt fracture. Other investigations concerning slip at the
liquid–solid interface for polymers are Potente et al. [7] and
Mitsoulis et al. [24].

2.3. Slip laws

Friction between a fluid in contact with a wall generates a tan-
gent stress vector s (Fig. 1) that may be sufficient to eliminate slip
of the fluid. Therefore, a way to promote slip is to reduce that fric-
tion, leading to the appearance of a nonzero velocity along the
wall. The tangent stress vector depends on the velocity gradient
of the fluid at the wall, with both variables related in such a way
that the tangent velocity and tangent stress vectors are pointing
in opposite directions (Fig. 1).

Since all the analytical solutions in this work concern flow be-
tween parallel plates aligned with the axis x direction, there is no
need to continue using vector notation, so, all the slip laws will
be presented in their streamwise component.

Navier [25] argued that in the presence of slip the liquid motion
must be opposed by a force proportional to the relative velocity be-
tween the first liquid layer and the solid wall. Fig. 1 illustrates an
interpretation of slip with Fig. 1a showing the velocity profile
across the channel and the relation between the velocity and its
derivative at the wall. This derivative at the wall is the same as
the slope given by u=�k. Thus, the following relation that involves
the slip velocity can be obtained

uws

�k
¼ du

dy

	
	
	
	
wall

: ð11Þ

Solving for uws, the relationship between the slip velocity and
the wall velocity gradient is

uws ¼ �k
du

dy

	
	
	
	
wall

; ð12Þ

where the coefficient �k is named slip length or friction coefficient.
As illustrated in Fig. 1b the slip length can take any positive value
(�kP 0), with no-slip at wall for �k ¼ 0, and increasingly large slip
velocity as �k increases to infinity in which case the velocity profile
becomes a plug with zero velocity gradient.

Eq. (12) must be combined with the rheological constitutive
equation. Considering the Generalized Newtonian Fluid model for
inelastic fluids, near the wall the tangent stress is given by

sxy ¼ gð _cÞdu
dy

ð13Þ

Eq. (12) can now be rewritten for a Generalized Newtonian fluid
as

uws ¼ signðdu=dyÞksxy ð14Þ

with k ¼ �k=gð _cÞP 0. Based on the fact that the velocity points to the
stress opposite direction and because scalar variables are employed,
different signs will be used in Eq. (14) depending on the sign of the
shear rate (sign(du/dy)). For the ‘‘top wall’’, the equation makes use
of the minus sign and for the ‘‘bottom wall’’ the plus sign, since the
tangent velocity is positive in both walls but the sign(du/dy) in the
top and bottom walls is negative and positive, respectively. This
notation will stand for the other slip laws.

This linear relationship between slip velocity at the wall uws and
shear stress at the wall sxy is called the linear Navier slip law [25]
or simply the Navier slip law. It has been used extensively to rep-

resent experimental data, as in [5–7,10] for Couette and Poiseuille
flows.

Slip laws are models to bridge the gap between theory and
experimental data, and to fit experimental observations various
slip models were created, such as those stating the dependence
of the friction coefficient on wall shear rate or stress and models
derived from molecular kinetic theory [26–28].

The non-linear Navier slip law [26] assumes that the friction
coefficient is a function of the shear stress sxy, thus providing a
non-linear power function,

uws ¼ signðdu=dyÞkjsxyjm�1sxy ð15Þ

where m > 0ðm 2 RÞ. For m = 1 the Navier slip law is recovered.
This non-linear model has been used to represent experimental

data in Couette and Poiseuille flows by [13,23,26]. It provides a
good approximation for several conditions, but it fails to describe
the slip velocity in the neighborhood of the critical stress at which
the slip starts [27]. To eliminate this discrepancy, Hatzikiriakos
proposed an alternative slip law based on the Eyring theory of li-
quid viscosity in order to provide a smooth transition from no-slip
to slip flow at the critical shear stress [27]. The argument goes as
follows:

Let sc be the positive critical stress at which slip starts and k1,
k2P 0. Then, the Hatzikiriakos slip law is given by,

uws ¼
k1 sinhðk2ðsignðdu=dyÞsxyÞ � scÞ if sxy � sc
0 if sxy < sc




ð16Þ

The asymptotic slip law [28], is given by

s ¼ �ð1=k2Þ; ½1� expðu=k1Þ� ð17Þ

for one dimensional flow, and can also be written as an explicit
function for the slip velocity

uws ¼ k1 lnð1þ k2 ðsignðdu=dyÞsxyÞÞ: ð18Þ

For both the Hatzikiriakos and the asymptotic slip models, the
coefficients k1 and k2 allow controlling the amount of slip and
the shape of the curve of s vs uws that is obtained by experimental
measurements. Schowalter [26] used the Hatzikiriakos slip law
model to model wall slip in Couette and Poiseuille flows.

For the Poiseuille and Couette flows of Figs. 1 and 2 the bound-
ary conditions for these slip laws can be written in a general form
for both the ‘‘top’’ (+h) and ‘‘bottom’’ (�h) walls.

Integrating the momentum equation (Eq. (5)) sxy is given by

sxy ¼ pxy þ c: ð19Þ

Combining Eq. (19) with Eqs. (15, 16), and (18) for all the investi-
gated slip laws gives the general form of the boundary conditions
at the upper and bottom walls.

For the non-linear Navier slip law (m = 1 for the linear Navier
slip law):

uðhÞ ¼ knl1ð�pxh� cÞm: ð20-aÞ

uð�hÞ ¼ knl2ð�pxhþ cÞm: ð20-bÞ

For the Hatzikiriakos slip law:

uðhÞ ¼ kH1 sinhðkH2ð�pxh� cÞÞ: ð21-aÞ

uð�hÞ ¼ kH3 sinhðkH4ð�pxhþ cÞÞ: ð21-bÞ

For the asymptotic slip law:

uðhÞ ¼ kA1 lnð1þ kA2ð�pxh� cÞÞ: ð22-aÞ

uð�hÞ ¼ kA3 lnð1þ kA4ð�pxhþ cÞÞ: ð22-bÞ
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For symmetrical boundary conditions c1 = 0, thus the top and
bottom slip velocities become identical, as expected.

3. Analytic and semi analytic solutions for Newtonian fluids

Newtonian fluids have a constant viscosity so gð _cÞ ¼ l in Eq.
(13).

