Hindawi

International Journal of Differential Equations
Volume 2021, Article ID 9988160, 18 pages
https://doi.org/10.1155/2021/9988160

Research Article

Hindawi

Analytical Solutions for the Nonlinear Partial Differential
Equations Using the Conformable Triple Laplace Transform

Decomposition Method

Shailesh A. Bhanotar

! and Mohammed K. A. Kaabar ©*>*

'Department of Mathematics, LJIET, L] University, Ahmedabad, Gujarat, India

’Institute of Mathematical Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
*Gofa Camp, Near Gofa Industrial College and German Adebabay, Nifas Silk-Lafto, 26649 Addis Ababa, Ethiopia
*Jabalia Camp, United Nations Relief and Works Agency (UNRWA) Palestinian Refugee Camp,

Gaza Strip Jabalya, State of Palestine

Correspondence should be addressed to Mohammed K. A. Kaabar; mohammed.kaabar@wsu.edu

Received 1 April 2021; Accepted 29 July 2021; Published 18 August 2021

Academic Editor: Mostafa Eslami

Copyright © 2021 Shailesh A. Bhanotar and Mohammed K. A. Kaabar. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

In this paper, a novel analytical method for solving nonlinear partial differential equations is studied. This method is known as triple
Laplace transform decomposition method. This method is generalized in the sense of conformable derivative. Important results and
theorems concerning this method are discussed. A new algorithm is proposed to solve linear and nonlinear partial differential
equations in three dimensions. Moreover, some examples are provided to verify the performance of the proposed algorithm. This
method presents a wide applicability to solve nonlinear partial differential equations in the sense of conformable derivative.

1. Introduction

Fractional calculus has attracted many researchers in the last
decades. The impact of this fractional calculus on both pure
and applied branches of science and engineering has been
increased. Many researchers started to approach with the
discrete versions of this fractional of calculus which are
summarized into two approaches: nonlocal (classical) and
local. Most popular definitions in the area of nonlocal
fractional calculus are the Riemann-Liouville, Caputo, and
Grunwald-Letnikov definitions. The obtained fractional
derivatives lack some basic properties such as chain rule and
Leibniz rule for derivatives [1]. However, the semigroup
properties of these fractional operators behave well in some
cases. In [2], later on, Khalil et al. (2014) presented a new
definition of a local fractional derivative, known as con-
formable derivative, which is well behaved and obeys the
Leibniz rule and chain rule for derivatives. While con-
formable derivative has been criticized in [3, 4], we believe
that the new definition deserves to be explored further with

its analysis and applications because many research studies
have been conducted on this definition and its applications
to various phenomena in physics and engineering. There-
fore, throughout this paper, we will call this definition as
conformable derivative. It is defined as follows.

For a function f: (0,00) — R, the conformable de-
rivative of order a € (0,1] of f at x>0 is defined by

f(x+hx1];a) _f(x)' (1)

) - fm

For this derivative, Atanganana et al. (2018) presented
new properties [5] which have been analysed for real valued
multivariable functions [6] by Gozutok et al. (2018). In [7],
conformable gradient vectors are defined, and a conform-
able sense Clairaut’s theorem has also been proven. In
[8-14], the researchers have worked on the linear ordinary
and partial differential equations based on the conformable
derivatives. Namely, two new results on homogeneous
functions involving their conformable partial derivatives are
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introduced, specifically, homogeneity of the conformable
partial derivatives of a homogeneous function and the
conformable version of Euler’s theorem. The conformable
Laplace transform was studied and modified by Jarad et al.
(2019) [15]. The conformable double Laplace transform was
defined and applied in [16]. The conformable Laplace
transform is not only useful to solve local conformable
fractional dynamical systems but also it can be employed to
solve systems within nonlocal conformable fractional de-
rivatives that were defined and used in [17]. Finally, it is also
a remarkable fact that there are a large number of studies in
the theory and application of fractional differential equa-
tions based on this new definition of derivative, which have
been developed in a short time. We refer to [4, 18-35] that
many researchers have been worked on different analogues
methods to solve partial fractional differential in con-
formable sense. Numerical and analytical techniques for
solving conformable partial differential equations and
conformable initial boundary value problems have been
investigated in [36, 37], respectively. In addition, some in-
teresting problems have been studied in the sense of con-
formable derivative such as conformable gradient-based
dynamical system for constrained optimization problem
[38], conformable heat equation on radial symmetric plate
[39], and optimal control problem for conformable heat
conduction equation [40]. Several equations have been
formulated with the help of conformable formulations to
study their solutions such as the (2+ 1)-dimensional
Ablowitz-Kaup-Newell-Segur equations [25] where the
complex soliton solutions were investigated and the
Date-Jimbo-Kashiwara-Miwa equation [26] where new
travelling wave solutions were obtained. In addition, the
conformable formulations of the coupled nonlinear
Schrodinger equations [30] and Fokas-Lenells equation [35]
were studied to obtain travelling wave solutions and optical
solutions, respectively. The triple Laplace Adomian de-
composition method and modified variational iteration
Laplace transform method were studied in [27, 28], re-
spectively. Similarly, a combined method of both of the
Laplace transform and resolvent kernel methods was in-
troduced in [31]. Motivated by all these studies, we come up
with the idea to study the nonlinear partial fractional dif-
ferential equations by defining a function in 3-dimensional
space. Therefore, a conformable triple Laplace transform is
defined and coupled with Adomian decomposition method
to solve systematic nonlinear partial fractional differential
equations. The triple Laplace transform has been rarely
discussed in the literature which makes this topic as an open
research topic. Therefore, exploring new results concerning
this interesting topic is always important. The main ad-
vantage of this method will give accurate solutions to
nonlinear partial fractional derivatives in three-dimensional
space.

