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Explicit analytical expressions for the temperature pro
le, 
n e�ciency, and heat �ux in a longitudinal 
n are derived. Here, thermal
conductivity and heat transfer coe�cient depend on the temperature. 	e dierential transform method (DTM) is employed to
construct the analytical (series) solutions. 	ermal conductivity is considered to be given by the power law in one case and by the
linear function of temperature in the other, whereas heat transfer coe�cient is only given by the power law.	e analytical solutions
constructed by the DTM agree very well with the exact solutions even when both the thermal conductivity and the heat transfer
coe�cient are given by the power law. 	e analytical solutions are obtained for the problems which cannot be solved exactly. 	e
eects of some physical parameters such as the thermogeometric 
n parameter and thermal conductivity gradient on temperature
distribution are illustrated and explained.

1. Introduction

Fins are surfaces that extend from a hot object (body) to
increase the rate of heat transfer to the surrounding �uid.
In particular, 
ns are used extensively in various industrial
applications such as the cooling of computer processors, air
conditioning, and oil carrying pipe lines. A well-documented
review of heat transfer in extended surfaces is presented by
Kraus et al. [1]. 	e problems on heat transfer particularly
in 
ns continue to be of scienti
c interest. 	ese problems
are modeled by highly nonlinear dierential equations which
are di�cult to solve exactly. However, Moitsheki et al. [2–
4] have attempted to construct exact solutions for the steady
state problems arising in heat �ow through 
ns. A number
of techniques, for example, Lie symmetry analysis [2], He’s
variational iteration method [5], Adomain decomposition
methods [6], homotopy perturbationmethods [7], homotopy
analysis methods [8], methods of successive approximations
[9], and other approximation methods [10] have been used
to determine solutions of the nonlinear dierential equations
describing heat transfer in 
ns.

Recently, the solutions of the nonlinear ordinary dier-
ential equations (ODEs) arising in extended surface heat
transfer have been constructed using the DTM [11–19]. 	e
DTM is an analytical method based on the Taylor series
expansion and was 
rst introduced by Zhou [20] in 1986.	e
DTM approximates the exact solution by a polynomial, and
previous studies have shown that it is an e�cient means of
solving nonlinear problems or systems with varying parame-
ters [21]. Furthermore, DTM is a computational inexpensive
tool for obtaining analytical solution, and it generalizes the
Taylor method to problems involving procedures such as
fractional derivative (see e.g., [22–24]). Also, this method
converges rapidly (see e.g., [25]).

Models arising in heat transfer through 
ns may contain
temperature-dependent properties such as thermal conduc-
tivity and heat transfer coe�cient. 	e dependency of ther-
mal conductivity and heat transfer coe�cient on temperature
renders such problems highly nonlinear and di�cult to solve,
particularly exactly. 	ermal conductivity may be modeled
for many engineering applications by the power law and by
linear dependency on temperature. On the other hand, heat
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transfer coe�cient can be expressed as a power law for which
values of the exponent represent dierent phenomena (see
e.g., [26]).

In this paper, the DTM is employed to determine the
analytical solutions to the nonlinear boundary value problem
describing heat transfer in longitudinal 
ns of rectangular,
exponential, and convex parabolic pro
les. Both thermal
conductivity and heat transfer coe�cient are temperature
dependent.We adopt the terminology exact solutions to refer
to solutions given in terms of fundamental expressions such
as logarithmic, trigonometric, and exponential. However,
analytical solutions will be series solutions and in partic-
ular, those constructed using the DTM. 	e mathematical
modelling of the problem under consideration is described
in Section 2. A brief discussion on the fundamentals of the
DTM is be provided in Section 3. 	e comparison of the
exact and analytical solutions constructed byDTM is given in
Section 4. In Section 5, we provide analytical solutions for the
heat transfer in longitudinal 
ns of various pro
les.Here, heat
transfer coe�cient is given by the power law, and we consider
two cases of the thermal conductivity, namely, the power
law and the linear function of temperature. Furthermore,
we describe the 
n e�ciency and the heat �ux in Section 6.
Some exciting results are discussed in Section 7. Lastly, the
concluding remarks are provided in Section 8.