3.1. Couette flow

In pure Couette flow (Fig. 2) the pressure gradient is null and Eq.
(5) reduces to:

uðyÞ ¼ c1yþ c2 ð23Þ

with c1 the shear rate _c ¼ du=dy.

3.1.1. Navier slip at the bottom wall and no slip at the upper wall

Assume the upper wall is moving with velocity U and that a Na-
vier slip boundary condition applies to the bottom wall (cf. Fig. 2)
so that

uðhÞ ¼ U and uð�hÞ ¼ kl
du

dy

� �

y¼h

¼ klc1 ð24Þ

Using the boundary condition of Eq. (24) the coefficients c1 and
c2 are given by

c2 ¼ U � c1h; ð25Þ

c1 ¼ U

2hþ kl
: ð26Þ

The final solution for the velocity profile across the channel is
then

uðyÞ ¼ Uðy� hÞ
2hþ kl

þ U: ð27Þ

Let f(k) be defined by

f ðkÞ ¼ Uðy� hÞ
2hþ kl

þ U ; kP 0: ð28Þ

For k = 0, f(0) = (U/2h)(y + h) which is the original solution with
the Dirichlet boundary condition u = 0. As k increases the solution
approaches plug flow conditions, i.e.

lim
k!1

f ðkÞ ¼ lim
k!1

Uðy� hÞ
2hþ kl

þ U ¼ U ð29Þ

This equation states that it is impossible to obtain a slip velocity
larger than U, which is in agreement with the physical constraints
of the problem. Fig. 2 illustrates the evolution of the flow with the
slip length.

If U = 0 the flow profile is given by the trivial solution u(y) = 0
for 0 6 y 6 h. The main problem with this slip boundary condition
(Eq. (24)) is that both the bulk and wall velocities depend on the
velocity gradient, so that a nonzero gradient will develop only if

some velocity is given at the boundary. Therefore, it can be said
that the Navier slip boundary condition is somewhat weaker than
the Dirichlet boundary condition, so that in the absence of a pres-
sure gradient and of an imposed velocity the fluid will not move.
Note that for U = 0 and imposing slip at both walls leads again to
the trivial solution u(y) = 0.

3.1.2. Non-linear slip laws at the bottom wall and no slip at the upper

wall

Assume the upper wall is moving with velocity u(h) = U and a
non-linear slip boundary condition is imposed at the bottom wall.
Following a procedure similar to that of the previous section the
following boundary conditions are obtained: for the non-linear Na-
vier slip law u(�h) = knl2(lc1)

m, for the Hatzikiriakos slip law
u(�h) = kH3 sinh (kH4lc1) and for the asymptotic slip law
u(�h) = kA3 ln (1 + kA4lc1).

To determine the integration constant c1, the following equa-
tions must be solved for the non-linear Navier slip law, Hatzikiria-
kos and asymptotic slip laws, respectively

ðc1Þm þ ð2h=klmÞc1 � ðU=klmÞ ¼ 0 ð30-aÞ

kH3 sinhðkH4lc1Þ þ 2hc1 � U ¼ 0 ð30-bÞ

kA3 lnð1þ kA4lc1Þ þ 2hc1 � U ¼ 0 ð30-cÞ

For the special cases of m = 0.5, 2, 3 the analytical solutions are
possible for the non-linear Navier slip law, the results of which are
presented in Table 1 and Appendix A. For the other solutions and
equations we prove the existence of a unique solution in Appendix
A.

3.2. Couette–Poiseuille flow

Integrating twice the momentum equation (Eq. (5)) for a con-
stant viscosity fluid, the result is

uðyÞ ¼ px

2l
y2 þ c1yþ c2 ð31Þ

with c1 = c/l,c2 2 R two real constant numbers, lP 0 and
�h 6 y 6 h. Applying boundary conditions u(�h) and u(h) to the
velocity profile in Eq. (31) the constants of integration c1, c2 can
be determined and the following final form of the velocity profile
is obtained

uðyÞ ¼ px

2l
ðy2 � h

2Þ þ uðhÞ � uð�hÞ
2h

� �

yþ uð�hÞ þ uðhÞ
2

ð32Þ

For the particular case of pure Poiseuille flow, symmetry leads
to c1 = 0 and c2 ¼ uðhÞ � ðpx=2gð _cÞÞh

2.
For the inverse problem of Couette–Poiseuille flow with an im-

posed flow rate Q ¼ U � 2h, where U is the mean velocity obtained
by integration of the velocity profile across the channel, we obtain
the relation of Eq. (33) between the imposed mean velocity and the
ensuing pressure gradient

U ¼ 1

2h

Z h

�h

px

2l
y2 þ c1yþ c2

� �

dy

() � px

3l
h
2 þ uð�hÞ þ uðhÞ

2
� U ¼ 0 ð33Þ

Notice that u(�h) and u(h) are themselves functions of the pres-
sure gradient, and non-linear equations may arise.

3.2.1. Linear and non-linear slip laws – pure Poiseuille flow

For the linear and non-linear slip models and from the bound-
ary conditions of Eqs. (20-a), (21-a) and (22-a) the flow velocity
profile for the direct problem becomes

Fig. 2. Couette flow velocity profiles for different slip lengths k1 < k2 < k3:.
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uðyÞ ¼ px

2l
ðy2 � h

2Þ þ uðhÞ; ð34Þ

whereas for the inverse problem the pressure gradient is obtained
from the following transcendent equation for a given bulk velocity
U

� px

3l
h
2 þ uðhÞ � U ¼ 0: ð35Þ

Generally speaking the solution of the previous equation must
be obtained numerically, but for the particular cases of the non-
linear Navier slip law with m = 0.5, m = 1 (linear), m = 2 and m = 3
full analytical solutions can be obtained and are given in Table 2.
For the Hatzikiriakos and asymptotic slip laws, the corresponding
solutions are presented in Table 3. Details on these solutions are gi-
ven in Appendix B, where the existence of a unique solution for all
the boundary conditions is also proved.

Note that the solution of Hatzikiriakos and Mitsoulis [29] is less
general. Even though they investigated a power law fluid with non-
linear Navier slip boundary conditions, they restricted their
solutions to the particular case m = 1/n, where n is the power law
exponent, meaning that for the Newtonian case they only explore
the linear Navier slip.