This paper is divided into the following sections. In
Section 2, some basic definitions on conformable partial
derivatives are introduced. In Section 3, the main results and
theorems on the conformable triple Laplace transform are
investigated. In Section 4, a general nonlinear nonhomo-
geneous partial fractional differential equation is solved
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using the proposed method. In Section 5, numerical ex-
periment is conducted using the proposed method to val-
idate the obtained results. In Section 6, a conclusion of our
research work is provided.

2. Basic Definitions and Tools

In this section, we provide some fundamental definitions on
conformable partial derivatives.

Definition 1. Given a function f: R* x R* x R* — R, the
conformable partial fractional derivatives (CPFDs) of orders
o, B, and y of the function f (x, y,t) are defined as follows:

. " . f(x +hx'" %y, t) - f(x p,1)
oL = ) = i h ’

o Sy +ky' ) - f(xp0)
% =g p oyt = jim, K :

Y  fleoyt et ) = f(x 1)
affzwf(x,y,t):hm ( ) ,

e—0 Fo
(2)

where O0<a,B,y<l,x,9,t>0, and 9= (3"/0x%), afj
= (310 y/; )and 0] = (0"/0t?) are called the fractional partial
derivatives of orders «, 3, and y, respectively.

We prove the basic Theorem 1 and the relation between
the CPFDs and partial derivatives as follows.

Theorem 1. Let a,f,y € (0,1] and f(x, y,t)be a differ-
entiable at a point for x, y,t > 0. Then,

(i) 0% f = (0%/0x%) f (x, y,t) = x' "% (3f (x, y,1)/0x) =
<0, f

(ii) 3 f = (3% /0yP) f (x, y,t) = y'=F (3f (x, y,1)/0y) =
y' ko, f
(iii) 9] f = (3"/0t") f (x, y, 1) = t1"V (3f (x, y,1)/0t) =
t1=79, f

Proof. By the definition of CFPD,

o* . f(x +hx'"%y, t) - f(x, ,t)
s o) = im h ’

1-«

takinghx™ " =¢

_ qim e -y D

p—0 ¢ xtx—l

_ e gy L E e - 6y
p—0 9

— xl—a af(x’ ) t).
ox

(3)

Similarity, we can prove the results (ii) and (iii).
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In the next preposition, we mention the conformable
partial fractional derivative of some functions. By using
Theorem 1, it can be verified easily. O

Proposition 1. Let o,f3,y € (0,1] and a,b € R,I,m,n € N.
Then, we have the following:

(1) (0%/0x*) (au(x, y,t) + bv(x, y,t)) = a(0*/0x*)u(x,
¥,t) + b(0%/0x*)v(x, y,t)

(2) (a“+ﬁ+y/ax“ayﬂaﬂ) (xl ym ") = Imn xl=« ym-B -y
(3) (0%/0x%) ((x%/a) (£7/y)") =1 (x*/a)= " (tV/y)", (3"/
oY) ((x*/a) (P/B)™ (87/9)") = n(x%/a) (yF/B)™

(tr/y)y!
(4) (0%/0x) (sin(x*/a)cos(t'/y)) = cos(x*/a)cos (t'/y)
(5) (aﬁ/ayﬁ)(sin(x"‘/oc)cos(yﬁ/ﬁ)cos(ty/y)) = —sin (x*/
a) sin(yﬁ/ﬁ)cos(ty/)/)

3. Some Results and Theorems of the
Conformable Triple Laplace Transform

In this section, we recall some basic definitions on con-
formable Laplace transform and some results which will be

L e ) =Uns(pa = | | e

where x, y>0, p,q €(, o, € (0,1].

Now, we define the conformable triple Laplace trans-
form, for a,f,y € (0,1], and p,q,s € [ are the Laplace
variables.

B W) =Uasy a9 = [ [

where p,q,s € ([ are Laplace variables and «, 3,y € (0,1].

u(x, y,t) = L;,IL;IL;I(U%I;)Y (p9 s))

271 ) a-ico 2mi ) p-ico

Definition 5. A unit step or Heaviside unit step function is
defined as follows:

1 a+ico N 1 B+ico 1 y+ico ,
1 J P 1) [_ J eq(y‘*/ﬁ)[_ J es(“/Y)Ua,/;,y (P> 5)ds]dq]dp.

used later on. We refer the reader to some related research
studies in [4, 15-29]. Also, we define conformable triple
Laplace transform, which is defined in equation (6).

