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Abstract: Development of new analytical and numerical methods and their applications for solving non-linear partial

differential equations (both classical and fractional) is a rising field of Applied Mathematical research because of its

applications in Physical, Biological and Social Sciences. In this paper we have used a generalized Tanh method to find the

exact solution of KP-Burger equation and coupled KdV equation. The fractional Sub-equation method has been used to find

the solution of fractional KP-Burger equation and fractional coupled KdV equations. The exact solution obtained by the

fractional sub-equation method reduces to classical solution when the order of fractional derivative tends to one. Finally

numerical simulation has been done. The numerical simulation justifies that the solutions of two fractional differential

equations reduce to shock solution for KP-Burger equation and soliton solution for coupled KdV equations when the order

of derivative tends to one.

Key words: generalized tanh-method, fractional sub-equation method, KP-Burger equation, coupled KdV equation, fractional

differential equation, Jumarie fractional derivative

I. INTRODUCTION

Exact solutions of non-linear differential equations give

a complete picture of physical systems which cannot be ob-

tained from their linear approximation. However, it is very

difficult to find the exact solutions of non-linear differen-

tial equations. There are many approximate methods to find

solutions of non-linear differential equations. The approx-

imate methods are Adomian Decomposition Method[1-4],

Homotopy Perturbation Method (HPM) [5-7], Differential

Transform Method (DTM)[ 8] etc. Currently, a researcher in

this field is developing new methods to find the exact solu-

tions of non-linear differential equations. The Tanh method

was introduced by Huiblin and Kelin [9] to find the trav-

elling wave solutions of non-linear differential equations.

Wazwaz [10] used this method to find soliton solutions of

the Fisher equation in the analytic form. Fan [11] modified

the Tanh method to solve KdV-Burgers-Kuamoto equations

and Boussinesq equation. In [12-13] authors found soliton

solution of non-linear partial differential equations using ana-

lytical and numerical methods. The F-expansion method is

also one of the most useful methods for finding analytical

solutions of non-linear partial differential equations [14].

Another growing field of applied science and engineering

is the fractional calculus [15] where physical processes are

studied in terms of the fractional differential equations. Zhang

and Zhang [16] developed the fractional sub-equation method

to find the travelling wave solutions of the Jumarie type frac-

tional differential [17] equation in terms of the fractional

tanh functions. The fractional sub-equation method and Gen-

eralized Tanh-method are both based on the Homogeneous

balance principal [9]. The fractional sub-equations methods

are used by authors to solve different non-linear fractional dif-

ferential equations. Recently we have developed an algorithm

to solve the linear fractional differential equations in terms of

one parameter Mittag-Leffler function [18]. In this paper we
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shall use the Generalized Tanh method and Fractional Sub-

equation method for finding exact solutions of KP-Burger

and coupled KdV equations and the corresponding fractional

differential equation. Using these methods we obtain the soli-

ton solution and periodic solutions. Organization of the paper

is as follows. In section 2.0 we describe the principle of the

Tanh method and fractional sub-equation method. In section

3.0 we found the solutions of the KP-Burgers equation, in

section 4.0 we found the solutions of the fractional order

KP-Burgers equations. In section 5.0 we found the solutions

of the coupled KdV equations, in section 6.0 we found the

solutions of the fractional order coupled KdV equations. Fi-

nally numerical simulations are done for different values of

the fractional order derivative.

II. GENERALIZED TANH METHOD AND

FRACTIONAL SUB-EQUATION METHOD

II. 1. Generalized tanh method

In this method the solutions of the non-linear partial dif-

ferential equations are expressed in terms of tanh and tan-

functions. Consider the non-linear partial differential equation

L(u, ut, ux, uy, utt, uxx, uyy...) = 0 (1)

satisfied by u(x, y, t). Using the travelling wave transforma-

tion in the form ξ = kx+my+ct, where (k, m) are the wave

vector and c is the velocity of propagating waves, equation

(1) reduces to

L(u, u′, u′′, ...) = 0. (2)

This is an ordinary differential equation of u(ξ). The gener-

alized tanh method of Fan and Hon [19] is based on the a

priori assumption that the travelling wave solutions can be

expressed as the power series expansion which is the solution

of non-linear Riccati differential equation φ′(ξ) = σ + φ2.

