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In this work, on the condition that scalar potential is equal to vector potential, the
bound state solutions of the Klein–Fock–Gordon equation of the Manning–Rosen plus
ring-shaped like potential are obtained by Nikiforov–Uvarov method. The energy levels
are worked out and the corresponding normalized eigenfunctions are obtained in terms
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Manning–Rosen, central and noncentral Hulthén potential.
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1. Introduction

Since the early years of quantum mechanics (QM) the study of exactly solv-

able problems for some special potentials of physical interest has attracted much

attention in theoretical physics. Obtaining analytical solutions of the Klein–Fock–

Gordon, Dirac and other wave equations is one of the interesting problems in high

energy and nuclear physics. These wave equations are frequently used to describe

the particle dynamics in relativistic QM. Already long time in literature, a great
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deal of effort has been spent to solve these relativistic wave equations for different

potentials which also include mixing potentials.

The description of phenomena at high energies requires the investigation of

relativistic wave equations, which are invariant under Lorentz transformation, to

give correction for nonrelativistic QM.1,2 If we consider the case where the inter-

action potential is not enough to create particle–antiparticle pairs, we can apply

the KFG equation to the treatment of a zero-spin particle and apply the Dirac

equation to that of a 1/2-spin particle. A particle is moving in a strong poten-

tial field, the relativistic effect must be considered. This effect gives the correction

for nonrelativistic QM. Taking the relativistic effects into account, a particle in-

cluding mixing potential should be described by the Klein–Fock–Gordon and Dirac

equations.

In Refs. 3–37 analytical solutions of the Klein–Fock–Gordon and Dirac equations

are widely studied.

Many methods were developed and have been used successfully in solving the

Schrödinger, Dirac and Klein–Fock–Gordon (KFG) wave equations in the presence

of some well-known potentials. In Refs. 18–36 some authors have assumed that the

scalar potential is equal to the vector potential and using NU38 method obtained

bound states of the KFG and Dirac equation with some typical potential fields.

The noncentral potentials are needed to obtain better results than central poten-

tials about the dynamical properties of the molecular structures and interactions.

Some authors added ring-shaped potentials to certain potentials, for example

Coulomb, Hulthén and Manning–Rosen potentials to obtain noncentral potentials.

Many works show the power and simplicity of NU method in solving central

and noncentral potentials, for example Refs. 37, 39–41. This method is based on

solving the second-order linear differential equation by reducing to a generalized

equation of hypergeometric type which is a second-order homogeneous differential

equation with polynomial coefficients of degree not exceeding the corresponding

order of differentiation.

It would be interesting and important to study the relativistic bound states

of the arbitrary l-wave KFG equation with Manning–Rosen potential plus a ring-

shaped like potential, since it has been extensively used to describe the bound

and continuum states of the interacting systems. The central Manning–Rosen42,43

potential is defined by

V (r, θ) =
1

kb2

[

α(α− 1) exp(−2r/b)

(1− exp(−r/b))2 − A exp(−r/b)
(1− exp(−r/b))

]

, k = 2M/~2 , (1.1)

where A and α are dimensionless parameters, but the screening parameter b, deter-

mines the potential range, has dimension of length.

This potential is used as a mathematical model in the description of diatomic

molecular vibrations and it constitutes a convenient model for other physical situa-

tions. It is known that for this potential the KFG equation can be solved exactly

using suitable approximation scheme to deal with the centrifugal term.44
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The potential which we used in this work

V (r, θ) =
1

k

[

α(α − 1) exp(−2r/b)

b2(1− exp(−r/b))2 − A exp(−r/b)
b2(1− exp(−r/b)) +

β′

r2 sin2 θ
+

β cos θ

r2 sin2 θ

]

,

(1.2)

is obtained by adding a ring-shaped like potential term.

Ring-shaped like potentials is usually used in quantum chemistry for describing

the ring shaped organic molecules such as benzene and in nuclear physics for inves-

tigation the interaction between deformed pair of nucleus and spin–orbit coupling

for the motion of the particle in the potential fields.

From the point of view of theoretical and experimental physics, Manning–Rosen

plus a ring-shaped like potential is more informative relative to Manning–Rosen

potential.

By taking into account these point the solution of the KFG equation for

Manning–Rosen plus ring-shaped like potentials present a great interest in both

theoretical and experimental studies.

Here we present the analytical solutions of the KFG equation with equal scalar

and vector Manning–Rosen plus a ring-shaped potential.