Definition 2. Let the function u: (0,00) — Rand 0<a<1
be the piecewise continuous function. Then, the conform-
able Laplace transform (CLT) of function u of exponential of
order « is defined and denoted by

U, (p) =L (u(x)) = JOO e P, (0)x Tdx,  x>0.
0
(4)

Definition 3. Let u(x, y) be a piecewise continuous function
on the domain D of R* x R of exponential order « and .
Then conformable double Laplace Transform (CDLT) of
u(x, y) is defined and denoted by

_p(x“/a)—q(yﬂ/ﬁ)u(x, y)x“'lyﬁ_ldxdy, (5)

Definition 4. Let u(x, y,t) be a real valued piecewise con-
tinuous function of x, y, and ¢ defined on the domain D of
R* x R* x R* of exponential order a, 3, and y, respectively.
Then, the conformable triple Laplace transform (CTLT) of
u(x, y,t) is defined as follows:

P a O ) Sy (0 Nyl (6)

The conformable inverse triple Laplace transform,
denoted by u (x, y,t), is defined by

(7)

27 ) y-ico

o B y 1, x>a, y>bt>c,
() (5)-+ () )- ®
« p 14 0, x<a, y<bt<ec.



Theorem 2. If L2I5LY (u(x*/a, yﬁ/ﬁ t'/y)) = Uyp,y (P, G5 9),
L"‘LﬁLy (v(x*/a, yP/B, t7/y)) = (p»q.s), and A, B, and
C are constants, then

Va Py

(a) Linearity property:

a B ty a B ty
LjL’ij(A u<x—, L,—) +B v(x—, y—,—>>
a By a By
a By a By
- ALzL/ij(u(x—,y—,L)) + BLiLﬁLf(v(x—,y—,t—>)
a By a By

= AU%M (p,q>9) + BVa’ﬂ,y (g 9).
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(b) L"‘LﬁLy (C) = (C/pgs'), where C is the constant.

(dnﬁﬂuﬂmﬂﬁww
/)"y = (L + DT (m + DI (n+ 1)/pH1gmts™),
where I'(-) is the gamma function. Note that
I'(n+1)=nl, forn=0,1,23 ...

(d) The first shifting theorem for conformable triple
Laplace transform:

If LIS LY (u(x%/ot, y/B,67/7)) = Uy g, (P o S), then

R a B t
LZLéLZ(eu(x la)+b (ylf/ﬁ)+c(ty/y)u<%’ %,?>> = Uyp,(p—a,q—b,s—c). (10)

(e) L;‘EL/;LZ (u(x*/a, yP/B, t7/y)) = Uapy (P>q>5), then

dl+m+n

B
Y x yt +mtn
s ((5)(5) (VAE55) )i pa) "

")

o B
o . X . y .
Lfo,Lty(mn(Aa)sm(Bﬁ)sm(C
x* yﬁ
LZLf,L}' cos A—)cos BZ- cos(C
a B

a By
arpf Xy t —
i) e

%) ) “( +A2)(q2p ESBZ)(SZ i)

Proof. From results (a)-(d) and (f), it can be easily proved

by using the definition of conformable triple Laplace

transform (CTLT). Here only we see the proof of result (e).
So, by the definition of CTLT (equation (6)), we have

(13)

— 0 [ —p(x“/a)—q(yﬁ/ﬂ)—s(t"/y) X_;V_t_ a—l ﬁ—lty—l dxedvdt
JoLJo(e u(aﬁy 4 rere

By differentiating with respect to p, I-times, we get
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I

iU (p.qvs) = i’{ro J»oo J~OO(e_p(xu/a)—q(yﬁ/ﬁ)—s(t)‘/y)u<_ )’_ﬁ ﬁ) % x% lyﬁ Lyr- l)dxdydt}
dpl wpy 2D dpl 0o Jo Jo a’ By

oo oo poo g T (x*/a)-q (yP1B)-s (1) x* )’ﬁ "\ a1 g1yt
=J J j — e P a4 (7F)=s (r7y) xu(—,—,—)x“ Yl ]dxdydt.
0 0 do a By

It reduces to

dl 00 (00 (0O x* ! B o BIR\_ < (4 x"‘ ﬁtV B . 5
il .4, — N p(x¥/a) q(y /ﬁ) s(t /y)>< _’;V_’_ a-1_p lty 1 dxdvdt.
e =[] L S