Solution of this equation can be written in the form

φ(ξ) =























−
√
−σ tanh(

√
−σξ)

−
√
−σ coth(

√
−σξ)

}

forσ < 0
√
σ tan(

√
σξ)

−
√
σ cot(

√
σξ)

}

forσ > 0

− 1
ξ

forσ = 0

.

(3)

Let u = S(φ) = a0 + a1φ + a2φ
2 + ... + anφ

n be the so-

lution of the equation (2) where φ(ξ)is given by (3) and

a0, a1, ....are constants. Then u′ = (a1 + 2a2φ + ... +
nanφ

n−1)(σ+φ2) has the highest power of φ as n+1. Simi-

larly the u′′ has the highest power of φas n+2. Then equating

the highest power of φ from the highest order derivative term

and the non-linear term the value of n can be obtained. Then

putting S(φ) in equation (2) and equating the like powers of

φ the values of the values of a0, a1, ....can be determined.

II. 2. Fractional sub-equation methods

The non-linear fractional partial differential equation is of the

form,

L(u, u
(α)
t , u(α)

x , u(2α)
xx , u(α)

y , u(2α)
yy .....) = 0, 0 < α ≤ 1

(4)

where u = u(x, y, t) and L is linear or non-linear operator.

α is the order of the fractional derivative of Jumarie type

defined as follows

J
0D

α
x [f(x)] = f (α)(x) =























1

Γ(−α)

∫ x

0
(x− ξ)−α−1f(ξ)dξ, α < 0

1

Γ(1− α)

d

dx

∫ x

0
(x− ξ)−α (f(ξ)− f(0)) dξ, 0 < α < 1

(

f (α−n)(x)
)(n)

, n ≤ α < n+ 1, n ≥ 1

We point out that composition as inequality DαDα 6= D2α, holds.

We consider that at x < 0 the function f(x) = 0and also f(x)− f(0) = 0 for x < 0 . The fractional derivative considered

here in the fractional differential equation are obtained using Jumarie [6] modified Riemann-Liouville (RL) derivative as

defined above. The first expression above is fractional integration of Jumarie type. The modification by Jumarie is to carry RL

fractional integration or RL fractional differentiation by forming a new function, offsetting the original function by subtraction

of the function value at the start point; and then operate the RL definition. Using the Jumarie type derivative the following can

be obtained [17]

J
0D

α
x [xγ ] =

Γ(1 + γ)

Γ(1 + γ − α)
xγ−α, γ > 0,

J
0D

α
x [f(x)g(x)] = g(x)

(

J
0D

α
xf(x)

)

+ f(x)
(

J
0D

α
x g(x)

)

J
0D

α
x [f(g(x))] = f ′

g (g(x))
(

J
0D

α
x [g(x)]

)

=
(

J
0D

α
g [f(g(x))]

)

(g′x)
α

. (5)
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Then using the travelling wave transformation ξ = kx+my + ct equation (4) reduces to

L(u, u
(α)
ξ , u

(2α)
ξξ .....) = 0 0 < α ≤ 1. (6)

Whose solution can be expressed in the form u = S(ϕ) = a0 + a1ϕ+ a2ϕ
2 + ...+ anϕ

n where ϕ satisfies the fractional

Riccati equation Dαφ(ξ) = σ + φ2,0 < α ≤ 1 and ai’s are arbitrary constants, Zhang et al [8] established generalized

exp-method solution of the fractional differential equation Dαφ(ξ) = σ + φ2, 0 < α ≤ 1 in the form

φ(ξ) =































−
√
−σ tanhα(

√
−σξ)

−
√
−σ cothα(

√
−σξ)

}

forσ < 0

√
σ tanα(

√
σξ)

−
√
σ cotα(

√
σξ)

}

forσ > 0

−Γ(1+α)
ξα+ω

for σ = 0, ω = Constant

(7)

where the fractional trigonometric functions and fractional hyperbolic functions are defined in [8] in the form,

tanhα(x) =
sinhα(x)

coshα(x)
cothα(x) =

coshα(x)

sinhα(x)

sinhα(x) =
Eα(x

α)− Eα(x
α)

2
coshα(x) =

Eα(x
α) + Eα(x

α)

2
,

tanα(x) =
sinα(x)

cosα(x)
cotα(x) =

cosα(x)

sinα(x)

sinα(x) =
Eα(ix

α)− Eα(ix
α)

2i
cosα(x) =

Eα(ix
α) + Eα(ix

α)

2
,

where Eα(z) =
∑

∞

k=0
zα

Γ(1+kα) is the one parameter Mittag-Leffler function.