The remainder of this paper is organized as follows. In Sec. 2, we provide KFG

equation within Manning–Rosen plus a ring-shaped like potential. In Sec. 3, we

present full details of bound state solution of the radial KFG equation by NU

method. In Sec. 4, we present the solution of angle-dependent part of the KFG.

Finally, we summarize our results and present our conclusions in Sec. 5.

2. The Klein Fock Gordon Equation with the Manning Rosen

Potential Plus a Ring-Shaped Like Potential

Since KFG equation contains two objects; the four-vector linear momentum oper-

ator and the scalar rest mass, one can introduce two different potentials in this

equation. The first is a vector potential (V ), introduced via minimal coupling and

the second is a scalar potential (S) introduced via scalar coupling.1 They allow us

to introduce two types of potential coupling which are the four vector potential (V )

and the space–time scalar potential (S).

The KFG equation with scalar potential S(r, θ) and vector potential V (r, θ) can

be written in the following form in natural units (~ = c = 1)
[

−∇2 + (M + S(r, θ))2
]

ψ(r, θ, φ) = [E − V (r, θ)]2ψ(r, θ, φ) , (2.1)

where E is the relativistic energy of the system and M denotes the rest mass of a

scalar particle.

Here, we consider the case when the scalar potential and vector potential are

equal to the Manning–Rosen plus a ring-shaped potential as done in Ref. 45. By

taking the wave function of the form

ψ(r, θ, φ) =
χ(r)

r
Θ(θ)eimφ , m = 0,±1,±2,±3, . . . (2.2)
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and substituting this into Eq. (2.1) leads to the following second-order differential

equations

χ′′(r)+

[

(E2−M2)−M+E

Mb2

(

α(α−1)e−2r/b

(1−e−r/b)2
− Ae−r/b

1−e−r/b

)

− λ

r2

]

χ(r) = 0 , (2.3)

Θ′′(θ)+ cot θΘ′(θ)+

[ −1

sin2 θ

(

M+E

M
(β′+β cos θ)+m2

)

+λ

]

Θ(θ) = 0 . (2.4)

3. Bound State Solution of the Radial Klein Fock Gordon Equation

When l 6= 0, the differential equation in Eq. (2.3) cannot be solved analytically

due to the centrifugal term. Therefore, we must use a proper approximation for the

centrifugal term in which similar approach was also employed previously.41,46,47 In

this work, we attempt to use the following improved approximation scheme to deal

with the centrifugal term

1

r2
≈ 1

b2

[

C0 +
e−r/b

(1− e−r/b)2

]

, (3.1)

which reduces to convectional approximation scheme suggested by Greene and

Aldrich when C0 = 0.46 For bound states |E| < M , inserting this new centrifu-

gal term into Eq. (2.3) allows us to obtain

χ′′(r) +

[

E2 −M2 − M + E

Mb2

(

α(α − 1)e−2r/b

(1− e−r/b)2
− Ae−r/b

1− er/b

)

− λ

b2

[

Co +
e−r/b

(1− e−r/b)2

]]

χ(r) = 0 . (3.2)

Equation (3.2) can be further written in the form

χ′′(s) +
τ̃

σ
χ′(s) +

σ̃

σ2
χ(s) = 0 , (3.3)

which is known equation of the generalized hypergeometric-type by using the trans-

formation s = e−r/b. Hence we obtain

χ′′(s) + χ′(s)
1− s

s(1 − s)
+

[

1

s(1− s)

]2

×
[

−ǫ2(1 − s)2 +Aηs(1− s)− αη(α − 1)s2

− (1− s)2λ

(

C0 +
s

(1 − s)2

)]

χ(s) = 0 , (3.4)

where we use the following notation for bound states

ǫ = b
√

M2 − E2 , η =
M + E

M
. (3.5)
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Now, we can successfully apply NU method of definition for eigenvalues of

energy. By comparing Eqs. (3.4) with (3.3) we can define the following

τ̃ (s) = 1− s , σ(s) = s(1− s) ,

σ̃(s) = s2[−ǫ2 −Aη − αη(α − 1)− λC0]

+ s[2ǫ2 +Aη + 2λC0 − λ] + [−ǫ2 − λC0] .