Now, we again differentiate with respect to g and s, m-
and n-times, respectively, and we obtain the simplification as
follows:

d1+m+n 00 00 0O x@ 1 }/ﬁ m £ n
S (Uspy (P :J J J (_<_)> (_(_>) (_<_>>
dpldqmds"( sy (P S)) 0o Jo Jo < o B y
-~ pxtta)-q (Wip)-s (ery) [ X° ) a-1_p-1p-1
X e ul o xxT Tyt dxdydt
— (_1)l+m+n JOO JOO J'oo<e_P(xa/u)_q(y/ﬁ’/ﬁ)_s(ﬂ/y)
0o Jo Jo
X x_"‘ l y—B : ﬂ "X x_y_t_ a-1 ﬁ—lt)’—l dxdvdt
o J\B) \y) "Napy) 7 T

which implies

dl+m+n ; X% I yﬁ m P\ [ x® )’ﬁ £
(U (pr2v9)) = (D™ L2LE LY (_) (_) (_) ”<_’_’_> |
dpldqmdsn( 5r(P:9) N aJ\B) \y a By

l+m+n

Now, we multiply (-1)
the required result:

ﬂ t dl+m+n
LiIhLY y) (_) <x_y__) i 4 s
<< “)<ﬁ N\ By v dp’dq’”ds"( wpy (P> 39)

Theorem 3. If Lf;LﬁLf (u(xa, yP/B, /7)) = Uapy (P29 9);
then

, on both sides, and we get

(14)

(15)

(16)

(17)

(18)
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(19)
e PR a0y (g9,
where H (x, y,t) is a Heaviside unit step function as defined ~ Proof. By applying the definition of CTLT, we have
in equation (8).
a e BBy gy a pa BBy gy
LHS = L;'jL/jLZ(u(x———,y——"—,———> H<x——(—,y——n—,———))
a By v a ap By vy
[ [ (s, (£ oS A e (20)
0o Jo Jo « af By vy

« a B B Ly 14
y H(x_f y_ﬂ,f_e) ! ylﬁtlv)dxdydt.

Now, using the definition of Heaviside unit step function
H(x, y,t), we have

:JOO J-OO J.OO e PEID=a (IR (0Y) 5y, x—a—c—“y—ﬁ—ﬁﬂ—e—y x x* 1y dxd ydt. (21)
(i) J g ) (o) « @B By vy

By putting (x%/a) - ({*/a) = (%),  (YPIB)-
(P1B) = (TPIB), (t¥1y) — (8"1y) = (%'Iy), we have

LaLﬁLty<u(x_“_§ v ﬁ_f’_y)H(x_“_f_“ a4 ﬁ_f’_y))
X y a b b b

_ e—p(x"‘/ot)—q (yﬁ//;)—s (tV/y) Jm jOO Joo<e—p(x“/a)—q (yﬁ/ﬁ)—s (ﬂ’/y)
0 0 0

(22)
a B Y
x u(ﬁ, ‘/—,%> x d“lgﬁl%yl)dyidyd%
a By
- o) B18)—s (6"
= e P (B (OMy o (p,q.9).
O
Theorem 4. The conformable triple Laplace transform of the (c) LfgL’f,Lty (Wmy)'u((x*/a), (YP/B),  (£'/y)) = (-1)"
function (x%a) u (x, Y, 1), YP/B) ™ u(x, y,t), (£/y)" (d"/ds™) (LféLthy (u((x/), (YP/B), (£7/y)))) =

u(x, y,t) and (aﬁW/ayﬁatV) (u(x, y,1)) is given by (=1)"(d"/ds™) Uapy (p>99)

WTBTY ( (o r (<) (b VRN (d) LALHLY ((x%/a) (P7/0yP0tY) (u(x*/@),  (3#/P),
@ Ly et 049, = G0 T O i ety (oo
0 (/A (g S (u ((x*/a), (YP/B), (£7/y))))
B,y » Y

(b) LiLly;Lty((y’s/ﬁ)mu((x“/a), (YP/B), (£7/y))) = (1)
(d"7dgq™) (Lf‘CLﬁL}' (u(x%/a), (YP/B), (t'/y))) = Proof. By applying the definition of CTLT and Theorem 2
- (dm/dq’")(Ua)ﬂ,y (p-q9)) (e), till equation (15) can be the required result (a).
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Remaining results (b)-(d) can be obtained via the same
process. O

Theorem 5. For «a,B,y€ (0,1]. Let u(x,y,t)=
u(x%a, yP/B,t'/y) be the real valued piecewise continuous
function x,y, andt of the domain D on (0,00)
% (0,00) x (0,00). The CTLT (conformable triple Laplace
transform) of the conformable partial fractional derivatives of
order o, B, and y is given by

() LELALY ((3*/0x%) (u (x%/ct, y/B, /7)) = pU (p, g,

s) -U(0,4,s)

(b) LELBLY (87 /0yP) (u(x®/a, /B, /7)) = qU (p» g
s)-U(p,0,s)

(c) LEIALY ((7/0t7) (u(x%/a, y*/B,17/y))) = sU (p, g,
s)-U(p,q,0)

(d) LELLY ((9%/0x%) (u (x%/a, y#/B, 1V/y))) = p*U (p,
g,5) = pU(0,9,5) - U, (0,9, s)

(e) LELLLY ((0%/0y%) (u (x%/at, y/B, /7)) = 42U (p,
q,s) —qU (p,0,s) — Uy(p,O,s)

(f) LELALY ((9%/082) (u (x%/a, yP/B, 17/y))) = s*U (p,
g,8) —sU (p,4,0) - U, (p,4,0)

(g) LELALY ((0%%/0x°) (u (x%/a, y*/B, £'/y))) = [p*U (p,
% S) - sz (0’ q’ S) - PUx (O’ q’ ‘S) - Uxx (0’ q’ S)]

Proof. Here, we go for proof of result (a), and the remaining
results (b)-(g) can be proved. To obtain conformable triple
Laplace transform of the fractional partial derivatives, we use
integration by parts and Theorem 1.