2. Mathematical Models

We consider a longitudinal one dimensional 
n of cross-
sectional area ��. 	e perimeter of the 
n is denoted by� and its length by �. 	e 
n is attached to a 
xed prime
surface of temperature �� and extends to an ambient �uid
of temperature ��. 	e 
n thickness at the prime surface is
given by �� and its pro
le is given by �(�). Based on the one
dimensional heat conduction, the energy balance equation is
then given by (see e.g., [1])

�� 		� (��2 � (�)� (�) 	�	�) = � (�) (� − ��)
0 ≤ � ≤ �,

(1)

where � and  are nonuniform temperature-dependent
thermal conductivity and heat transfer coe�cients, respec-
tively,� is the temperature distribution,�(�) is the 
n pro
le,
and� is the space variable. 	e length of the 
n is measured
from the tip to the prime surface as shown in Figure 1.
Assuming that the 
n tip is adiabatic (insulated) and the base
temperature is kept constant, then the boundary conditions
are given by

� (�) = ��, 	�	�
���������=0 = 0. (2)

Introducing the following dimensionless variables (see e.g.,
[1]):

� = �� , � = � − ���� − �� , ℎ = ℎ� , � = ��� ,
�2 = �ℎ��2���� , � (�) = ��2 � (�) ,

(3)

� = 0 � = �

Fin tip

Fin pro�le

Prime surface

�

�

�

Figure 1: Schematic representation of a longitudinal 
n of an
unspeci
ed pro
le.

with �� being de
ned as the thermal conductivity at the
ambient temperature and ℎ� as the heat transfer at the prime
surface (
n base), reduces (1) to

		� [� (�) � (�) 	�	�] −�2�ℎ (�) = 0, 0 ≤ � ≤ 1. (4)

Here � is the dimensionless temperature, � is the dimension-
less space variable, �(�) is the dimensionless 
n pro
le, � is
the dimensionless thermal conductivity, ℎ is the dimension-
less heat transfer coe�cient, and� is the thermogeometric

n parameter. 	e dimensionless boundary conditions then
become

� (1) = 1, at the prime surface (5)

	�	�
���������=0 = 0, at the 
n tip. (6)

We assume that the heat transfer coe�cient is given by the
power law

(�) = ℎ�( � − ���� − ��)
�, (7)

where the exponent � is a real constant. In fact the values of �
may vary as between −6.6 and 5. However, in most practical
applications, it lies between −3 and 3 [27]. In dimensionless
variables, we have ℎ(�) = ��. We consider the two distinct
cases of the thermal conductivity as follows:

(a) the power law

� (�) = ��( � − ���� − ��)
�, (8)

with� being a constant and

(b) the linear function

� (�) = �� [1 + � (� − ��)] . (9)
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	e dimensionless thermal conductivity given by the power
law and the linear function of temperature is �(�) = �� and�(�) = 1 + ��, respectively. Here the thermal conductivity
gradient is� = �(��−��). Furthermore, we consider a various

n pro
les including the longitudinal rectangular �(�) =1, the longitudinal convex parabolic �(�) = √�, and the
exponential pro
le �(�) = e�� with ! being the constant (see
also [16]).

3. Fundamentals of the Differential
Transform Method

In this section, the basic idea underlying the DTM is brie�y
introduced. Let "(#) be an analytic function in a domain D.
	e Taylor series expansion function of "(#) with the center
located at # = #	 is given by [20]

" (#) = ∞∑
�=0

(# − #	)�'! [	�" (#)	#� ]
�=��
, ∀# ∈ D. (10)

	e particular case of (10) when #	 = 0 is referred to as
the Maclaurin series expansion of "(#) and is expressed as

" (#) = ∞∑
�=0

#�'![	
�" (#)	#� ]

�=0
, ∀# ∈ D. (11)

	e dierential transform of "(#) is de
ned as follows:

4 (#) = ∞∑
�=0

H
�

'! [	
�" (#)	#� ]

�=0
, (12)

where "(#) is the original analytic function and 4(#) is the
transformed function. 	e dierential spectrum of 4(#) is
con
ned within the interval # ∈ [0,H], where H is a
constant. From (11) and (12), the dierential inverse transform
of 4(#) is de
ned as follows:

" (#) = ∞∑
�=0
( #
H
)�4 (') , (13)

and if "(#) is expressed by a 
nite series, then

" (#) = ∑
�=0
( #
H
)�4 (') . (14)

Some of the useful mathematical operations performed
by the dierential transform method are listed in Table 1.

	e delta function �(' − 9) is given by

� (' − 9) = {1 if ' = 9,0 if ' ̸= 9. (15)

4. Comparison of Exact and
Analytical Solutions

In this section, we consider a model describing temperature
distribution in a longitudinal rectangular 
n with both ther-
mal conductivity and heat transfer coe�cient being functions

Table 1: Fundamental operations of the dierential transform
method.