Using the above described methods we find the analytic solutions of the non-linear (I) KP-Burger equations in 2+1 dimensions

and (II) Coupled KdV equations and the corresponding space and time fractional differential equations.

III. GENERALIZED SOLUTIONS OF THE KP-BURGERS EQUATION OBTAINED BY GENERALIZED TANH

METHOD

Let us consider the 2 + 1 dimensional KP-Burger equation satisfied u = u(x, y, t)is of the form

(ut + uux + puxxx − quxx)x + ruyy = 0. (8)

Using the travelling wave transformation ξ = lx + my + ct equation (8) reduces to the non-linear ordinary differential

equation,

l
(

cuξ + luuξ + pl3uξξξ − l2quξξ

)

ξ
+ rm2uξξ = 0, (9)

where l, m, c are constants.

Now using the localized boundary conditionu(ξ) → 0 for ξ → ±∞, integration of the equation (9) w.r.to ξ gives,

l
(

cu+ lu
2

2 + pl3uξξ − l2quξ

)

+ rm2u = 0

or, 2(lc+ rm2)u+ lu2 − 2l2quξ + 2pl3uξξ = 0
, (10)

which is a non-linear ordinary differential equation satisfied by u(ξ). Now we solve the above equation using the generalized

Tanh method.

For this purpose let us consider u(ξ) = S(φ(ξ)) = a0 + a1φ+ a2φ
2 + ...+ anφ

n be a series solution of the differential

equation (10) where φ(ξ) satisfies the Riccati differential equation φ′(ξ) = σ+φ2 and a′is arbitrary constants [10]. Putting this

in equation (10) and using the principle of homogeneous balance we compare the highest power of φ(ξ)from the non-linear

term and the highest order derivative term of φ(ξ). We thus get n = 2.
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Therefore the series solution (10) reduces to u(ξ) = a0 + a1φ+ a2φ
2 with a2 6= 0. Now putting this in equation (10) we

get

2(lc+ rm2)(a0 + a1ϕ+ a2ϕ
2) + l(a0 + a1ϕ+ a2ϕ

2)2 − 2l2q(a1 + 2a2ϕ)(σ + φ2)

+2pl3(2a2σ
2 + 2a1σϕ+ 8a2σϕ

2 + 2a1ϕ
3 + 6a2ϕ

4) = 0.
(11)

Comparing the like powers of φ we get

φ0 : 2(lc+ rm2)a0 + la20 − 2ql2a1σ + 4pa2l
3 = 0

φ1 : 2(lc+ rm2)a1 + 2la0a1 − 4a2ql
2σ + 4a1pl

3σ = 0
φ2 : 2(lc+ rm2)a2 + la21 + 2la0a2 − 2a1ql

2 + 16a2pl
3σ = 0...

φ3 : 2la1a2 − 4ql2a2 + 4pl3a1 = 0
φ4 : la22 + 12a2pl

3 = 0

(12)

Solving the above we get a2 = −12pl2, a1=
12
5 ql and a0 = −8pl2σ − (cl+rm2)

l
+ q2

25p
The general solution of the above equations is

u(x, y, t) =



































a0 − a1
√
−σ tanh(

√
−σ(ct+ lx+my)) + 12pl2σ tanh2

(√
−σ(ct+ lx+my)

)

a0 − a1
√
−σ coth(

√
−σ(ct+ lx+my)) + 12pl2σ coth2

(√
−σ(ct+ lx+my)

)

}

for σ < 0

a0 − a1
1

(ct+lx+my) − 12pl2
(

1
((ct+lx+my))2

)

forσ = 0

a0 + a1
√
σ tan(

√
σ(ct+ lx+my))− 12pl2σ tan2 (

√
σ(ct+ lx+my))

a0 − a1
√
σ cot(

√
σ(ct+ lx+my))− 12pl2σ coth2 (

√
σ(ct+ lx+my))

}

for σ > 0

(13)

This is a generalized solution of the KP-Burger equation in 2+1 dimension. The first two solutions are sock solutions and the

last two solutions are the periodic solutions.