(3.6)

If we take the following factorization

χ(s) = φ(s)y(s) , (3.7)

for the appropriate function φ(s) Eq. (3.3) takes the form of the well-known

hypergeometric-type equation,

σ(s)y′′(s) + τ(s)y′(s) + λ̄y(s) = 0 . (3.8)

The appropriate φ(s) function must satisfy the following condition

φ′(s)

φ(s)
=
π(s)

σ(s)
, (3.9)

where π(s), the polynomial of degree at most one, is defined as

π(s) =
σ′ − τ̃

2
±

√

(

σ′ − τ̃

2

)2

− σ̃ + kσ . (3.10)

Finally the equation, where y(s) is one of its solutions, takes the form known as

hypergeometric-type if the polynomial σ̄(s) = σ̃(s) + π2(s) + π(s)[τ̃ (s) − σ′(s)] +

π′(s)σ(s), is divisible by σ(s), i.e. σ̄ = λ̄σ(s).

The constant λ̄ and polynomial τ(s) in Eq. (3.8) is defined as

λ̄ = k + π′ (3.11)

and

τ(s) = τ̃ (s) + 2π(s) , (3.12)

respectively. For our problem, the π(s) function is written as

π(s) =
−s
2

±
√

s2[a− k]− s[b− k] + c , (3.13)

where the values of the parameters are

a =
1

4
+ ǫ2 +Aη + αη(α − 1) + λC0 ,

b = 2ǫ2 +Aη + 2λC0 − λ ,

c = ǫ2 + λC0 .
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The constant parameter k can be found complying with the condition that the

discriminant of the expression under the square root is equal to zero. Hence we

obtain

k1,2 = (b− 2c)± 2
√

c2 + c(a− b) . (3.14)

When the individual values of k given in Eq. (3.14) are substituted into

Eq. (3.13), the four possible forms of π(s) are written as follows

π(s) =
−s
2

±
{(√

c−
√
c+ a− b

)

s−√
c for k = (b− 2c) + 2

√

c2 + c(a− b) ,
(√
c+

√
c+ a− b

)

s−√
c for k = (b− 2c)− 2

√

c2 + c(a− b) .

(3.15)

According to NU method, from the four possible forms of the polynomial π(s),

we select the one for which the function τ(s) has the negative derivative. Other

forms are not suitable physically. Therefore, the appropriate functions π(s) and

τ(s) are

π(s) =
√
c− s

[

1

2
+
√
c+

√
c+ a− b

]

, (3.16)

τ(s) = 1 + 2
√
c− 2s

[

1 +
√
c+ a− b

]

, (3.17)

for

k = (b− 2c)− 2
√

c2 + c(a− b) . (3.18)

Also by Eq. (3.11) we can define the constant λ̄ as

λ̄ = b− 2c− 2
√

c2 + c(a− b)−
[

1

2
+
√
c+

√
c+ a− b

]

. (3.19)

Given a nonnegative integer n, the hypergeometric-type equation has a unique

polynomials solution of degree n if and only if

λ̄ = λ̄n = −nτ ′ − n(n− 1)

2
σ′′ (n = 0, 1, 2, . . .) , (3.20)

and λ̄m 6= λ̄n for m = 0, 1, 2, . . . , n− 1,48 then it follows that,

λ̄nr
= b− 2c− 2

√

c2 + c(a− b)−
[

1

2
+
√
c+

√
c+ a− b

]

= 2nr

[

1 +
(√
c+

√
c+ a− b

)]

+ nr(nr − 1) . (3.21)

We can solve Eq. (3.21) explicitly for c by using the relation c = ǫ2 + λC0 which

brings

ǫ2 =

[

λ+ 1/2 + Λ(1 + 2nr) + nr(nr + 1)−Aη

2Λ + 1 + 2nr

]2

− λC0 , (3.22)
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where Λ =
√

1/4 + ηα(α − 1) + λ. After inserting ǫ2 into Eq. (3.5) with λ = l(l+1)

for energy levels we find

M2 − E2
nr ,l =

1

b2

[[

nr +
1

2
+

(l − nr)(l + nr + 1)−Aη

2Λ + 1 + 2nr

]2

− l(l + 1)C0

]

. (3.23)

The energy levels Enr ,l are determined by the energy equation (3.23), which is

rather complicated transcendental equation.

Now, using NU method we can obtain the radial eigenfunctions. After substi-

tuting π(s) and σ(s) into Eq. (3.9) and solving first-order differential equation, it

is easy to obtain

φ(s) = s
√
c(1− s)K , (3.24)

where K = 1/2 + Λ.