By applying the definition of CTLT, we have

o~ a B t’ 00 0O OO a o~
LzLﬁLz’(ax“ (u(%%?))) = JO JO JO (e—P(( /a)—q(n”/ﬂ)-S(@y/Y)%xxa—lyﬁ—lty—1>dxdydt

00 (0O [e) a a“
= JO JO (e‘l(}’ﬁ/ﬁ)s(ty/}’)<]0 o P a)(;:)xaldx) Xyﬁltyl)dydt.

Since we have Theorem 1, (0% (u)/0x%) = x'~% (du/0x).
We use this result in equation (23).
Therefore, equation (23) becomes

0" X P
arfry Yy

) jw J-oo eq(y/;/ﬁ)s(ty/y)<Jm eP(x”‘/a)Zudx>yﬁlty1d)’dt.
X

0 0 0

(24)

The integral inside the bracket is given by

o Y

x% Pt
<u(,ﬁ,>>) =(pgqsU (p,q,s) — pU (p,0,0) —qU (0,4,0) — sU(0,0,s) — pqU (p, g, 0)

(23)

0 a0
JO P /)idx:pU(p,y,t)—U(O,y,t)- (25)

By substituting equation (25) in equation (24), and
simplifying, we get the required result (a), that is

. o” X yF e
Lfo,L}’(axa (u(;%;))) = pU(p,q,s) —U(0,g,s).

(26)

In general, the above results in Theorem 5 can be ex-
tended as follows:

(a)

(27)

- psU(p,0,s) —gsU (0,q,s) —U(0,0,0)).

(b) If LSL5LY (u (x%at, Y 1B, 171y)) = U, (P2, 5), then
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L LﬁLY(am < (x_ y_ t_)>> = U (p,gs) _Elsm—l—kU(k) (p,0) (28)

ot a’ By Pard t
O

4. Solving Nonlinear Partial Fractional
Differential Equation Using the Conformable
Triple Laplace Transform
Decomposition Method

We consider a general nonlinear nonhomogeneous partial
fractional differential equation:

o y X% )Pt X% Pt y
(5 5))r(e sy ) (o) o (o5 5) >

where m=1,2,3,...
conditions

aym—l a B a B
at,)}n’ll(”(i’);’())) = fyml(i!?})o)x (30)

where R is the linear differential operator and N addresses
the nonlinear partial fractional operator, and
g = g(x%/a, yPIB,t']y) is the source term. In order to solve
equation (29), we follow the following steps:

andy € (0,1]with  the initial

Step 1: applying the conformable triple Laplace
transform to equation (29) on both sides, we have

ym B a By
LxLﬁLfgtym < (% % > + L§L§L3<Ru<%, %t—»
y

o y B
+ LﬁLﬁL}’(Nu<x_, t_>> - L;L/;Lg<g<x_ Y t_>>
a py a By

(31)

~<\“*

=%

Using Theorem 5 and equation (30), in equation (31),

m-l @ By
S"U(prs) = Y " U (p,g,0)+ L L’W(Ru( Y ))

k=0

"By
(32)

B B
(v )=o)

Step 2: divide by s, and apply the conformable inverse
triple Laplace transform to equation (32); it reduces to

s 0 = G0 - 11 o eaf (v

where G (x, y,t) represents the term coming from the
source term and prescribed initial conditions.

Step 3: considering the conformable triple Laplace

transform decomposition method, let the solution of

equation (29) be an infinite series

a By a By
xytr arp xyt
) ES)lE e

u(x_“,y_ﬁ,ﬁ) _ iun@,y_ﬂ,ﬁ), »
a By) Z "\apy

and the nonlinear term can be decomposed as
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a B tV o8}
Nu(x—,y—,—> =Y A, (35)
! ﬂ 4 n=0
where A, is called Adomian polynomials of
Uy, Uy, Us, . .., U, and it can be calculated by the fol-
lowing formula:

OZO:u S =Gx,y,t) - L, L' L s | LSS LY | R
n=0 " Oé)ﬁ,)/ & P n=0

Step 4: now, by comparing on both sides of equation

e [aa"<sz>] oowheren =0 L 234

(36)

Substituting equations (35) and (36) in equation (34),

we have
]». (37)

(e8]
y)) +L§L§L2<N ZOA”>

(37), we get
a By
x Yyt
——=—1=G Jt
u(’(a B Y) Gt
a By a By
t 11,1 - t
w2 ) = L L s L Rug( = ) + N4 ) | (38)
a By b g a’ B’y
a B tY a B t’
w2 ) = L L s LA Ry T2 ) N4 [
a By a By
and so on... In general, we write the following recursive formula:

a B tY
um(%,%,;) = —L;lL;ILS_I{s_m[LzL‘;LZ<Ru (’;

wherem =1,2,3andn=0,1,2,3,...