IV. SOLUTIONS OF THE FRACTIONAL ORDER KP-BURGERS EQUATION USING FRACTIONAL SUB

EQUATION METHOD

The fractional KP-Burger equation in 2+1 dimension is of the form

(

u
(α)
t + uux + pu(3α)

xxx − qu(2α)
xx

)(α)

x
+ ru(2α)

yy = 0, (14)

where u
(2α)
yy =

∂2αu

∂y2α
u
(3α)
xxx =

∂3αu

∂t3α
, u

(α)
t =

∂αu

∂tα
, 0 < α ≤ 1

Using the travelling wave transformation ξ = lx+my + ct equation (14) reduces to

lα
(

cαu
(α)
ξ + lαuu

(α)
ξ + pl3αu

(3α)
ξξξ − l2αqu

(2α)
ξξ

)

ξ
+ rm2αu

(2α)
ξξ = 0, (15)

where l, m, c are constants.

Integrating fractionally twice both sides of (15) with respect to ξ and using the localized conditions of solitary waves, i.e.

u
(α)
ξ and u(ξ) → 0 for ξ → ±∞ we get,

2(lαcα + rm2α)u+ lαu2 − 2l2αqu
(α)
ξ + 2pl3αu

(2α)
ξξ = 0. (16)

This is a non-linear ordinary fractional differential equation. The above equation will be solved using the fractional sub-

equation method,

Consider the solution of the equation (16) in the form u = S(ϕ(ξ)) = a0 + a1ϕ+ a2ϕ
2 + ...+ anϕ

n where ϕ(ξ)satisfies

the fractional Riccati equation Dαφ(ξ) = σ + φ2,0 < α ≤ 1 [16] and ai’s are arbitrary constants. Using the homogeneous

balance principle we get n = 2.

Thus we have solutions in the form u = a0 + a1ϕ+ a2ϕ
2, putting this in equation (16) we get,
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2(lαcα + rm2α)(a0 + a1ϕ+ a2ϕ
2) + lα(a0 + a1ϕ+ a2ϕ

2)2 − 2l2αq(a1 + 2a2ϕ)(σ + φ2)

+2pl3α(2a2σ
2 + 2a1σϕ+ 8a2σϕ

2 + 2a1ϕ
3 + 6a2ϕ

4) = 0.
(17)

Comparing the like powers of ϕ from both sides we get

ϕ0 : 2(lαcα + rm2α)a0 + lαa20 − 2ql2αa1σ + 4pa2l
3ασ2 = 0

ϕ1 : 2(lαcα + rm2α)a1 + 2lαa0a1 − 4a2ql
2ασ + 4a1pl

3ασ = 0
ϕ2 : 2(lαcα + rm2α)a2 + lαa21 + 2lαa0a2 − 2a1ql

2α + 16a2pl
3ασ = 0. ..

ϕ3 : 2lαa1a2 − 4ql2αa2 + 4pl3αa1 = 0
ϕ4 : lαa22 + 12a2pl

3α = 0

(18)

Solution of (18) for a0, a1 , a2 give

a2 = −12pl2α, a1=
12

5
qlα and a0 = −8σpl2α − (cαlα + rm2α)

lα
+

q2

25p
... (19)

Thus the general solution of the above equations is

u(x, y, t) =

=



























a0 − a1
√
−σ tanhα(

√
−σ(cαt+ kαx+mαy)) + 12pl2ασ tanh2α

(√
−σ(cαt+ kαx+mαy)

)

a0 − a1
√
−σ cothα(

√
−σ(cαt+ kαx+mαy)) + 12pl2ασ coth2α

(√
−σ(cαt+ kαx+mαy)

)

}

for σ < 0

a0 − a1
(Γ(1+α))

((cαt+kαx+mαy)α+ω) − 12pl2α
(

(Γ(1+α))2

((cαt+kαx+mαy)α+ω)2

)

forσ = 0, ω = Constant

a0 + a1
√
σ tanα(

√
σ(cαt+ kαx+mαy))− 12pl2ασ tan2α (

√
σ(cαt+ kαx+mαy))

a0 − a1
√
σ cotα(

√
σ(cαt+ kαx+mαy))− 12pl2ασ coth2α (

√
σ(cαt+ kαx+mαy))

}

for, σ > 0

(20)

This is the exact analytic solution of the fractional KP-Burger equation in 2+1 dimension.