Furthermore, the other part of the wave function yn(s) is the hypergeometric-

type function whose polynomial solutions are given by Rodrigues relation

yn(s) =
Bn

ρ(s)

dn

dsn
[

σn(s)ρ(s)
]

, (3.25)

where Bn is a normalizing constant and ρ(s) is the weight function which is the

solution of the Pearson differential equation. The Pearson differential equation and

ρ(s) in our case have the form,

(σρ)′ = τρ , (3.26)

ρ(s) = (1− s)2K−1s2
√
c , (3.27)

respectively.

Substitute Eq. (3.27) into Eq. (3.25) then we get

ynr
(s) = Bnr

(1− s)1−2Ks2
√
c d

nr

dsnr

[

s2
√
c+nr(1− s)2K−1+nr

]

. (3.28)

Then by using the following definition of the Jacobi polynomials49

P (a,b)
n (s) =

(−1)n

n!2n(1− s)a(1 + s)b
dn

dsn
[

(1− s)a+n(1 + s)b+n
]

, (3.29)

we can write

P (a,b)
n (1− 2s) =

Cn

sa(1− s)b
dn

dsn
[

sa+n(1− s)b+n
]

(3.30)

and

dn

dsn
[

sa+n(1− s)b+n
]

= Cns
a(1− s)bP (a,b)

n (1 − 2s) . (3.31)

If we use the last equality in Eq. (3.28), we can write

ynr
(s) = Cnr

P (2
√
c,2K−1)

nr

(1− 2s) . (3.32)
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Substituting φ(s) and ynr
(s) into Eq. (3.7), we obtain

χnr
(s) = Cnr

s
√
c(1 − s)KP (2

√
c,2K−1)

nr

(1− 2s) . (3.33)

Using the following definition of the Jacobi polynomials49

P (a,b)
n (s) =

Γ(n+ a+ 1)

n!Γ(a+ 1)
F
21

(

−n, a+ b+ n+ 1, 1 + a;
1− s

2

)

, (3.34)

we are able to write Eq. (3.33) in terms of hypergeometric polynomials as

χnr
(s) = Cnr

s
√
c(1− s)K

Γ(nr + 2
√
c+ 1)

nr!Γ(2
√
c+ 1)

F
21

(

−nr, 2
√
c+ 2K + nr, 1 + 2

√
c; s

)

.

(3.35)

The normalization constant Cnr
can be found from normalization condition

∞
∫

0

|R(r)|2r2 dr =
∫ ∞

0

|χ(r)|2dr = b

∫ 1

0

1

s
|χ(s)|2ds = 1 , (3.36)

by using the following integral formula50

∫ 1

0

(1− z)2(δ+1)z2λ−1
{

F
21
(−nr, 2(δ + λ+ 1) + nr, 2λ+ 1; z)

}2

dz

=
(nr + δ + 1)nr!Γ(nr + 2δ + 2)Γ(2λ)Γ(2λ+ 1)

(nr + δ + λ+ 1)Γ(nr + 2λ+ 1)Γ(2(δ + λ+ 1) + nr)
(3.37)

for δ > −3
2 and λ > 0. After simple calculations, we obtain normalization con-

stant as

Cnr
=

√

nr!2
√
c(nr +K +

√
c)Γ(2(K +

√
c) + nr)

b(nr +K)Γ(nr + 2
√
c+ 1)Γ(nr + 2K)

. (3.38)

4. Solution of Azimuthal Angle-Dependent Part of the

Klein Fock Gordon Equation

We may also derive the eigenvalues and eigenvectors of the azimuthal angle depen-

dent part of the KFG equation in Eq. (2.4) by using NU method. Introducing a

new variable x = cos θ, Eq. (2.4) is brought to the form

Θ′′(x) − 2x

1− x2
Θ′(x) +

1

(1− x2)2
[

λ(1− x2)−m2 − η(β′ + βx)
]

Θ(x) = 0 . (4.1)

After the comparison of Eq. (4.1) with Eq. (3.3) we have

τ̃ (x) = −2x , σ(x) = 1− x2 , σ̃(x) = −λx2 − ηβx+ (λ −m2 − ηβ′) . (4.2)