Original function Transformed function

"(#) = �(#) ± <(#) 4(#) = �(#) ± >(#)"(#) = ?�(#) 4(#) = ?�(#)
"(#) = 	"(#)	# 4(#) = (' + 1)4(' + 1)
"(#) = 	2"(#)	#2 4(#) = (' + 1)(' + 2)4(' + 2)
"(#) = 	�"(#)	#� 4(#) = (' + 1)(' + 2) ⋅ ⋅ ⋅ (' + 9)4(' + 9)
"(#) = �(#)<(#) 4(#) = �∑

�=0
�(A)>(' − A)

"(#) = 1 4(#) = �(')"(#) = # 4(#) = �(' − 1)"(#) = #� 4(#) = �(' − 9)
"(#) = exp(B#) 4(#) = B�'!
"(#) = (1 + #)� 4(#) = 9(9 − 1) ⋅ ⋅ ⋅ (9 − ' + 1)'!
"(#) = sin(C# + ?) 4(#) = C�'! sin(D'2! + ?)
"(#) = cos(C# + ?) 4(#) = C�'! cos(D'2! + ?)

of temperature given by the power law (see e.g., [2]).	e exact
solution of (4) when both the power laws are given by the
same exponent is given by [2]

� (�) = [cosh (�√� + 1�)
cosh (�√� + 1) ]

1/(�+1)

. (16)

We use this exact solution as a benchmark or validation of
the DTM. 	e eectiveness of the DTM is determined by
comparing the exact and the analytical solutions.We compare
the results for the cases � = 1 and � = 2 with 
xed values of�.

4.1. Case �=1. Applying the DTM to (4) with the power law
thermal conductivity, �(�) = 1 (rectangular pro
le) and
givenH = 1, one obtains the following recurrence relation:

�∑
�=0
[Θ (A) (' − A + 1) (' − A + 2)Θ (' − A + 2)
+ (A + 1)Θ (A + 1) (' − A + 1)Θ (' − A + 1)
−�2Θ (A)Θ (' − A)] = 0.

(17)

Exerting the transformation to the boundary condition (6) at
a point � = 0,

Θ (1) = 0. (18)

	e other boundary conditions are considered as follows:

Θ (0) = J, (19)
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where J is a constant. Equation (17) is an iterative formula of
constructing the power series solution as follows:

Θ (2) = �2J2 (20)

Θ (3) = 0 (21)

Θ (4) = −�4J24 (22)

Θ (5) = 0 (23)

Θ (6) = 19�6J720 (24)

Θ (7) = 0 (25)

Θ (8) = −559�8J40320 (26)

Θ (9) = 0 (27)

Θ (10) = 29161�10J3628800 (28)

Θ (11) = 0 (29)

Θ (12) = −2368081�12J479001600 (30)

Θ (13) = 0 (31)

Θ (14) = 276580459�14J87178291200 (32)

Θ (15) = 0
...

(33)

	ese terms may be taken as far as desired. Substituting
(18) to (32) into (13), we obtain the following analytical
solution:

� (�) = J + �2J2 �2 − �4J24 �4 + 19�
6J720 �6

− 559�8J40320 �8 + 29161�
10J3628800 �10 − 2368081�12J479001600 �12

+ 276580459�14J87178291200 �14 + ⋅ ⋅ ⋅
(34)

To obtain the value of J, we substitute the boundary
condition (5) into (34) at the point � = 1. 	us, we have

� (1) = J + �2J2 − �4J24 + 19�6J720 − 559�8J40320
+ 29161�10J3628800 − 2368081�12J479001600
+ 276580459�14J87178291200 + ⋅ ⋅ ⋅ = 1.

(35)

Table 2: Results of the DTM and exact solutions for � = 1,� = 0.7.
� DTM Exact Error

0 0.808093014 0.80809644 0.000003426

0.1 0.810072036 0.81007547 0.000003434

0.2 0.815999549 0.81600301 0.000003459

0.3 0.825847770 0.82585127 0.000003500

0.4 0.839573173 0.83957673 0.000003559

0.5 0.857120287 0.85712392 0.000003633

0.6 0.878426299 0.87843002 0.000003722

0.7 0.903426003 0.90342982 0.000003814

0.8 0.932056648 0.93206047 0.000003820

0.9 0.964262558 0.96426582 0.000003263

1.0 1.000000000 1.00000000 0.000000000

Table 3: Results of theDTMand Exact Solutions for � = 2,� = 0.5.
� DTM Exact Error

0 0.894109126 0.894109793 0.000000665

0.1 0.895226066 0.895226732 0.000000666

0.2 0.898568581 0.898569249 0.000000668

0.3 0.904112232 0.904112905 0.000000672

0.4 0.911817796 0.911818474 0.000000678

0.5 0.921633352 0.921634038 0.000000685

0.6 0.933496900 0.933497594 0.000000694

0.7 0.947339244 0.947339946 0.000000702

0.8 0.963086933 0.963087627 0.000000694

0.9 0.980665073 0.980665659 0.000000586

1.0 1.000000000 1.000000000 0.000000000

Weomit presenting the tedious process of 
nding J. However,
one may obtain the expression for �(�) upon substituting the
obtained value of J into (34).
4.2. Case �=2. Following a similar approach given in
Section 4.1 and given � = 2, one obtains the analytical
solution

� (�) = J + �2J2 �2 − �4J8 �4 + 23�6J240 �6

− 1069�8J13440 �8 + 9643�10J134400 �10 − 1211729�12J17740800 �12

+ 217994167�14J3228825600 �14 + ⋅ ⋅ ⋅ .
(36)

	e constant Jmay be obtained using the boundary condition
at the 
n base. 	e comparison of the DTM and the exact
solutions are re�ected in Tables 2 and 3 for dierent values
of �. Furthermore, the comparison of the exact and the
analytical solutions is depicted in Figures 2(a) and 2(b).
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Figure 2: Comparison of analytical and exact solutions. In (a) � = 1,� = 0.7 and (b) � = 2,� = 0.5.