3.2.2. Different slip in the upper and bottom walls for Couette-

Poiseuille flow

When compared to the pure Poiseuille flow we see that for the
Couette-Poiseuille flow the symmetry condition (c1 = 0) can no
longer be used, meaning that, a system of non-linear equations will
be obtained for the constant of integration c1 and the pressure gra-
dient px (Eq. (36))

�2hc1 þ uðhÞ � uð�hÞ ¼ 0

� px
3lh

2 � c1hþ uðhÞ � U ¼ 0

(

: ð36Þ

For the linear Navier slip law at both walls (with slip coeffi-
cients kl1 at the bottom and kl2 at the top), the analytical solution
is still possible and is given by Eq. (37)

uðyÞ ¼ px

2l
y2 þ c1yþ px �k1h� h

2

2l

 !

þ c1ð�k1l� hÞ: ð37Þ

with

px ¼� 3=2ð2þ kl1ðlU=hÞ þ kl2ðlU=hÞÞ
½3kl1ðlU=hÞkl2ðlU=hÞ þ 2kl1ðlU=hÞþ 2kl2ðlU=hÞ þ 1�ðlU=h2Þ

;

ð38Þ

c1 ¼ 3=2UðlU=hÞðkl1 � kl2Þ
½3kl1ðlU=hÞkl2ðlU=hÞ þ 2kl1ðlU=hÞ þ 2kl2ðlU=hÞ þ 1�h :

ð39Þ

For this case, the boundary conditions are given by Eqs. (20-a)
and (20-b) with m = 1. The term (kl1 � kl2) will determine the sign
of c1. If kl1 > kl2 the maximum velocity value is on the positive half
of the channel 0 6 y 6 h whereas for kl1 < kl2 it is on the lower half
�h 6 y 6 0.

For the non-linear Navier slip law, full analytical solutions can
also be found, when the linear Navier slip law is valid in one wall,
and on the other the non-linear Navier slip law applies with m

equal to 2 or 3. These solutions can be very helpful to test numer-
ical codes with different slip boundary conditions in the same do-
main, and can be found in Appendix C.

For the remaining values of the exponent and for the other two
slip models (asymptotic and Hatzikiriakos), semi-analytical solu-
tions are obtained. Their restrictions, du/dy < 0 in the upper wall,
du/dy > 0 in the bottom wall, and a favorable pressure gradient
(px < 0), are helpful to narrow down the possible solutions, espe-
cially when the use of a numerical method is required.

Table 1

Analytical solutions for Couette flow with linear and non-linear Navier slip laws and slip only at the bottom wall. The top row shows the general system of equations to be solved

and the next four rows show the solution for different values of the slip exponent m = 0.5, 1, 2, 3.

Couette flow [linear (m = 1) and

non-linear Navier slip (m– 1)]
uðyÞ ¼ c1ðy� hÞ þ U
ðc1Þm þ ð2h=klmÞc1 � ðU=klmÞ ¼ 0




m ¼ 0:5 uðyÞ ¼ ðkl0:5Þ2

8h2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8hU
ðkl0:5 Þ2

q
� �

þ U
2h

� �

ðy� hÞ þ U

m ¼ 1 uðyÞ ¼ Uðy�hÞ
2hþkl þ U

m ¼ 2 uðyÞ ¼ �2hþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðh2þklmUÞ

p
2klm ðy� hÞ þ U

m ¼ 3 uðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðU=klmÞ=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððU=klmÞ=2Þ2 þ ðð2h=klmÞ=3Þ3
q

3

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðU=klmÞ=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððU=klmÞ=2Þ2 þ ðð2h=klmÞ=3Þ3
q

3

r( )

ðy� hÞ þ U

Table 2

Analytical solutions for Poiseuille flow with identical slip at both walls for the linear and non-linear Navier slip laws. In the top row the general system of equations to be solved

and the next four rows show the solution for different values of the slip exponent m = 0.5, 1, 2, 3.

Poiseuille flow [linear (m = 1) and non-linear Navier slip (m– 1)] uðyÞ ¼ px
2l ðy2 � h2Þ þ khmð�pxÞm

� px
3l h

2 þ khmð�pxÞm � U ¼ 0

(

m ¼ 0:5 px ¼ �9l2

4h4
2k2hþ 4h2U

3l � 2kh0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
2
hþ 4h2U

3l

q� �

m ¼ 1 px ¼ Uð�h
2
=3l� khÞ�1

m ¼ 2 px ¼ h2=3l�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh2=3lÞ2þ4kh2U

p
2kh2

m ¼ 3 px ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ðU=2kh3Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðU=2kh3Þ2 þ ð9khlÞ�3
q

3

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ðU=2kh3Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðU=2kh3Þ2 þ ð9khlÞ�3
q

3

r !
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px < 0 and �pxh� lc1 > 0 and � pxhþ lc1 > 0
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

the slip velocity pointsin the positive direction

() px < 0 and c1 2 px

l
h� px

l
h

� �

ð40Þ

See Table 4 for a summary of these solutions.

3.3. Discussion (Newtonian fluids)

All the solutions obtained for the Newtonian fluids are summa-
rized in Tables 1–4, which will be used for the subsequent discus-
sion. In Poiseuille flow the following dimensionless variables will
be used. The slip friction coefficients are given by k

0
nl ¼ kUm�1

ðl=hÞm for the Navier non-linear slip model, k
0
1 ¼ k1=U, k

0
2 ¼ k2

ðlU=hÞ, for the first and second coefficients in the asymptotic and
Hatzikiriakos slip laws. The velocity is given by u0 ¼ u=U and the
pressure gradient by p0

x ¼ px=ðgU=h
2Þ.

3.3.1. Couette flow

For the Couette flow several flow conditions were studied. Fig. 3
shows the influence of the non-linear Navier slip model exponent
(m) on the velocity profile for different values of the friction coef-
ficient (k0nl). The slip velocity decreases inversely to exponent m, so
it becomes increasingly difficult to attain the plug flow conditions
when m increases.

This behavior can be also verified by variation of the shear rate
c1 = du/dy with the slip coefficient, seen in Fig. 4. As shown for the
case with exponent m = 2, du/dy is larger than for the m = 1 case.
Notice that du/dy will multiply a negative number (see Table 1),
thus reducing the slip velocity for higher slip exponents.

Table 3

Semi-analytical solutions for the Poiseuille flow of a Newtonian fluid with Hatzikiriakos and asymptotic slip laws.