V. GENERALIZED SOLUTIONS OF THE COUPLED KDV EQUATIONS USING GENERALIZED TANH

METHOD

Consider the coupled KdV equation with constant coefficients in the form

ut + avux + buxxx = 0
vt + duvx + bvxxx = 0

}

, (21)

where a, b, d are constants, they may be function of t in some cases and u = u(x, t), v = v(x, t). To find the solition

solutions of the coupled differential equations (21) here the Tanh method is used. The travelling wave transformation in the

form ξ = kx+ ct where the constant k is called the wave number and another constant c is the velocity of the propagating

wave the equation (21) reduces to

cuξ + akvuξ + bk3uξξξ = 0
cvξ + dkuvξ + bk3vξξξ = 0

}

, (22)

which are coupled non-linear ordinary differential equations with uξ = du
dξ

and vξ = dv
dξ

. We want to find the series solution

of the system of differential equation in the following form where ϕ(ξ)satisfies the Riccati equation Dφ(ξ) = σ + φ2, and

aiand bi’s are arbitrary constants [10].

u(ξ) = S1(ϕ) = a0 + a1φ+ a2φ
2 + ...+ anφ

n

v(ξ) = S2(ϕ) = b0 + b1φ+ b2φ
2 + ...+ bnφ

n

Using the homogeneous balance principle as previously we get m = n = 2. Thus we get

u(ξ) = S1(ϕ) = a0 + a1ϕ+ a2ϕ
2

v(ξ) = S2(ϕ) = b0 + b1ϕ+ b2ϕ
2

}

... (23)
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Putting the above in equation (22) we get,

c(a1σ + 2a2σφ+ a1φ
2 + 2a2φ

3) + ak(b0 + b1φ+ b2φ
2)(a1σ + 2a2σφ+ a1φ

2 + 2a2φ
3)

+bk3(2a1σ
2 + 16a2φσ

2 + 8a1σφ
2 + 40a2σφ

3 + 6a1φ
4 + 24a2φ

5) = 0

and c(b1σ + 2b2σφ+ b1φ
2 + 2b2φ

3) + ak(b0 + b1φ+ b2φ
2)(b1σ + 2b2σφ+ b1φ

2 + 2b2φ
3)

+bk3(2b1σ
2 + 16b2φσ

2 + 8b1σφ
2 + 40b2σφ

3 + 6b1φ
4 + 24b2φ

5) = 0























... (24)

Comparing the like powers of φ we get

For the first equation

φ0 : ca1σ + akb0a1σ + 2a1k
3bσ2 = 0

φ1 : 2ca2σ + ak(2b0a2 + b1a1)σ + 16a2bk
3σ2 = 0

φ2 : ca1 + ak(b0a1 + 2b1a2σ + b2a1σ) + 8bk3a1σ = 0
φ3 : 2ca2 + ak(2b0a2 + b1a1 + 2b2a2σ) + 40bk3a2σ = 0
φ4 : ak(2b1a2 + b2a1) + 6bk3a1 = 0
φ5 : 2akb2a2 + 24bk3a2 = 0































... (25)

For the second equation

φ0 : cb1σ + dka0b1σ + 2b1k
3bσ2 = 0

φ1 : 2cb2σ + dk(2a0b2 + b1a1)σ + 16b2bk
3σ2 = 0

φ2 : cb1 + dk(a0b1 + 2a1b2σ + a2b1) + 8bk3b1σ = 0
φ3 : 2cb2 + dk(2a0b2 + b1a1 + 2b2a2σ) + 40bk3b2σ = 0
φ4 : dk(2a1b2 + a2b1) + 6bk3b1 = 0
φ5 : 2dkb2a2 + 24bk3b2 = 0































... (26)

Solving the above two system we get

a0 = −c+ 8bσk3

dk
, a1 = 0, a2 = −12bk2

d

b0 = −c+ 8bσk3

ak
, b1 = 0, b2 = −12bk2

a

Hence the general solution is

u(x, y, t) =



























a0 − a2σ tanh2
(√

−σ(ct+ kx)
)

a0 − a2σ coth2
(√

−σ(ct+ kx)
)