5. Analytical Solutions

It is well known that exact solutions forODEs such as (4) exist
only when thermal conductivity and the term containing
heat transfer coe�cient are connected by dierentiation
(or simply if the ODE such as (4) is linearizable) [4]. In
this section we determine the analytical solutions for the
nonlinearizable (4), 
rstlywhen thermal conductivity is given
by the power law and secondly as a linear function of
temperature. In both cases and throughout this paper, the
heat transfer coe�cient is assumed to be a power law function
of temperature. 	ese assumptions of the thermal properties
are physical realistic. We have noticed that DTM runs into
di�culty when the exponent of the power law of the thermal
conductivity is given by fractional values and also when the
function �(�) is given in terms of fractional power law. One
may followMoradi and Ahmadikia [16] by introducing a new
variable to deal with fractional powers of �(�), and on the
other hand, it is possible to remove the fractional exponent of
the heat transfer coe�cient by fundamental laws of exponent
and binomial expansion.

Proposition 1. A nonlinear ODE such as (4) may admit the
DTM solution if �(�) is a constant or exponential function.
However, if �(�) is a power law, then such an equation admits
a DTM solution if the product,

� (�) ⋅ �� (�) = ?, (37)

holds. Here ? is a real constant.
Proof. Introducing the new variable O = �(�), it follows from
chain rule that (4) becomes

? 	O	� 		O [� (�) 	�	O] −�2��+1 = 0. (38)

	e most general solution of condition (37) is

� (�) = (2?� + �)1/2, (39)

where � is an integration constant.

Example 2. (a) If �(�) = ��, then O = �� transforms (4) into

		O [� (�) 	�	O] − 4�2O��+1 = 0, (40)

only if P = 1/2.
	is example implies that the DTM may only be appli-

cable to problems describing heat transfer in 
ns with
convex parabolic pro
le. In the next subsections, we present
analytical solutions for (4) with various functions �(�) and�(�).
5.1. 	e Exponential Pro
le and Power Law 	ermal Con-
ductivity. In this section, we present solutions for equation
describing heat transfer in a 
n with exponential pro
le and
power law thermal conductivity and heat transfer coe�cient.
	at is, given (4) with �(�) = e��, and both heat transfer
coe�cient and thermal conductivity being power law func-
tions of temperature, we construct analytical solutions. In our
analysis, we consider � = 2 and 3 indicating the 
n subject to
nucleate boiling and radiation into free space at zero absolute
temperature, respectively. Firstly, given � = 3 and � = 2
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and applying the DTM, one obtains the following recurrence
revelation:

�∑
�=0

�−�∑
�=0

�−�−�∑
�=0

[P�R! Θ (S) Θ (A) (' − A − S − R + 1)
× (' − A − S − R + 2)Θ (' − A − S − R + 2)
+ 2P�R! Θ (S) (A + 1)Θ (A + 1)
× (' − A − S − R + 1)Θ (' − A − S − R + 1)
+ 2PP�R! Θ (S) Θ (A) (' − A − S − R + 1)
× Θ (' − A − S − R + 1)
−�2Θ(R)Θ (S) Θ (A) Θ (' − A − S − R) ] = 0.

(41)

One may recall the transformed prescribed boundary
conditions (18) and (19). Equation (41) is an iterative formula
of constructing the power series solution as follows:

Θ (2) = �2J22
Θ (3) = −P�2J23

Θ (4) = �2J2 (3P2 − 2�2J)24
Θ (5) = −�2J2 (P3 − 4P�2J)30

Θ (6) = �2J2 (5P4 − 78P2�2J + 58�4J2)720
...

(42)

	e pervious process is continuous and onemay consider
as many terms as desired (but bearing in mind that DTM
converges quite fast). Substituting (18) to (19) and (42) into
(13), we obtain the following closed form of the solution:

� (�) = J + �2J22 �2 − P�2J23 �3

+ �2J2 (3P2 − 2�2J)24 �4

− �2J2 (P3 − 4P�2J)30 �5

+ �2J2 (5P4 − 78P2�2J + 58�4J2)720 �6 + ⋅ ⋅ ⋅

(43)

To obtain the value of J, we substitute the boundary
condition (5) into (43) at the point � = 1. 	at is,

� (1) = J + �2J22 − P�2J23 + �2J2 (3P2 − 2�2J)24
− �2J2 (P3 − 4P�2J)30
+ �2J2 (5P4 − 78P2�2J + 58�4J2)720 + ⋅ ⋅ ⋅ = 1.