Poiseuille flow [Hatzikiriakos and asymptotic]

y

x

uðyÞ ¼ px
2l ðy2 � h

2Þ þ uðhÞ
� px

3lh
2 þ uðhÞ � U ¼ 0

(

Table 4

Analytical solutions for Couette–Poiseuille flow with different slip coefficients at the top and bottom walls, as a function of px and c1. The third row presents the equations that

need to be solved to determine px and c1 for the non-linear slip models.

Poiseuille flow [different slip at top and bottom walls] uðyÞ ¼ px
2l y

2 þ c1yþ px �k1h� h2

2l

� �

þ c1ð�k1l� hÞ

px ¼ � 1:5ð2þk1ðlU=hÞþk2ðlU=hÞÞ
½3k1ðlU=hÞk2ðlU=hÞþ2k1ðlU=hÞþ2k2ðlU=hÞþ1�ðlU=h2Þ

c1 ¼ 1:5UðlU=hÞðk1�k2Þ
½3k1ðlU=hÞk2ðlU=hÞþ2k1ðlU=hÞþ2k2ðlU=hÞþ1�h

�2hc1 þ uðhÞ � uð�hÞ ¼ 0

� px
3l h

2 � c1hþ uðhÞ � U ¼ 0

(

Non-linear Navier slip Hatzikiriakos Asymptotic

uðhÞ ¼ k1ð�pxh� lc1Þm uðhÞ ¼ k1 sinhðk2ð�pxh� lc1ÞÞ uðhÞ ¼ k1 lnð1þ k2ð�pxh� lc1ÞÞ
uð�hÞ ¼ k2ð�pxhþ lc1Þm uð�hÞ ¼ k3 sinhðk4ð�pxhþ lc1ÞÞ uð�hÞ ¼ k3 lnð1þ k4ð�pxhþ lc1ÞÞ

Fig. 4. Integral constant c1 versus the friction coefficient for the Couettte flow with

non-linear Navier slip model at the fixed wall.

Fig. 3. Velocity profiles for the Couette flow with the non-linear Navier slip model

(full line m = 2, dashed line m = 1) at the fixed wall.
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3.3.2. Poiseuille flow (symmetrical conditions)

In Fig. 5a the difference in slip velocity between the asymptotic
and Hatzikiriakos slip laws is illustrated. For different values of the
slip coefficient k02 the sensitivity of the models is different. Notice
that the Hatzikiriakos slip law is built with the inverse function
of the asymptotic law, and therefore its growth is exponential.
For small values of k02 both functions tend to a linear ‘‘local’’ behav-
ior for some specific range of the pressure gradient, and for these
values they locally have a similar behavior as can be seen in Fig. 5.

The Hatzikiriakos slip law is much more sensitive to the k
0
2 coef-

ficient than theasymptotic slip law, as canbe seen in Fig. 5b. This fact
can be a problem when implementing this law in numerical codes,
mainly due to convergence difficulties, since along the iterative pro-
cedure large variations in the slip velocity canoccur and causediver-
gence (overflow) or even round off errors on the final data.

The other slip parameter k
0
1 increases or decreases the slip

velocity establishing a linear relationship between the slip velocity
and the hyperbolic sine or logarithmic functions.

In Fig. 5b we can also see the agreement between the Hatziki-
riakos and asymptotic slip laws for lower values of the shear stress.
Notice the almost linear growth of the slip velocity for the non-
linear Navier slip laws, while the Hatzikiriakos slip law has a sig-
moid shape with an inflection point, where the curvature changes

(in Fig. 5b the complete sigmoid shape cannot be seen because we
use null critical stress).

The slip intensity influences the pressure gradient, which pro-
motes the fluid flow. As the resistance of the walls decrease a smal-
ler pressure gradient is enough to ensure motion as shown in
Fig. 6a, where the variation of the pressure gradient with the slip
coefficient is represented. These effects can also be analyzed in
terms of the dimensionless slip velocity, shown in Fig. 6b, where
similar trends to those obtained for pressure gradient are depicted.

It should be noticed that with dimensionless variables the slip
coefficient k0nl depends on the slip exponent which may influence
the results, since the coefficient is different for each flow exponent
(m). However, plotting the data in nondimensional form shows the
same qualitative behavior.

For the Hatzikiriakos and asymptotic slip models, the behavior
is slightly different when compared with the Navier slip model
as shown in Fig. 7. For the slip constant k01 ¼ 1, both models exhibit
the same qualitative behavior as is also the case for the Navier Slip
model. However, as the coefficient k01 decreases, their behavior de-
parts from each other and from the Navier slip.

The asymptotic model is greatly influenced by the slip coeffi-
cient k

0
1 showing a nearly constant pressure gradient which slowly

decreases with slip, whereas the slip velocity increases strongly
with the slip coefficient k

0
2.

The Hatzikiriakos model results in smaller pressure gradient
and higher slip velocities than the asymptotic model for the same
numerical value of the slip coefficients. As seen in Fig. 7, the trend
in the slip velocity for the k

0
1 ¼ 10�3 (Hatzikiriakos) is quite differ-

ent from the other slip trend lines. At some point this model seems
to be very sensitive to the friction coefficients and the slip velocity
increases drastically, thus creating numerical instabilities.

(a)

(b)

[m
.s
-1
]

[pa]

Fig. 5. (a) Difference between the asymptotic (A) and the Hatzikiriakos (H) slip

velocities for different values of the dimensionless slip coefficient k02 . It is assumed

that k
0
1 ¼ 1. (b) Representation of the four slip boundary conditions (slip velocity

versus shear stress) for equal and constant friction coefficients.

(a)

(b)

nl

nl

Fig. 6. Variation of the normalized pressure gradient (a) and slip velocity (b) with

the dimensionless slip coefficient k
0
nl for different values of the slip exponent m for

Poiseuille flow in a channel.
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3.3.3. Different slip in both walls

For the analysis of the different slip coefficients at both walls,
the linear Navier slip boundary condition was chosen. The varia-
tion of the pressure gradient with k

0
l is shown in Fig. 8a for a case

with no slip at one boundary, showing that the normalized pres-
sure gradient varies from �3 for k

0
l ¼ 0 to a maximum value of

�0.75 for k0l ! 1. Different slip conditions distort the velocity pro-
file as plotted in Fig. 8b. As the slip velocity increases the velocity
peak tends to the wall, where there is slip (y/h = �1). Still in this
particular case, it is easily proven that the velocity profile for the
limiting condition of infinite friction coefficient is given by the fol-
lowing quadratic expression

u

U
ðyÞ ¼ 0:375

y

h

� �2

� 1

� �

þ y

h
� 1

h i

: ð41Þ

4. Non-Newtonian fluids (Poiseuille flow)

4.1. Power law fluids

Analytical and semi-analytical solutions are derived for non-
Newtonian fluids obeying the ‘‘power law’’ viscosity model. The
solution for imposed pressure gradient flow (direct problem) in
the extrusion barrel geometry given by Newtonian slip law has

been reported elsewhere [6,8] and we look now at the inverse
solution.