}

for σ < 0

a0 + a2

(

(Γ(1+α))2

((ct+kx)+ω)2

)

for σ = 0, ω = Constant

a0 + a2σ tan2 (
√
σ(ct+ kx))

a0 + a2σ coth2 (
√
σ(ct+ kx))

}

for σ > 0

... (27)

v(x, y, t) =



























b0 − b2σ tanh2
(√

−σ(ct+ kx)
)

b0 − b2σ coth2
(√

−σ(ct+ kx)
)

}

for σ < 0

b0 + b2

(

(Γ(1+α))2

((ct+kx)+ω)2

)

for σ = 0, ω = Constant

b0 + b2σ tan2α (
√
σ(ct+ kx))

b0 + b2σ coth2α (
√
σ(ct+ kx))

}

for σ > 0

.... (28)

VI. SOLUTIONS OF THE COUPLED FRACTIONAL ORDER KDV EQUATIONS BY FRACTIONAL SUB

EQUATION METHOD

Consider the coupled KdV equations with constant coefficients in the form

u
(α)
t + avu

(α)
x + bu

(3α)
xxx = 0

v
(α)
t + duv

(α)
x + bv

(3α)
xxx = 0

}

(29)
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where u
(α)
x =

∂αu

∂xα
, u

(α)
t =

∂αu

∂tα
, u

(3α)
xxx =

∂3αu

∂x3α
and similar for v.

Again using one dimensional travelling wave transformation ξ = kx+ ct the equation (29) reduces to,

cαuα
ξ + akαvuα

ξ + bk3αu3α
ξξξ = 0

cαvαξ + dkαuvαξ + bk3αv3αξξξ = 0.

}

(30)

We want to find the series solution of the system of fractional differential equation in the following form where ϕ(ξ)satisfies

the fractional Riccati equation Dαφ(ξ) = σ + φ2,0 < α ≤ 1 and ai’s are arbitrary constants [3].

u(ξ) = S1(ϕ) = a0 + a1ϕ+ a2ϕ
2 + ...+ anϕ

n

v(ξ) = S2(ϕ) = b0 + b1ϕ+ b2ϕ
2 + ...+ bnϕ

n.

Using the homogeneous balance principle as previous we get m = n = 2. Thus solution of (19) are of the form

u(ξ) = S1(ϕ) = a0 + a1ϕ+ a2ϕ
2

v(ξ) = S2(ϕ) = b0 + b1ϕ+ b2ϕ
2.

Putting the above in equation (31) we get,

cα(a1σ + 2a2σϕ+ a1ϕ
2 + 2a2ϕ

3) + akα(b0 + b1ϕ+ b2ϕ
2)(a1σ + 2a2σϕ+ a1ϕ

2 + 2a2ϕ
3)

+bk3α(2a1σ
2 + 16a2ϕσ

2 + 8a1σϕ
2 + 40a2σϕ

3 + 6a1ϕ
4 + 24a2ϕ

5) = 0

and cα(b1σ + 2b2σϕ+ b1ϕ
2 + 2b2ϕ

3) + akα(b0 + b1ϕ+ b2ϕ
2)(b1σ + 2b2σϕ+ b1ϕ

2 + 2b2ϕ
3)

+bk3α(2b1σ
2 + 16b2ϕσ

2 + 8b1σϕ
2 + 40b2σϕ

3 + 6b1ϕ
4 + 24b2ϕ

5) = 0























... (31)

Comparing the like powers of ϕwe get

For the first equation

ϕ0 : cαa1σ + akαb0a1σ + 2a1k
3αbσ2 = 0

ϕ1 : 2cαa2σ + akα(2b0a2 + b1a1)σ + 16a2bk
3ασ2 = 0

ϕ2 : cαa1 + akα(b0a1 + 2b1a2σ + b2a1σ) + 8bk3αa1σ = 0
ϕ3 : 2cαa2 + akα(2b0a2 + b1a1 + 2b2a2σ) + 40bk3αa2σ = 0
ϕ4 : akα(2b1a2 + b2a1) + 6bk3αa1 = 0
ϕ5 : 2akαb2a2 + 24bk3αa2 = 0































... (32)