(44)

Substituting this value of J into (43), one 
nds the
expression for �(�). On the other hand, given (�,�) = (2, 3),
one obtains the solution

� (�) = J + �22 �2 − P�
2

3 �3

+ �2 (P2J − 2�2)8J �4 − P�2 (2P2J − 21�2)60J �5

+ �2 (180�4 − 186P2�2J + 5P4J2)720 �6 + ⋅ ⋅ ⋅
(45)

Here, the constant J maybe obtained by evaluating the
boundary condition �(1) = 1. 	e solutions (43) and (45) are
depicted in Figures 3(b) and 3(a), respectively.

5.2. 	e Rectangular Pro
le and Power Law 	ermal Con-
ductivity. In this section, we provide a detailed construction
of analytical solutions for the heat transfer in a longitudinal
rectangular 
nwith a power law thermal conductivity; that is,
we consider (4) with �(�) = 1 and �(�) = ��. 	e analytical
solutions are given in the following expressions.

(a) Case (�,�) = (2, 3)
� (�) = J + �22 �2 − �

4

4J �4 + �
6

4J2 �6

− 33�8122J3 �8 + 127�
10

336J4 �10 + ⋅ ⋅ ⋅ .
(46)

(b) Case (�,�) = (3, 2)
� (�) = J + J2�22 �2 − J3�412 �4 + 29J4�6360 �6

− 307J5�85040 �8 + 23483J6�10453600 �10 + ⋅ ⋅ ⋅ .
(47)

	e constant J is obtained by solving the appropriate �(�)
at the 
n base boundary condition. 	e analytical solutions
in (46) and (47) are depicted in Figures 4(a) and 4(b),
respectively.
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Figure 3: Temperature pro
le in a longitudinal 
n with exponential pro
le and power law thermal conductivity. In (a) the exponents are(�,�) = (2, 3) and (b) (�, �) = (3, 2).
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Figure 4: Temperature pro
le in a longitudinal 
n with rectangular pro
le and power law thermal conductivity. In (a) the exponents are(�,�) = (2, 3) and (b) (�, �) = (3, 2).

5.3. 	e Convex Parabolic Pro
le and Power Law 	ermal
Conductivity. In this section, we present solutions for the
equation describing the heat transfer in a 
n with con-
vex parabolic pro
le and power law thermal conductivity.
Equation (40) is considered. Here we consider the values{(�,�) = (2, 3); (3, 2)}. 	e 
nal analytical solution is given
by

(a) Case (�,�) = (2, 3)

� (�) = J + 2�23 �3/2 − 2�45J �3 + 23�
6

45J2 �9/2
− 1909�82475J3 �6 + 329222�

10

259875J4 �15/2 + ⋅ ⋅ ⋅ .
(48)
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le and power law thermal conductivity. In (a) the exponents
are (�,�) = (2, 3) and (b) (�,�) = (3, 2).

(b) Case (�,�) = (3, 2)
� (�) = J + 2J2�23 �3/2 − 4J3�445 �3 + 4J4�627 �9/2

− 992J5�87425 �6 + 30064J6�10212625 �15/2 + ⋅ ⋅ ⋅ .
(49)

	e constant J is obtained by evaluating the appropriate �(�)
at the 
n base boundary condition. 	e solutions in (48) and
(49) are depicted in Figures 5(a) and 5(b), respectively.

5.4. 	e Rectangular Pro
le and Linear	ermal Conductivity.
In this section, we present solutions for the equation repre-
senting the heat transfer in a 
n with rectangular pro
le and
the thermal conductivity depending linearly on temperature.
	at is, we consider (4) with �(�) = 1 and �(�) = 1 + ��. 	e
analytical solutions for this problem for dierent values of �
are given by

(a) Case � = 0
� (�)

= � + �
2�

2 (1 + ��)�
2 − �

4� (−1 + 2��)
24(1 + ��)3

�4

+
�6� (1 − 16�� + 28�2�2)
720(1 + ��)5

�6

−
�8� (−1 + 78�� − 600�2�2 + 896�3�3)

40320(1 + ��)7
�8

+
�10� (1 − 332�� + 7812�2�2 − 39896�3�3 + 51184�4�4)

3628800(1 + ��)9
�10

+ ⋅ ⋅ ⋅ .
(50)

(b) Case � = 1
� (�)