Consider the momentum equation (Eq. (5)), with the variable
viscosity of Eq. (6). For symmetric boundary conditions consider
only the lower half channel, where the velocity gradient is positive

gð _cÞ ¼ a
du

dy

� �n�1

ð42Þ

For wall slip u(�h) the velocity profile is given by (cf. [30] for
the pipe flow case)

uðyÞ ¼ �px

a

� �1=n h
ð1=nÞþ1

ð1=nÞ þ 1
� ð�yÞð1=nÞþ1

ð1=nÞ þ 1

 !

þ uð�hÞ: ð43Þ

The solution for the ‘‘inverse problem’’ with an imposed mean
velocity U is given by solving Eq. (44)

�px

a

� �1=n h
ð1=nÞþ1

ð1=nÞ þ 2

" #

þ uð�hÞ � U ¼ 0 ð44Þ

Hatzikiriakos and Mitsoulis [29] studied these flows with Navier
non-linear slip law for special cases of the slip exponents 1/n =m

and making use of lubrication theory in tapered dies. They only pre-
sented full analytical solutions for the direct problem, whereas for
the inverse problem the solutions are approximate because there
is an unsolved integral in the equations. However, there is a closed

(a)

(b)

Fig. 7. Comparison between the asymptotic and Hatzikiriakos slip laws for

Poiseuille flow in a channel. (a) Variation of the normalized pressure drop for

different values of the slip coefficient k
0
2 and two different values of k

0
1 . (b) Variation

of the normalized slip velocity with the pressure drop.

(a)

(b)

Fig. 8. Study of the linear Navier slip boundary condition applied to the bottom

wall of a channel flow: (a) Variation of the pressure gradient with the friction

coefficient. (b)Velocity profile with no slip velocity at the top wall (y = 1) and

different slip coefficients at bottom (y = �1).
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form solution for their special case ‘‘power-law (n = 1/2) with linear
slip’’ which we give at the end of Appendix D.

For our geometry (Poiseuille flow in a channel), the analytical
solutions for the special cases n = 1/2 with m = 1, 2, 3, n = 1/3 with
m = 1, 2, 3 and n = 2 with m = 1 are also in closed form and given in
Table 5. For other values of the slip exponents and other slip laws
Appendix D includes the proof of existence of a unique solution.

4.2. Sisko model-particular solutions for n = 0.5 and n = 2

When the fluid viscosity obeys the Sisko model (Eq. (7)), inte-
gration of the momentum equation gives

l1
du

dy
þ a

du

dy

� �n

� pxy ¼ 0 ð45Þ

The solution of Eq. (45) is complex and is only given below (in
closed form for the direct problem) for the cases n = 0.5, 2 (see
Appendix E for the details).

For n = 0.5:

uðyÞ ¼l1
2a

ð�y�hÞþ ½ðl1Þ2 þ½4apx�y�3=2 �½ðl1Þ2 � ½4apx�h�3=2
12a2px

þuð�hÞ ð46Þ

For n = 2:

uðyÞ¼ a2ðyþhÞ
2l2

1
þpxðy2�h

2Þ
2l1

það½a2�½4l1px�h�3=2�½a2þ½4l1px�y�3=2Þ
12l3

1px

þuð�hÞ ð47Þ

4.3. Discussion (non-Newtonian fluids)

Fig. 9a and b show the variations of pressure gradient and the
slip velocity with the slip coefficient for both shear-thinning
(n < 1) and shear-thickening (n > 1) fluids.

Increasing the slip coefficient decreases the magnitude of the
favorable pressure gradient, with shear-thickening fluids leading
to higher frictional loss than with shear-thinning fluids. Similar
variations are observed for the slip velocity in Fig. 9b, except that
for slip coefficients in excess of about 5 � 10�1, where shear-thin-
ning fluids have higher velocities than shear-thickening fluids.

For the non-linear Navier slip law, the viscosity power-law
exponent has the major influence on the pressure gradient as seen
in Fig. 10a, something that is confirmed also by Fig. 11b, for the
Hatzikiriakos and asymptotic slip models. Fig. 10b also shows that
the asymptotic model is much less sensitive to the friction coeffi-
cient than the Hatzikiriakos model.

4.4. Yield Stress fluids – Herschel–Bulkley and Robertson–Stiff models

The Poiseuille flow of a yield stress fluid is characterized by a
‘‘plug region’’ everywhere the yield stress s0 is not exceeded and,
where the rate of strain tensor is identically zero.

The motion of the plug regionX, is determined by the following
form of the momentum equation [31]

I

@X

ðr:nÞds ¼
Z

X

q
du

dt
dX ð48Þ

with r = �pd + s, p is the pressure, d is the unity tensor, s is the devi-
atoric stress tensor and n is the normal vector to the surface oX.

Considering the geometry in Fig. 11, integration of the momen-
tum equation gives the shear stress distribution,

sxy ¼ �pxy: ð49Þ

For fully developed flow the momentum equation applied to the
geometry of Fig. 11 states that

Z b

a

sxydx
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

upper wall

�
Z b

a

�sxydx
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

bottom wall

þ
Z y

�y

ðsxxa �paÞdx
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

left side

�
Z y

�y

ðsxxb �pb Þdx
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

right side

¼ 0: ð50Þ

The stress profile is linear across the channel and based on Eq.
(49) the yield surface distances are given by

�h0 ¼ s0=px ¼ s0h=sw ð51-aÞ

px ¼ sw=h ð51-bÞ

�h0 ¼ s0h=sw ð51-cÞ

where sw with sw > 0 is the stress at the walls (y = ± h) and s0 is the
yield stress.