At the end, we approximate the analytical solution as
follows:
B t’ o8} a B t’
u< . ) Zun(’“—,y—,—) (40)
By) am \e By

5. Applications

In this section, a numerical experiment is done using the
conformable triple Laplace decomposition method to
solve nonlinear homogeneous and nonhomogeneous
partial fractional differential equation in 3-dimensional
space.

wy) )l
ﬁ Y ! (39)

Example 1. To illustrate the proposed method, let us con-
sider the following nonlinear partial fractional differential
equation:
ay—u + 6u Lﬁﬁu + —azuu =0 (41)
ot oyfox®  ax

with initial condition u(x,y,0)=xy, and where

o, B,y € (0,1], x, y, t €[t0, 00).

Solution 1. Rewrite equation (41) as
o'u Py *u

E W PR )



10

Taking the conformable triple Laplace transform on both
sides of equation (42), we have
aZ!X
+ —”) (43)

p
ox~“

a+f
L LﬁLV<a I;) = —LféLﬁLty(Gu J u
0 4 2y ox"

Recalling ~ Theorem 5 (¢),
(u(x, y,1))) = sU(p,q,s) —U(p,q,0).

So, equation (43) reduces to

LEL5L] ((3"/0r)

aw+ﬂu azau)
a + 20 |°
ayﬁ ox" ox

(44)

sU(p,g,8) =U(p,q,0) = —LjL’jLZ(m

International Journal of Differential Equations

Since u(x, y,0) = xy, we have
1
Up,q,0) = 5. (45)
pq

Now, by applying the conformable inverse triple Laplace
transform to equation (44) and using initial condition
equation (45), we obtain from equation (44)

u(x, y,t) = LILILSI(%) -L'L'L! ngL/;LtY(éu oy +az_a2”) , (46)
n pqs P s ©7 0yPox*  ox™
By applying the proposed method, in particular, equa-
tions (35)-(37), let uy(x, y,t) = xy, and the recursive re-
lation is given by
111w gy azaun
Uy = —LP Lq Ly ;LxLth 6A, + )| wheren=0,1,2,3,..., (47)
X
**Py a2
where A, is the Adomian polynomial to decompose the Ay = f(uo) =(”°aﬁ—ax3v> = x’ ayZ F ,
nonlinear terms by using the relation 4 =0 (50)
0 aZ(xu aa arx (X
A, = [aa” <Zau>:| , wheren=0,1,2,3,4,... axZ“Ozax Ep a(x)/)—(l—(x)xl ?
0=0
(48) We have
Let the nonlinear term be represented as T &
_ “1y-1+— Bry 2-a, 2-f 1- 2«
/3 =-L'L'L; [;LxLth (6x "y P+ (1-)x y)]
-+
u}’l
f(un (x, b2 t)) = MHW. (49) u, = _6x2—0¢y2—,8t _ (1 _ Oﬂ)xl_z‘xyt.
(51)
Substituting equation (49) in equation (48), and also Forn=1,
calculating (9*“u,/0x>®), the resulting expression of equa-
tion (47) reduces to the following.
For n =0,
1o 1[0 0P
1 [aaf(”o Oul)]o=o 1 [aa ‘[(”0 Uul)(ayﬁaxa (uo 0”1))}]5_0 (52)

Using equation (51), u,, and 4, and simplifying, equa-
tion (52) becomes
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A = o™ (o) + o )
1= U Ug
2y%ox" 0y ox"
= (—6x27 “y P (1- oc)xlfz‘xyt)xlf ayt=p
(53)
+(xy[—6(2 —a)(2 - ﬁ)xzfzo‘yzfzﬁt -(1-a)(1- 2oc)x173“y17ﬁt])
2a
% ~[-62 -0 2 - 20y Pt - (1 - ) (1 - 20) (1 - 3a)x"*yt]
x
We have
— — — 1 o - - — 0 - -
u, = —Lpqulle[;LXL‘;LZ{s(—@cZ Y= (1 - a)x )yt P
+ 6xy[—6(2 —a)(2 —ﬁ)xzfz‘xyzfzﬁt -(1-a)(1- Zoc)xlfmyl*ﬁt] (54)
+H-6(2—a) (2 - 20)x* Y P — (1 - a) (1 - 2) (1 - 30)x' "yt }}]:
Simplifying equation (54), we have
u, = [18x3_2“y3_2ﬁ +3(1—a)x? 2y F
+18Q2-a)(2 - B)x” 2y P 4+ 3(1 - a) (1 - 2a)x> > F
) (55)
32- )@= 208 P 1 ((1- 0 (120 (1 - 3x" ") ¢
1
- {18[1 +2- )@= PI Y P 436202 205 Y 4 (1- @) (1- 2001 - 3a)x1‘4“y}t2.
For n =2,
1[0 )
A, = o [Wf(uo +0ou +6 uz)L:O
1 aZ 5 atx+ﬁ 5
=3 [W {(u0+0u1 +6 “z)(W(“o“”h +6 u2)> ]U_O (56)