= � + �
2�2

2 (1 + ��) �
2 − �

4�3 (−1 + 2��)
24(1 + ��)3

�4

+
�6�4 (10 − 16�� + 19�2�2)
720(1 + ��)5

�6

−
�8�5 (−80 + 342�� − 594�2�2 + 559�3�3)

40320(1 + ��)7
�8

+
�10�6 (1000 − 7820�� + 24336�2�2 − 36908�3�3 + 29161�4�4)

3628800(1 + ��)9
�10

+ ⋅ ⋅ ⋅ .
(51)

(c) Case � = 2
� (�)

= � + �
2�3

2 (1 + ��)�
2 + �

4�5

8(1 + ��)3
�4 +
�6�7 (3 + 2�2�2)
80(1 + ��)5

�6

+
�8�9 (49 − 20�� + 66�2�2 − 40�3�3)

4480(1 + ��)7
�8

+
�10�11 (427 − 440�� + 1116�2�2 − 1020�3�3 + 672�4�4)

134400(1 + ��)9
�10

+ ⋅ ⋅ ⋅ .
(52)



Mathematical Problems in Engineering 9

(d) Case � = 3
� (�)

= � + �
2�4

2 (1 + ��) �
2 + �

4�7 (4 + ��)
24(1 + ��)3

�4

+
�6�10 (52 + 32�� + 25�2�2)
720(1 + ��)5

�6

+
�8�13 (1288 + 1020�� + 1212�2�2 − 95�3�3)

40320(1 + ��)7
�8

+
�10�16 (52024+45688��+77184�2�2−680�3�3 + 15025�4�4)

3628800(1 + ��)9
�10

+ . . . .
(53)

	e constant Jmay be obtained from the boundary condition
on the appropriate solution. 	e solutions in (50), (51), (52),
and (53) are depicted in Figure 6.

5.5.	e Convex Parabolic Pro
le and Linear	ermal Conduc-
tivity. In this section, we present solutions for the equation
describing the heat transfer in a 
n with convex parabolic
pro
le and the thermal conductivity depending linearly on
temperature. 	at is, we consider (40) with �(�) = 1 + ��.
	e analytical solution for this problem for dierent values of� is given by

(a) Case � = 0
� (�)
= J + 2�2J3 (1 + �J)�3/2 −

2�4J (−2 + 3�J)
45(1 + �J)3 �3

+ �6J (2 − 25�J + 33�2J2)405(1 + �J)5 �9/2

− �8J (−10 + 599�J − 3582�2J2 + 4059�3J3)66825(1 + �J)7 �6
+ ⋅ ⋅ ⋅ .

(54)

(b) Case � = 1
� (�)
= J + 2�2J23 (1 + �J)�3/2 −

2�4J3 (−4 + �J)
45(1 + �J)3 �3

+ 2�6J4 (9 − 11�J + 10�2J2)405(1 + �J)5 �9/2

− 2�8J5 (−330 + 1118�J − 1584�2J2 + 1093�3J3)66825(1 + �J)7 �6
+ ⋅ ⋅ ⋅ .

(55)
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Figure 6: Temperature pro
le in a longitudinal rectangular 
n with
linear thermal conductivity and varying values of �. Here � = 0.5
and� = 1.5 are 
xed.

(c) Case � = 2
� (�)
= J + 2�2J33 (1 + �J)�3/2 +

2�4J5 (6 + �J)
45(1 + �J)3 �3

+ �6J7 (16 + 3�J + 7�2J2)135(1 + �J)5 �9/2

+ �8J9 (1160 − 107�J + 1116�2J2 − 367�3J3)22275(1 + �J)7 �6
+ ⋅ ⋅ ⋅ .

(56)

(d) Case � = 3
� (�)
= J + 2�2J43 (1 + �J)�3/2 +

2�4J7 (8 + 3�J)
45(1 + �J)3 �3

+ 4�6J10 (23 + 17�J + 9�2J2)405(1 + �J)5 �9/2

+ 2�8J13 (5000+4868�J + 4356�2J2 + 363�3J3)66825(1 + �J)7 �6
+ ⋅ ⋅ ⋅ .

(57)

	e constant J may be obtained from the boundary
condition on the appropriate �(�).	e solutions in (54), (55),
(56) and (57) are depicted in Figure 7.
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Figure 7: Temperature pro
le in a longitudinal convex parabolic 
n
with linear thermal conductivity and varying values of �. Here � =0.5 and� = 1.5 are 
xed.