To obtain the solution for the Herschel–Bulkley and the Robert-
son–Stiff models, we followed the procedure of [32], except that
here the slip velocity is included. The two rheological models can
be written depending on the stress invariant [32]

_c ¼ ðs0l0
Þ1=n jsj

s0
� 1

� �1=n

_c ¼ s0
l0

� �1=n jsj
s0

� �1=n

� 1

� �

8

>><

>>:

if jsj > s0 and ð _c ¼ 0 if jsj � s0Þ ð52Þ

The flow rate dependence on the pressure gradient (direct problem)
results from integration of the velocity profile over the domain (half
of the domain because of symmetry) and leads to the following

Table 5

Analytical solutions for Poiseuille flow of a power law fluid for different sets of power law (n) and slip (m) coefficients. nm.

Poiseuille flow: power-law fluid [linear (m = 1) and non-linear Navier slip

(m– 1)]

n ¼ 0:5
m ¼ 1 px ¼

knlh
m� knlh

mþ4U½a�2hð1=nÞþ1ð1=nþ2Þ�1 �ð Þ0:5
2½a�2hð1=nÞþ1ð1=nþ2Þ�1 �

n ¼ 0:5
m ¼ 2

px ¼ �ðU=ð½hð1=nÞþ1 ð1=nþ 2Þa2
� ��1� þ knlh

mÞÞ05

n ¼ 0:5
m ¼ 3

Method given in a Appendix C

n ¼ 1=3
m ¼ 1 px ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�q=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq=2Þ2 þ ðp=3Þ2
q

r

þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�q=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq=2Þ62þ ðp=3Þ2
q

r

p ¼ knlh

½a�3hð1=nÞþ1ð1=nþ2Þ�1 � q ¼ U

½a�3hð1þnÞþ1ð1=nþ2Þ�1 �
n ¼ 1=3
m ¼ 2

Method given in Appendix C

n ¼ 1=3
m ¼ 3

px ¼ � U=ð½hð1=nÞ¼1 ð1=nþ 2Þa3
� ��1�knlhmÞ

� �1=3

n ¼ 2
m ¼ 1 px ¼¼ �LþðL2þ4ULÞ0:5

2L

� �2

L ¼ ½a�0:5h
ð1=nÞþ1ð1=nþ 2Þ�1�
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velocity profiles (subscripts HB and RS stand for the Herschel–Bulk-
ley and Robertson–Stiff models, respectively).

uðyÞHB ¼
u¼ n

1þn
ðpxl0

Þ1=n½ðh�h0Þð1þnÞ=n �ðy�h0Þð1þnÞ=n�þuðhÞ; h0 6 jyj6 h

uplug ¼ n
1þn

px
l0

� �1=n

½ðh�h0Þð1þnÞ=n� þuðhÞ; 0 6 jyj< h0

8

><

>:

ð53Þ

uðyÞRS

¼
u¼ðs0l0

Þ1=nðy�hÞ� n
1þn

ðpxl0
Þ1=n½yð1þnÞ=n�h

ð1þnÞ=n�þuðhÞ; h06 jyj6h

uplug¼ðs0l0
Þ1=nðy�hÞ� n

1þn
ðpxl0

Þ1=n½yð1þnÞ=n�h
ð1þnÞ=n�þuðhÞ; 06 jyj<h0

8

<

:

ð54Þ

To determine the inverse problem solution we impose a flow
rate Q ¼ Uh and integrate over half of the channel width leading
to the following solutions for the Herschel–Bulkley model

n

1þ n

px

l0

� �1=n

hðh� h0Þð1þnÞ=n � n½h� h0�
1þ 2n

ð1þ2nÞ=n
" #

þ huðhÞ �Q ¼ 0 ð55Þ

and the Robertson–Stiff model

n s0
l0

� �1=n

ðh0Þ�1=n

1þ2n
h
1=nþ2 �ðh0Þ1=nþ2

� �

�1

2

s0
l0

� �1=n

h
2 �ðh0Þ2

� �

þhuðhÞ�Q ¼ 0 ð56Þ

respectively. In both cases h0 = s0/px and the non-linear equations
must be solved numerically.

Bingham fluids:
For the special case of Bingham fluids (Herschel–Bulkley model

with n = 1) with Navier slip boundary condition, the full analytical
solution is possible and is given by Eq. (57) for the direct problem

(a)

(b)

Fig. 9. Power law fluid with Navier slip boundary condition: (a) Normalized

pressure drop versus slip coefficient (b) Normalized slip velocity versus slip

coefficient.

(a)

(b)

Fig. 10. (a)Pressure drop versus friction coefficient for different slip and power law

exponents, (b) Pressure drop versus friction coefficient for the asymptotic and

Hatzikiriakos slip models with k
0
1 ¼ k1=U ¼ 1E� 3; k

0
2 ¼ k2gU=h.

Fig. 11. Geometry for the yield stress fluids. The plug zone goes from �y0 to y0. The

channel width is 2h.
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u0ðy0Þ ¼
ufluid ¼ B

2x ð1� xÞ2 � ðjy0j � xÞ2
h i

þ kb; x � jyj � 1

Uplug ¼ B
2x ð1� xÞ2 þ kB; 0 � jyj < x

8

<

:

ð57Þ

and by Eq. (58) for the inverse problem

s30ðB=6Þ
6l0

|fflfflfflffl{zfflfflfflffl}

a

x3 � ðB=2þ 1Þ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

b

xþ B=3þ kB
|fflfflfflfflffl{zfflfflfflfflffl}

c

¼ 0 ð58Þ

where B is the Bingham number B ¼ s0h=l0U0; x ¼ s0=sw;
kB ¼ ks0=U0. The algebraic solution of this cubic equation is given
as Eq. (59) with p = b/a and q = c/a.

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�q=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq=2Þ2 þ ðp=3Þ2
q

3

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�q=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq=2Þ2 þ ðp=3Þ2
q

3

r

: ð59Þ

Note that this solution is presented in the literature [31] in the
absence of slip. Analytical solutions for Bingham fluids with Navier
slip boundary conditions could be found for the special case of
squeeze flow between parallel disks for the regularized bi-viscosity
model with imposed pressure gradient [14]; a similar study is also
given by [33].

4.4.1. Discussion (non-Newtonian fluids with yield stress)

For the yield stress fluids, the Bingham fluid was chosen. The
studies were made varying the parameters B and kB.

Fig. 12 shows the dramatic increase of stress ratio s0/sw with
the slip coefficient, which means that the pressure gradient de-
creases and the plug size increases. The stress ratio s0/sw also de-
creases with the increase of the Bingham number. As the slip
coefficient increases the plug grows in size towards the wall and
it is not always possible to have a solution (un-yielded fluid). In

fact the yield stress cannot exceed the wall stress. Table 6 shows
that for some values of kB this condition is violated and this can
bring problems to numerical simulation.

