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ANALYTICAL SOLUTIONS TO EDDY-CURRENT PROBE COIL PROBLEMS 

C. V. Dodd and W. E. Deeds’ 

ABS TRACT 

Solutions have been obtained for axially symmetric eddy- 
current problems in two configurations of wide applicability. 
In both cases the eddy currents are assumed to be produced by 
a circular coil of rectangular cross section, driven by a 
constant amplitude alternating current. One solution is for 
a coil above a semi-infinite conducting slab with a plane sur- 
face, covered with a uniform layer of another conductor. This 
solution includes the special cases of a coil above a single 
infinite plane conductor or above a sheet of finite thickness, 
as well as the case of one metal clad on another. The other 
solution is for a coil surrounding an infinitely long circular 
conducting rod with a uniformly thick coating of another con- 
ductor. This includes the special cases of a coil around a 
conducting tube or rod, as well as one metal clad on a rod of 
another metal. The solutions are in the form of integrals of 
first-order Bessel functions giving the vector potential, from 
which the other electromagnetic quantities of interest can be 
obtained. The coil impedance has been calculated for 
of a coil above a two-conductor plane. The agreement 
the calculated and experimental values is excellent. 

the case 
between 

INTRODUCTION 

Electromagnetic problems are usually divided into three categories: 

low frequency, intermediate frequency, and high frequency. At low fre- 

quencies, static conditions are assumed; at high frequencies, wave equa- 

tions are used. Both of these regions have been studied extensively. 

However, in the intermediate frequency range, where diffusion equations 

are used, very few problems have actually been solved, Eddy-current 

coil problems fall into this intermediate frequency region. This report 

presents an accurate technique for analyzing the problems of eddy-current 

testing . 

‘Consultant from the University of Tennessee 
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Eddy-current t e s t i n g  has been used i n  indus t ry  f o r  many years .  A s  

ea r ly  a s  1879, D.  E .  Hughes2 used an ind-uction c o i l  t o  s o r t  metals.  

There have been numerous a r t i c l - e s  0x1 t he  t e s t i n g  of mater ia l s  with edd.y 

curren-ts.  Some of  the  f i r s t  papers deal ing with both t'ne theory and the 

p r a c t i c a l  aspec ts  of eddy-cu-rrent t e s t i n g  a r e  by Fijrster,  FErster  and 

Stambk.eY4 and Fijrster. '  

a c o i l  above a conducting surface,  assuming t h e  c o i l  t o  be a magnetic 

di-pole, and of an i n f l n i t e  c o i l  enc i r c l ing  an i n f i n i t e  rod. 

a l s o  gives  an anal.ysis of an i n f i n i t e  c o i l  i-ncluding some eddy-current 

d i s t r i b u t i o n s  -i.n t he  metal. Wafdelich and Renken7 made an ana lys i s  of 

t he  c o i l  irqedance using an image approach. Their theoret ical-  r z su1 . t~  

agreed wel l  with theory f o r  r e l a t i v e l y  high frequenci.es. Libby' p re-  

sented a theory i n  which he assumed the  coil. w a s  a transformer with a 

network t i e d  t o  the  secondary. T'nis network representa- t ion gave good 

r e s u l t s  when compared t o  experiment. Yne d i f fus ion  of eddy-current 

pu l se s  (Atwood and Libby') can be represented i n  t h i s  manner. Russel-l, 

Schuster and Waidel-ich" gave an ana lys i s  of a cup core coi.1 where they 

assumed the  f l u x  was e n t i r e l y  coupled i n t o  the  conductor. The semi- 

empi.ri.ca1 r e s u l t s  agreed fai . r ly  wel l  with t'ne e,uperirnen-t;al measurements. 

I n  t h i s  s e r i e s  of papers,  analyses a r e  made of 

IEochscbil.d6 

2D. E. Hughes, P h i l .  Mag. - - 8(5), 50  (1879). 

3F'riedrich F'grster,  Z.  Metal-lk. - 43, 163-171. (1952). 

" 'Friedrich Fb'rster and Kurt Stambke, Z. Metal.1.k. L1-5(4), __ 166-179 (1954). 

5 F r i e d r i ~ h  FErster ,  Z.  Metallk. - 4 5 ( 4 ) ,  1.97-199 (1954). 

6R. Hochschild, "Electromagnetic Methods o f  Testing Metals, " Progress  

7D. I,. Waidelich and- C. J. Renken, Proc.  N a t l .  Electron Conf. L?, 

- 

- 

- 

i n  Nondestructi.ve Testing, Vol. 1, Macrnillan Company, New York, 1959. 

188-1.96 ( 195 6) . 
8H. L. 

(1959). 

(1.963) . 

Control 13 

'K. W. 

l o T .  J. 

-? - 

Libby, Broadband Electromagnetic Testing Methods HW- 5 96lL+ 

Atwood and H.  I,. Libby, Diffusion of  Eddy Currenis,  HW--798U+ 

Russel l ,  V. E. Schuster,  and D. L. Waidnlich, J. Electron.  
232-237 (1.962). 
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Vein, 'I Cheng,12 and Burrows13 gave treatments based on delta function 

coils, and Burrows continued with the development of an eddy-current flaw 

theory. Dodd and Deeds," Dodd,15 and Dodd" gave a relaxation theory to 

calculate the vector potential of a coil with a finite cross section. 