For the second equation

ϕ0 : cαb1σ + dkαa0b1σ + 2b1k
3αbσ2 = 0

ϕ1 : 2cαb2σ + dkα(2a0b2 + b1a1)σ + 16b2bk
3ασ2 = 0

ϕ2 : cαb1 + dkα(a0b1 + 2a1b2σ + a2b1) + 8bk3αb1σ = 0
ϕ3 : 2cαb2 + dkα(2a0b2 + b1a1 + 2b2a2σ) + 40bk3αb2σ = 0
ϕ4 : dkα(2a1b2 + a2b1) + 6bk3αb1 = 0
ϕ5 : 2dkαb2a2 + 24bk3αb2 = 0































... (33)

Solving the above two system we get

a0 = −cα + 8bσk3α

dkα
, a1 = 0, a2 = −12bk2α

d

b0 = −cα + 8bσk3α

akα
, b1 = 0, b2 = −12bk2α

a

(34)

Hence the general solution is

u(x, y, t) =



































a0 − a2σ tanh2α
(√

−σ(cαt+ kαx)
)

a0 − a2σ coth2α
(√

−σ(cαt+ kαx)
)

}

for σ < 0

a0 + a2

(

(Γ(1+α))2

((cαt+kαx)α+ω)2

)

for σ = 0, ω = Constant

a0 + a2σ tan2α (
√
σ(cαt+ kαx))

a0 + a2σ cot2α (
√
σ(cαt+ kαx))

}

for σ > 0

... (35)
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(a)

(d)

(b)

(e)

(c)

(f)

Fig. 1. Graphical presentation of solutions for KP-Burger equation for σ < 0for different values of order of fractional derivative α.
(a) α = 1, (b) α = 0.9, (c) α = 0.8, (d) α = 0.7, (e) α = 0.65, (f) α = 0.6

v(x, y, t) =







































b0 − b2σ tanh2α
(√

−σ(cαt+ kαx)
)

b0 − b2σ coth2α
(√

−σ(cαt+ kαx)
)

}

for σ < 0

b0 + b2

(

(Γ(1 + α))
2

((cαt+ kαx)α + ω)
2

)

for σ = 0, ω = Constant

b0 + b2σ tan2α (
√
σ(cαt+ kαx))

b0 + b2σ cot2α (
√
σ(cαt+ kαx))

}

for σ > 0

... (36)

VII. NUMERICAL RESULTS

In this section numerical simulations are done to find the solution pattern for different values of order of derivative α. Here

we are considering c = 1, k = 1, b = a = 1, d = 1. The numerical simulation is done for the solution set (20) and (34-35) for

different values of order of derivative α.

Since solution u(x, y, t) in (20) is the function of x, y and t. The figures are drowning below for fixed value of t = 1
and different values of order of fractional derivative α for σ < 0.

The solutions u and v in (27, 28) and (34-35) become the same under the considered values of the parameters. Here he

graphical presentation of u only presented in Figure-2 for different values of the order of fractional derivative α for σ < 0.

From Figs. 1. and 2. it is clear that the shock solution for KP-Burger equation and soliton solution for coupled KdV

equations occurs for α = 1. With the decrease of αthe solution patterns change to periodic nature.

VIII. CONCLUSIONS

In this paper we found analytical solutions of the non-linear partial differential equation integer order and Jumarie type

fractional order partial differential equations. In the Generalized tanh method the solutions of integer order non-linear partial

differential equations are expressed in terms the hyperbolic functions (for σ < 0) and the trigonometric functions (for σ > 0)

whereas the fractional sub-equation method express the solutions of non-linear partial differential equations in terms the
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Graphical presentation of solutions for coupled KdV equations for σ < 0for different values of order of fractional derivative α.
(a) α = 1 (b) α = 0.9 (c) α = 0.8 (d) α = 0.7 (e) α = 0.65 (f) α = 0.6

fractional hyperbolic functions (for σ < 0) and the fractional trigonometric functions (for σ > 0). Both methods are based on

the homogeneous balance principle. The solutions obtained in these methods are exact. From Figure-1 it is clear that for small

values of α in [0.65,1) there are shock waves that include oscillation and when the order of derivative tends to 1, oscillation

diminish. From Figure-2 it is clear that the oscillatory solutions arise for small values of α in (<1) and that solution tends

towards the soliton solution when the order of derivative tends to 1. The solution obtained for σ < 0 matches with physical

solutions of the KP-Burger equation and coupled KdV equations. As we know, the Burger term is responsible for shock

solution and due to the effect of dispersion in the medium.
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