5. Conclusion

Analytical and semi-analytical solutions were presented for the
direct and inverse flow problems of Couette–Poiseuille flows of
Newtonian and non-Newtonian fluids. As for the non-Newtonian
fluids, but for the latter only inelastic models were considered
namely the power law, Sisko and two yield stress fluid models
(Herschel–Bulkley and Robertson–Stiff). Four different slip models
were considered, namely the Navier linear and non-linear slip
laws, the asymptotic law and the Hatzikiriakos slip law. For some
fluids, only particular solutions were presented, as for the Sisko
fluid, whereas for cases, where the solution could not be found
analytically, the existence of the solution was proven, and the
interval, where the solution lies was given.

The proposed analytical solutions are valid for any values of the
employed models’ parameters, thus they cover all the slip velocity
data given in the literature both for Newtonian and non-Newto-
nian fluids.
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Appendix A. Couette flow of Newtonian fluids with non-linear

Navier slip at the bottom wall and no-slip at the top wall

In the non-linear Navier slip law the boundary conditions are
given by

uð�hÞ ¼ kðlc1Þm ðA:1Þ

uðhÞ ¼ U ðA:2Þ

This implies that the constant c1 ¼ U�kðlc1Þm
2h () ðc1Þmþ

ð2h=klmÞc1 � ðU=klmÞ ¼ 0.
For m = 0.5 this non-linear equation can be solved with the help

of a variable change c0:51 ¼ x ) x2 ¼ c1; x � 0 leading to the
equation

ð2h=klmÞx2 þ x� ðU=klmÞ ¼ 0; ðA:3Þ

which needs to be solved for the positive solution.
For m = 2 the solution is trivial and for m = 3 the Cardan–Tarta-

glia formula is used.

Remark. The solution c1 is always positive. Let f(c1) be a function
of the constant c1 and given by f ðc1Þ ¼ ðc1Þm þ ð2h=klmÞc1�
ðU=klmÞ:The derivative of f(c1) is f0(c1) =m(c1)

m�1 + (2h/klm). It
can also be seen that f 0ðc1Þ > 0;8c1 � 0, f(0) < 0 and that
f ð½U=klm�1=mÞ > 0.We can now conclude by Bolzano and Rolle
theorems that there is a unique solution c1 to equation f(c1) = 0, in
the range, [0; [U/klm]1/m].

Appendix B. Poiseuille flow of a Newtonian fluid with non-

linear slip laws

For m = 0.5, 1, 2 and 3, a full analytical solution can be obtained
and is given in Table 2.

The existence of a unique solution can be proved provided
m > 0. The derivative of Eq. (33) is given by

Table 6

Different values of y0 ¼ s0=sw (dimensionless) for different slip coefficients

kb ¼ ks0=U0 .

Fig. 12. Variation of y0 = s0/sw with the (dimensionless) slip coefficient kB ¼ ks0=U0 .
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� h
2

3l
�mkh

mð�pxÞm�1 < 0; 8px < 0 ðB:1Þ

Let

f ðpxÞ ¼ � px

3l
h
2 þ kh

mð�pxÞm � U: ðB:2Þ

Then f ð0Þ ¼ �U and f ð�3Ul=h2Þ ¼ kh
mð3Ul=h2Þm > 0,

f ð�U1=m=kh
mÞ ¼ U1=mh

2
=ð3lkhmÞ > 0:By Bolzano and Rolle theo-

rems there is a unique solution in the range ]0; A[ with
A ¼ minf�3Ul=h2

; �U1=m=kh
mg.

Appendix C. Derivation of equations for different slip

coefficients at top and bottom walls

Assume for the top wall the Navier slip boundary condition of
Eq. (C1) and at the bottom wall the non-linear Navier slip law of
Eq. (C.2)) with m = 2, 3.

uðhÞ ¼ k1ð�pxh� lc1Þ ðC:2Þ

uð�hÞ ¼ k2ð�pxhþ lc1Þm ðC:3Þ

The system of equation that needs to be solved is (C.3)

�2hc1 þ uðhÞ � uð�hÞ ¼ 0: ðC:3-aÞ

� px

3l
h
2 � c1hþ uðhÞ � U ¼ 0: ðC:3-bÞ

where Eq. (C.3-b) is independent of the slip exponent and can be
solved for the pressure gradient

px ¼
c1hþ k1lc1 þ U

�k1h� h2

3l

ðC:4Þ

By substitution of (C.4) into (C.3-a) a quadratic and a cubic
equation are obtained for c1 for m = 2 and 3, respectively.

The solution for m = 2 is given by (C.3) with constants (C.4) and
(C.5)

c1 ¼ð16k2l2ð1:5k1lþhÞ2Þ�1ð
ffiffiffiffiffiffi

24
p

½ð3k1lþhÞ2ð1:5k21l4k2Uþ2:5k2l3k1Uhþ
h
2l2½k2Uþð1=6Þk21�þð1=6Þh3

k1lþð1=24Þh4Þ�0:5

�18k2l3k1Uþð�6k
2
1�12k2UÞhl2�5h

2
k1l�h

3Þ
ðC:5Þ

For m = 3 one has to solve the equation

c31 þ bc
2
1 þ cc1 þ d ¼ 0 ðC:6Þ

with coefficients

b¼ B
A
;c¼ C

A
;d¼ D

A

A¼ 288k2l4h
2 þ432k2l5hk

2
1 þ64k2l3h

3 þ216k2l6k
3
1

B¼ 432k2l4hk1Uþ144k2l3h
2
Uþ324k2l5k2U

C ¼ 16h
3
k1lþ42h

2
k
2
1l

2 þ36hk
3
1l

3 þ108k2l3hU
2 þ162k2l4k1U

2 þ2h
4

D¼�3k1lUh
2 �18k21l

2Uhþ27k2l3U3 �27k31l
3U

Making the substitution c1 = x � b/3 the equation transforms to
x3 + ex + f = 0, and the so called Vieta substitution x = y � e/3y, leads
to a quadratic equation for y3.

ðy3Þ2 þ fy
3 � e3=27 ¼ 0 ðC:7Þ

This equation gives six solutions that reduce to three after back
substitution.