5.6. 	e Exponential Pro
le and Linear	ermal Conductivity.
In this section, we present solutions for equation heat transfer
in a 
n with convex parabolic pro
le and the thermal
conductivity depending linearly on temperature. 	at is, we
consider (4) with �(�) = 1 + �� and �(�) = e��. Here P
is a constant. 	e analytical solutions for this problem for
dierent values of � are given by

(a) Case � = 0
� (�)

= � + �
2�

2 (1 + ��)�
2 −
��2� (2 + �� + �2�)
6(1 + ��)2

�3

+
�2� (�2 (1 − 2�2�) + �2 (3 +3��+�3�2+�4�2 +�2� (3 + �)))

24(1 + ��)4
�4

+ ⋅ ⋅ ⋅ .
(58)

(b) Case � = 1
� (�)

= � + �
2�2

2 (1 + ��) �
2 −
��2�2 (2 + �� + �2�)
6(1 + ��)2

�3

+
�2�2 (�2� (2+��−2�2�)+�2 (3+3��+�3�2+�4�2+�2� (3+�)))

24(1 + ��)3
�4

+ ⋅ ⋅ ⋅ .
(59)
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Figure 8: Temperature pro
le in a longitudinal 
n of exponential
pro
le with linear thermal conductivity and varying values of �.
Here � = 0.5 and� = 1.5 are 
xed.

(c) Case � = 2
� (�)

= � + �
2�3

2 (1 + ��) �
2 −
��2�3 (2 + �� + �2�)
6(1 + ��)2

�3

+
�2�3 (�2�2 (3+2��−2�2�)+�2 (3+3��+�3�2+�4�2+�2� (3+�)))

24(1 + ��)3

×�4 + ⋅ ⋅ ⋅ .
(60)

(d) Case � = 3
� (�)

= � + �
2�4

2 (1 + ��) �
2 −
��2�4 (2 + �� + �2�)
6(1 + ��)2

�3

+
�2�4 (�2�3 (4+3��−2�2�)+�2 (3+3��+�3�2+�4�2+�2� (3+�)))

24(1 + ��)3

×�4 + ⋅ ⋅ ⋅ .
(61)

	e constant J may be obtained from the boundary
condition on the appropriate �(�).	e solutions in (58), (59),
(60), and (61) are depicted in Figure 8.

6. Fin Efficiency and Heat Flux

6.1. Fin E�ciency. 	eheat transfer rate from a 
n is given by
Newton’s second law of cooling:

U = ∫�
0
� (�) (� − ��) 	�. (62)
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Fin e�ciency is de
ned as the ratio of the 
n heat transfer
rate to the rate that would be if the entire 
n were at the base
temperature and is given by (see e.g., [1])

W= UUideal

= ∫
�
0 � (�) (� − ��) 	��ℎ�� (�� − ��) . (63)

In dimensionless variables, we have

W = ∫1
0
��+1	�. (64)

We consider the solutions (50), (51), (52), and (53) and depict
the 
n e�ciency (63) in Figure 9.

6.2. Heat Flux. 	e 
n base heat �ux is given by the Fourier’s
law

Y� = ��� (�) 	�	� . (65)

	e total heat �ux of the 
n is given by [1]

Y = Y���(�) (�� − ��) . (66)

Introducing the dimensionless variable as described in
Section 2 implies

Y = 1ZA � (�)ℎ (�) 	�	� , (67)

where the dimensionless parameter ZA = ℎ��/�� is the Biot
number. We consider a number of cases for the thermal
conductivity and the heat transfer coe�cient.

6.2.1. Linear 	ermal Conductivity and Power Law Heat
Transfer Coe�cient. In this case (67) becomes

Y = 1ZA (1 + ��) �−� 	�	� . (68)

	e heat �ux in (68) at the base of the 
n is plotted in
Figure 10.

6.2.2. Power Law	ermal Conductivity and Heat Transfer
Coef
cient. In this case (67) becomes

Y = 1ZA��−� 	�	� . (69)

Not surprisingly, heat �ux in one-dimensional 
ns is higher
given values ZA ≪ 1. 	e heat �ux in (69) is plotted in
Figures 11(a), 11(b), and 11(c).

7. Some Discussions

	e DTM has resulted in some interesting observations and
study. We have observed in Figures 2(a) and 2(b) an excellent
agreement between the analytical solutions generated by
DTM and the exact solution obtained in [2]. In particular, we

�
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Figure 9: Fin e�ciency of a longitudinal rectangular 
n. Here � =0.75.
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Figure 10: Base heat �ux in a longitudinal rectangular 
nwith linear
thermal conductivity. Here � = 0.1.

considered a 
n problem in which both thermal conductivity
and heat transfer coe�cient are given by the same power law.
Furthermore, we notice from Table 2 that an absolute error
of approximately 3.5^ − 005 is produced by DTM of order_(15). In Table 3, an absolute error of approximately 6.5^ −006 is produced for the same order. 	is con
rms that the
DTM converges faster and can provide accurate results with
a minimum computation. As such, a tremendous con
dence
in the DTM in terms of the accuracy and eectiveness was
built, and thus we used this method to solve other problems
for which exact solutions are harder to construct.