In the NU method the new function π(x) is calculated for angle-dependent part as

π(x) = ±
√

x2(λ− k) + ηβx− (λ− ηβ′ −m2 − k) . (4.3)
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The constant parameter k can be determined as

k1,2 =
2λ−m2 − ηβ′

2
± u

2
, (4.4)

where u =
√

(m2 + ηβ′)2 − η2β2. The appropriate function π(x) and parameter

k are

π(x) = −
[

x

√

m2 + ηβ′ + u

2
+

√

m2 + ηβ′ − u

2

]

, (4.5)

k =
2λ−m2 − ηβ′

2
− u

2
. (4.6)

The following track in this selection is to achieve the condition τ ′ < 0. Therefore

τ(x) becomes

τ(x) = −2x

[

1 +

√

m2 + ηβ′ + u

2

]

− 2

√

m2 + ηβ′ − u

2
. (4.7)

We can also write the values λ̄ = k + π′(s) as

λ̄ =
2λ− ηβ′ −m2

2
− u

2
−
√

m2 + ηβ′ + u

2
, (4.8)

also using Eq. (3.20), then from Eq. (4.8) we can obtain

λ̄N =
2λ− ηβ′ −m2

2
− u

2
−
√

m2 + ηβ′ + u

2

= 2N

[

1 +

√

m2 + ηβ′ + u

2

]

+N(N − 1) . (4.9)

In order to obtain unknown λ we can solve Eq. (4.9) explicitly for λ = l(l + 1)

λ− ζ2 − ζ = 2N(1 + ζ) +N(N − 1) , (4.10)

where ζ =
√

m2+ηβ′+u
2 , and

λ = ζ2 + ζ + 2Nζ +N(N + 1) = (N + ζ)(N + ζ + 1) = l(l + 1) , (4.11)

then

l = N + ζ . (4.12)

Substitution of this result in Eq. (3.23) yields the desired energy spectrum, in

terms of nr and N quantum numbers. Similarly, the wave function of azimuthal

angle dependent part of KFG equation can be formally derived by a process to the

derivation of radial part of KFG equation. Thus using Eq. (3.9), we obtain

φ(x) = (1− x)(B+C)/2 , (4.13)

where B =
√

m2+ηβ′+u
2 , C =

√

m2+ηβ′−u
2 .

1450002-9

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
4.

29
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

U
R

O
PE

A
N

 O
R

G
A

N
IZ

A
T

IO
N

 F
O

R
 N

U
C

L
E

A
R

 R
E

SE
A

R
C

H
 (

C
E

R
N

) 
on

 0
3/

10
/1

6.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



January 7, 2014 16:6 WSPC/139-IJMPA S0217751X1450002X

A. I. Ahmadov, C. Aydin & O. Uzun

On the other hand, to find a solution for yN (s) we should first obtain the weight

function ρ(s). From Pearson equation, we find weight function as

ρ(x) = (1− x)B+C(1 + x)B−C . (4.14)

Substituting ρ(s) into Eq. (3.25) allows us to obtain the polynomial yN (s) as follows

yN (x) = BN (1− x)−(B+C)(1 + x)C−B dN

dxN

[

(1− x)B+C+N (1 + x)B−C+N
]

. (4.15)

From the definition of Jacobi polynomials, we can write

dN

dxN

[

(1− x)B+C+N (1 + x)B−C+N
]

= (−1)N2N(1− x)B+C(1 + x)B−CP
(B+C,B−C)
N (x) . (4.16)

Substitution of Eq. (4.16) into Eq. (4.15) and after long but straightforward calcu-

lations we obtain the following result,

ΘN (x) = CN (1− x)(B+C)/2(1 + x)(B−C)/2P
(B+C,B−C)
N (x) , (4.17)

where CN is the normalization constant. Using orthogonality relation of the Jacobi

polynomials49 the normalization constant can be found as

CN =

√

(2N + 2B + 1)Γ(N + 1)Γ(N + 2B + 1)

22B+1Γ(N +B + C + 1)Γ(N +B − C + 1)
. (4.18)

5. Conclusion

In this work we have applied NU method to the calculation of the nonzero angu-

lar momentum solutions for the KFG equation of the Manning–Rosen plus a

ring-shaped like potential. For any state energy eigenvalues can be obtained from

Eq. (3.23), which is rather complicated transcendental equation. In case β = β′ = 0,

one can obtain central potential solutions and in case α = 1 or α = 0 gives solu-

tions of Hulthén potential. We also obtain normalized eigenfunctions in terms of

orthogonal Jacobi polynomials.
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