Appendix D. Proof of existence of a unique solution for

Poiseuille flows of power law fluids with slip

Let f(px) be given by Eq. (D1) and u(h) be given by Eqs. (20-a),
(21-a) and (22-a)

f ðpxÞ ¼ ð�px

a
Þ1=n h

ð1=nÞþ1

ð1=nÞ þ 2

" #

þ uðhÞ � U ðD:1Þ

Let f0(px) represent the derivative of function f(px)

f 0ðpxÞ ¼
h
ð1=nÞþ1

ðð1=nÞ þ 2Þan

" #

�px

a

� �1=n�1

þ duðhÞ
dpx

< 0; 8px < 0 ðD:2Þ

Then duðhÞ
dpx

is negative and is given by,

�mkh
mð�pxÞm�1 < 0 ðD:3Þ

�k1k2h coshð�k2pxhÞ < 0 ðD:4Þ

�k1k2h

1� k2pxh
< 0 ðD:5Þ

for the non-linear Navier, asymptotic and Hatzikiriakos slip models,
respectively.

For all cases f ð0Þ ¼ �U and f �a Uðð1=nÞþ2Þ
hð1=nÞþ1

h in� �

> 0,
f ð�U1=m=kh

mÞ ¼ U1=mh
2
=ð3lkhmÞ > 0:

Regarding now the application of the slip condition, we have
the following three models:

Non-linear Navier slip law:
f ð�U1=m=kh

mÞ ¼ U1=mh
2
=ð3lkhmÞ > 0:By Bolzano and Rolle theo-

rems there is a unique solution in the range ]0; A[,

A ¼ min �a Uðð1=nÞþ2Þ
hð1=nÞþ1

h in

; �U1=m=kh
m

n o

.

Hatzikiriakos slip law:

f ðð� arcsinhðU=k1ÞÞ=hk2Þ > 0. There is unique solution is in the

range �0;A½ with A ¼ minf�a½Uðð1=nÞþ2Þ
hð1=nÞþ1 �n;� arcsinhðU=k1ÞÞ=hk2g.

Asymptotic slip law:
f ð�½expðU=k1Þ � 1�=hk2Þ > 0. There is a unique solution is in the

range ]0; A[ with A ¼ min �a Uðð1=nÞþ2Þ
hð1=nÞþ1

h in

;�½expðUk1Þ � 1�=hk2
n o

.

Power-law Case (n = 1/2) with Linear Slip from Hatzikiriakos
and Mitsoulis [28].

Their Eq. (11) is now simplified and given by,

Dp ¼ B

2A

1

RL

� 1

R0

� �

�
R0ðB2R0 þ 4QAÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2R0þ4QA

A2R50

r

� R1ðB2R1 þ 4QAÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2R1þ4QA

A2R51

r

12QA

0

B
B
@

1

C
C
A

ðD:6Þ

Appendix E. Derivation of analytical solution for Sisko model

The Sisko model is given by Eq. (7) and its substitution into the
integrated form of the momentum equation (Eq. (5)) gives

l1
du

dy
þ aðdu

dy
Þn � pxy ¼ 0 ðE:1Þ

It is difficult to obtain the solution of this equation, because of
its non-linear nature associated with the exponent, unless some
particular values are explored such as n = 0.5, 1 and 2.

For n = 0.5 Eq. (E1) is quadratic on @u=@y. Let x = (du/ dy)0.5 lead-
ing to

l1 x2 þ ax� pxy ¼ 0 ðE:2Þ
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The solutions of Eq. (E2) are given by Eq. (E3)

x ¼ � a

2l1
� 1

2l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ ½4l1px�y
q

: ðE:3Þ

In order to pick the physically acceptable solution, it should be
noticed that d u/ d y > 0 at y = �h. Notice that [4l1px]yP 0 for
y e [�h, 0] (favorable pressure gradient is negative) and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ ½4l1px�y
p

> a2 leading to

du

dy
¼ a2

2l2
1
� a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ ½4l1px�y
p

2l2
1

þ pxy

l1
: ðE:4Þ

which implies that

uðyÞ ¼
Z

a2

2l2
1
� a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ ½4l1px�y
p

2l2
1

þ pxy

l1
dy ðE:5Þ

After integration

uðyÞ ¼ a2

2l2
1
yþ pxy

2

2l1
� a

12l3
1px

½a2 þ 4l1pxy�3=2 þ c ðE:6Þ

and applying the slip boundary condition u(�h), the constant c is re-
vealed and the final solution, depending on the pressure gradient, is
given by

uðyÞ ¼ a2ðyþ hÞ
2l2

1
þ pxðy2 � h

2Þ
2l1

þ að½a2 � 4l1pxh�3=2 � ½a2 þ 4l1pxy�3=2Þ
12l3

1px

þ uð�hÞ ðE:7Þ

The solution to the inverse problem is given by solving the fol-
lowing equation with px as a variable

a2h

4l2
1
� pxh

2

3l1
þ a½a2 � 4l1pxh�3=2

8l3
1px

þ að½a2 � 4l1px�h
5=2 � a5Þ

120h½l2
1px�2

þ uð�hÞ � U ¼ 0 ðE:8Þ

For n = 1 the solution is exactly the same as the one obtained for
the Poiseuille flow and Newtonian fluid, but g0 + a should be used
instead of l.

For n = 2 the integrated momentum equation is again quadratic

a
du

dy

� �2

þ l1
du

dy
� pxy ¼ 0 ðE:9Þ

and its solution is given by

du

dy
¼ �l1

2a
� 1

2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl1Þ2 þ ½4apx�y
q

: ðE:10Þ

Proceeding as for the case n = 0.5 one has that

uðyÞ ¼
R
� l1

2a þ 1
2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl1Þ2 þ ½4apx�y
q

;dyþ c

() uðyÞ ¼ � l1
2a yþ 2

24a2px
½ðl1Þ2 þ 4apxy�3=2 þ c

ðE:11Þ

Applying the boundary condition u(�h), we find the final solu-
tion depending on the pressure gradient

uðyÞ ¼ l1
2a

ð�y� hÞ þ ½ðl1Þ2 þ 4apxy�3=2 � ½ðl1Þ
2 � 4apxh�3=2

12a2px

þ uð�hÞ

ðE:12Þ

The solution to the inverse problem is given by the following
equation with px as a variable

� l1
4a

h� ½ðl1Þ2 � 4apxh�3=2
12a2px

þ ½ðl1Þ5 � ððl1Þ2 � 4apxyÞ5=2�
120ha3px

þ uð�hÞ � U ¼ 0: ðE:13Þ
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