1 aoc+ﬂ
= B [Zu (uZ) +2u

a+f a+f
ZI) , ) o, 2)
0y ox" 0y ox" 0y ox"
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Substituting u,,u,, andu, in equation (56) and sim-
plifying, we obtain

A, =[(18[1+2-a)(2-PI+18[1+(2-a) (2 )] (3 - 20) (3 - 2B) +36(2 - @) (2 - B))x**y* ¢’
+(3(2-20)(3-20) +3(2-20)(3-22) (2-3a) (2 - ) +6(1 —a) (1 - 2a) + 6(1 — ) (2 — &) (2 - B))x* **y* #¢
+(% (1-3a) +% (1-3a)(1 - 4a) + (1 - tx))(l —a) (1 -20)x>>y* P,
(57)

20
0"uy

2
ox~™“

[18[1 +2-02-PIB-2a)(3 - 3a)x3—4ay3—2/3t2
+3(2-2a)(3-2a)(2-3a)(2 - 405)36275“)/27/31‘2

+% (1—a) (1 - 2a) (1 - 3a) (1 - 4a) (1 - 5a)x i .

Therefore, we have

us =-L,' L' L} %Lijthy{s[usu +22-)2-PI+18[1+(2-a)(2-P)](3-2a)(3 -2p)

+36(2-a)(3 -2a))

XY PR L 6(3(2-20) (3-2a) +3(2-2a) (3200 (2 -30) (2 - P) +6(1 - a) (1 - 2a) +6(1 - a) (2 — &) (2 - B))
Xy 22 +(% (1 - 3a) +% (1-30) (1 - 4a) + (1 - oc)) (1- ) (1 - 2a)x> %y b2 (58)

+[18[1+(2-a)(2-P)](3-2a)(3 - 3“)x3—4ay3-zﬁtz

+3(2-2a) (3 - 2a) (2 - 30) (2 - 4a)x> 3y P2

+% (1-a)(1-2a)(1-3a)(1 —4a)(1 - Sa)xlfﬁaytz]”.

Simplifying equation (58), we have

uy = —{2((18[1+ (2 - 0) (2= B)] + 18[1 + (2 - @) (2 - P)1 (3 - 20) (3 - 2) + 36 (2 — @) (2 = P))x* *y* ¥
+(3(2-2a)(3 - 2a) +3(2 - 20) (3 - 20) (2 = 30) (2 = B) + 6(1 — &) (1 - 2ax)

+6(1-a)(2-a)(2 _ﬁ))x3—4ay3_2/3

(59)
+<% (1-3a) +% (1-3a)(1 —4a)+(1 - (X))(l —a)(1- Za)xz_s‘xyz_ﬂ>

+(6[1+2-a) (2= P13 -20) (3 -3a)x” *y" % + (2 - 20) (3 - 20) (2 - 30) (2 — 4)x” > y*F

+é (1= a) (1= 2a) (1 - 3a) (1 — 4a) (1 Sa)xl*“‘y)}ﬁ,
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and so on.. ..

1-2a

u(x, y,t) = [xy —{6x2_“y2_ﬁ +(1—a)x y}t

+{18[1 +(2-a) (2=l F +3(3 - 2a) (2 - 200x7 Y F +% (1-a)(1-2a)(1 - 3¢x)x1_4ay}t

~2(1811+2- ) 2-PD +18[1+2 - ) 2= P12 - @) (2= B) (3 - 20) (3 — 2B)x* **y* ¥

+36(2-a)(2-p) +(3(2 - 2a) (3 - 2a)

+3(2-20)(3-2a)(2-30)2-B) +6(1 —a) (1 —2a) + 6(1 —a) (2 — @) (2 — P))x>**y* %

+(% (1-3a) +%(1 =3a)(1 —4a) + (1 - tx))(l —a)(1- 2a)x2—5ay2—/3>

+(6[1+2-a)2-PIG-20)(3-3a)x’ y" ¥ +(2-20) (3 - 20) (2 - 30)

(2 - 4a)x> "> F +% (1-a)(1-2a)(1-3a)(1 - 4a)(1 - 5a)x1*6“y)}t3].

From equation (60), if we consider a« = =y = 1, then
the solution of equation (41) reduces to
04
S 1+6t
(61)

u(x, y,t) = xy — 6xyt +36xyt° — 216xyt> + - -

Figures 1 and 2 show the 3D graphical representations of
equation (60) with various values of & and f.