In Figures 3(a), 3(b), 4(a), 4(b), 5(a), and 5(b), we
observe that the 
n temperature increaseswith the decreasing
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values of the thermogeometric 
n parameter. Here, the
values of the exponents are 
xed. Also, we observe that 
n
temperature is higher when � − � > 0, that is, when heat
transfer coe�cient is higher than the thermal conductivity.
We observe in Figures 6, 7, and 8 that the 
n temperature
increases with the increasing values of �. Furthermore,
it appears that the 
n with exponential pro
le performs
the least in transferring the heat from the base, since the
temperature in such a 
n is much higher than that of
the rectangular and the convex parabolic pro
les. In other
words, heat dissipation to the �uid surrounding the extended
surface is much faster in longitudinal 
ns of rectangular and
convex parabolic pro
les. In Figure 9, 
n e�ciency decreases
with increasing thermogeometric 
n parameter. Also, 
n
e�ciency increases with increasing values of �. It is easy
to show that the thermogeometric 
n parameter is directly
proportional to the aspect ratio (extension factor) with square
root of the Biot number being the proportionality constant.
As such, shorter 
ns are more e�cient than longer ones.
Else, the increased Biot number results in less e�cient 
n
whenever the space is con
ned, that is, where the length of
the 
n cannot be increased. Figure 10 depicts the heat �ux
at the 
n base. 	e amount of heat energy dissipated from
the 
n base is of immense interest in engineering [28]. We
observe in Figure 10 that the base heat �ux increases with
the thermogeometric 
n parameter for considered values of
the exponent � (see also [28]). Figures 11(a), 11(b), and 11(c)
display the heat �ux across the 
n length. We note that the
heat �ux across the 
n length increases with increasing values
of the thermogeometric 
n parameter.

8. Concluding Remarks

In this study, we have successfully applied the DTM to highly
nonlinear problems arising in heat transfer through longitu-
dinal 
ns of various pro
les. Both thermal conductivity and
heat transfer coe�cient are given as functions of temperature.
	e DTM agreed well with exact solutions when the thermal
conductivity and heat transfer coe�cient are given by the
same power law. A rapid convergence to the exact solution
was observed. Following the con
dence in DTM built by the
results mentioned, we then solved various exciting problems.
	e exotic results have been shown in tables and 
gures listed
in this paper.

	e results obtained in this paper are signi
cant improve-
ments on the known results. In particular, both the heat
transfer coe�cient and the thermal conductivity are allowed
to be given by the power law functions of temperature, and
alsowe considered a number of 
npro
les.Wenote that exact
solutions are di�cult if not impossible to construct when the
exponents of these properties are distinct.

Perhaps the notable advantage of the DTM is the general-
ization of the Taylor method to problems involving unusual
derivative procedures such as fractional, fuzzy, or q-derivative
[22]. Some generalizations have been made by Odibat et al.
[24], and they referred to their new method as the General-
ized Dierential Transform Method (GDTM). 	is showed
great improvement compared to the Fractional Dierential
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Figure 11: Heat �ux across a longitudinal rectangular 
n with linear
thermal conductivity. (a) �−� < 0, (b) �−� > 0, and (c) �−� = 0.
Here ZA = 0.01.
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Transform Method (FDTM) introduced by Arikoglu and
Ozkol [23].

We have shown with the help of an example that DTM
may only be applied to 
n problems involving heat transfer
through 
ns with convex parabolic pro
le. Note that given an
ODE such as (4) with a power law heat transfer coe�cient of
a fractional exponent, then one can easily remove the fraction
by basic exponential rules and employment of the Binomial
expansion. However, using the DTM, one runs into di�culty
if the power law thermal conductivity in the same equation is
given by the fractional exponent. We do not know whether
these observations call for the “modi
ed” DTM to solve
problems arising in heat �ow through 
ns with other pro
les,
such as longitudinal triangular and concave parabolic, and
also with fractional power law thermal conductivity.

	e main results obtained in this paper give insight
into heat transfer in boiling liquids where the heat transfer
coe�cient is temperature dependent and may be given by a
power law. 	e thermal conductivity of some materials such
as gallium nitride (GaN) and Aluminium Nitride (AlN) may
be modeled by power law temperature dependency [29, 30].
	us, the solutions constructed here give a better comparison
of heat transfer in terms of material used since in many engi-
neering applications thermal conductivity is given as a linear
function of temperature. Furthermore, a good study in terms
of performance and e�ciency of 
n with dierent pro
les is
undertaken. 	ese 
nding could help in the design of 
ns. It
is claimed in [14] that DTM results are more accurate than
those constructed by Variational Iteration Methods (VIM)
and Homotopy Perturbation Methods (HPM). However, it
would be risky to use the DTM approximate solutions as
benchmarks for the numerical schemes. Nevertheless, we
have also shown that DTM converges rapidly in just 
�een
terms to the exact solution.
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