Example 2. Consider a nonlinear nonhomogeneous partial

13
The approximate series solution is expressed as
2

(60)
u (0’ b t) = t)

y Y (63)
u,(0,y,t) =-1.
Solution 2. Rewrite equation (62) as

u_ Fud
LR L), (64)

o = 5f o

Imposing the conformable triple Laplace transform to
both sides,

fractional ~ differential  equation, for &, f,y€
(0,1], x, y, t €[t0, 00). N
)
Fudu u Lt L?(a 2”) = L1 LtV(& a—?— u(x,y, t)). (65)
L uxpD), (62) 7 \ox 7oy or
ayﬁ ot axZa
with initial conditions Recalling Theorem 5 (d),
aZa
LjLﬁLf(axZa (u(x, y, t))) = p’U(p,q>s) — pU(0,g,5) — U, (0,9, 5). (66)

Equation (66) becomes
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Y,

600 000 f:*m

400 000 ‘F

200 000 "‘

FiGure 2: 3D plot of equation (60) for a = 0.75; 3 =10.90; y = 1.

N u d'u
PU(p,g,s) = pU(0,4,5) + U, (0,9, 5) + Lfo,L}’(a—yﬁ 57 u(x, y, t)). (67)
Using initial condition (equation (63)) and taking the

inverse triple Laplace transform on equation (67), we obtain

ety 1 1 —l—l—llzxﬁyaﬁuayu
u(x,y,t)—|:Lp Lq Ls (W—%>+LI] Lq Ls (?LxLth a—yﬁw—u(x,y,t) 5

(68)

_ —1+-1,+-1 1 o l; aﬁu ayu
u(x, y,t) = yt=x+L, L L (?LxLyL’{(a—yﬁ W—u(x,y,t) )
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F1GURE 4: 3D plot of equation (73) for y = 0.75; 3 =0.90; y = 1.

By applying the proposed method, we have the Let u, = yt — x, and the recursive relation is
following.

“1s,-1,-1 1aﬁ aﬁu ayu
Uy =L, Ly L (?LxLyLz’ ayﬁn atyn_un

qoaf 1
- Lpqu1L$1<PL‘;L§LZ (4, - un)>,

(69)

1 an o0 .
where A, is the Adomian polynomial to decompose the A== [ﬁ f (Z a’ui>] , wheren=0,1,2,3,4,....
nonlinear terms by using the following relation: n oo i=0 =0

(70)
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Let the nonlinear term be represented as Note that, in Adomian relation, the linear term can be
Py considered, in place of nonlinear. So, you may take

f(u) = gudu (71)  f(u) =u, and it leads to the same answer. So, this method is

ayﬁ ot also valid for linear partial fractional differential equation.

Forn =0,

Ay = f (1)

-t 1o 2-B2-
up=L, L L (?LxLﬁLf(y At y—(yt—x)))

3

2 2
X 2,’3 2*)/ X X
=Ty P Ty T
2)’ 2)’ 3!
n=1,

0
A= 30 [f (g + ouy)]

0 (3 (g + ouy) O (uy + ouy)
~Jo

o0 3y ot

Puy u, Fu, 9y,

~9yf ot " oy ot’’

(72)

2 2 2 2

A = K(z —y) %yS_zﬂt3_2y _%yz—ﬁtz—y) +((2 _ﬁ)x?);—zﬁts—zy _%yZ—ﬁtZ—y)]’
1 x? X

Uy = L;L;Ls—l(?LzLﬁng({((z -9 7}/3—2/315—2)/ _ ?yz—BtZ—Y)

2 2
X _ _ X —B,2—
+((2—ﬁ)7}/3 #g 2y_7y2 B2 y)}

xz 2[32 x2 x3
| TPy T -
(2)/ g 2yt+3!))>’

x4 x4 5
3-2.3-2
R U T

4
X — -
uy=(-y=-p gy Fhe

and so on. .. The approximate series solution is written as

3

2 2 4 4 4 5
X _ _ X X X _ _ X _ _ X X
u(x,y,t)z[(yt_x)+<7y2 ﬁt2 V_Tyt+§)+((4_y_/3)jy3 Zﬁt3 2V_§y2 ﬁtZ V+Iyt_§>+”.j|' (73)
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For o, B,y € (0,1,[x, y,t €]0,00).
From equation (73), note that for «, 3, y = 1, the solution
of equation (63) reduces to

3 5

u(x,y,t) :yt—<x—x—+x—+...> =yt —sinx. (74)

31 5!
Figures 3 and 4 show the 3D graphical representations of
equation (74) with various values of y and f.

6. Conclusion

In this work, the conformable triple Laplace transform has
been investigated using all our obtained novel results and
theorems. The new conformable triple Laplace transform
decomposition method is applied to find the solution of
linear and nonlinear homogeneous and nonhomogeneous
partial fractional differential equations. A numerical ex-
periment has been conducted using this proposed method.
This proposed method can be applied for simultaneous two
or more than two linear and nonlinear partial fractional
differential equations. Note that, if we take a, 8,9 =1, in
Examples 1 and 2, we obtain an exact solution which was
considered in [27]. Our results shed the light on the sig-
nificance of exploring new generalized methods for solving
partial differential equations, particularly nonlinear ones,
due to the essential need to explore new analytical solutions
to understand the dynamics of solutions for such important
equations in physics and engineering.
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