Here we extend a "closed form" solution to such coils. 

The vector potential is used as opposed to the electric and magnetic 

fields. The differential equations for the vector potential will be 

derived from Maxwell's equations, with the assumption of cylindrical sym- 

metry. 

form" solution. 

This differential equation will then be solved to obtain a "closed 

For the "closed form'' solution, sinusoidal driving currents and 

linear, isotropic, and homogeneous media will be assumed. Solutions will 

be obtained for two different conductor geometries: a rectangular cross- 

section coil above a plane with one conductor clad on another and a 

rectangular cross-section coil encircling a two-conductor rod. The solu- 

tions for both geometries will be given in terns of integrals of Bessel 

functions. 

to calculate any physically observable electromagnetic quantity. 

Once the vector potential has been determined, it can be used 

Equations to calculate eddy-current density, induced voltage, coil 

impedance, and effect of defects will be given. Measured values of coil 

impedance as compared with calculated values show excellent agreement. 

"P. R. Vein, J. Electron. Control __ 13, 471494 (1962). 

12David H.S. Cheng, "The Reflected Impedance of a Circular Coil in 
the Proximity of a Semi-Infinite Medium, '' Ph.D. Dissertation, University 
of Missouri, 1964. 

13Michael Leonard Burrows, A Theory of Eddy Current Flaw Detection, 
University MicroPilms, Inc., A m  Arbor, Michigan, 1964. 

14C. V. Dodd and W. E. Deeds, "Eddy Current Impedance Calculated by 
a Relaxation Method," pp. 300-314 in Proceedings of the Symposium on 
Physics and Nondestructive Testing, Southwest Research Institute, San 
Antonio, Texas, 1963. 

15C. V. Dodd, A Solution to Electromagnetic Induction Problems, 
ORNL-TM-1185 (1965) and M.S. Thesis, the University of Tennessee, 1965. 

16C. V. Dodd, Solutions to Electromagnetic Induction Problems, 
ORNL-TM-1842 (1967) and Ph.D. Dissertation, the University of Tennessee, 
1967. 
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DERIVATION OF VECTOR POTENTIAL 

The d i f f e r e n t i a l  equations17 f o r  t he  vec tor  p o t e n t i a l  w i l l  be 

der ived from Maxwell’s equations which a re :  

The medium i.s taken t o  be l i n e a r  and i s o t r o p i c ,  bu t  not  homogeneous. In  
..-, 

8, l i n e a r  and i s o t r o p i c  medium, t h e  following rela-Lions between D and E 

and and il hold: 

-> + 
D = EE 

+ 
The cur ren t  dens i ty  J can be expressed i n  t erms  of Ohm’s law: 

Equations ( 6 )  and (7)  may be subs- t i tu ted  i n t o  Equation (1) t o  ob ta in  tile 
-+ --f 

c u r l  of If i n  terms of E: 

‘?A list of symbols i s  given i n  Appendix A. 
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3 

3 &E 
The term (7E is much greater than at, so the latter may be neglected for 

frequencies below about 10 Mc/sec (ref. 18). 

field B may be expressed as the curl of a vector potential 2: 
The magnetic induction 

3 

-+ + 
B = D X A  

Substituting this into Equation (2) gives 

-+ ax 
at at 

V X A = - V X -  a -+ 
V X  E = - -  

or 

-5 

-+ 3A -+ -+ 

Glir = Einduced Eapplied 
E = - - -  

at 

w -3 ax 
at. 

(7E = - (7 - - 

The term Jr  is interpreted as an applied scalar potential. 

be driven by a voltage generator with an applied voltage Jr  and an internal 

resistivity, - 
0' 

function is expressed as an alternating current density of constant 

amplitude, ? 

The coil may 

However, for the purpose of this problem, the driving 

rather than an applied potential, where 
0 

This provides a current which is not affected by induced voltages or the 

presence of other coils. Making this substitution gives: 

Substituting Equations (5) and (9) into the left side of Equation (8) 

and Equation (14) into the right side gives: 

a d  & 3 

18For sinusoidal waves, at = at = je.wE. The term oE is much 

greater than EWE or (7 >> GW. (7 = lo7 mhos/meter for metals, E = 

For frequencies on the order of l o7  cps, w = lo8,  lo7  >> 10% x lo-'=, 
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The vec tor  i d e n t i t i e s  (Morse and Feshbach19) 

V x ($2) = (VI@) x F + $V x ? and V x (D x $) = V(V.F) - V F, 

can be used t o  expand t h e  l e f t  s ide  of Equation (1.5): 

2+ I, I, 

I n  the  d e f i n i t i o n  of t he  vec tor  poten-LTal t he  divergence of t'ne vec tor  

p o t e n t i a l  w a s  no t  defined, so it can be defined t o  be anything corivenient. 

For induct ion problems ?'.A i s  s e t  t o  zero.  

Coulomb gage, ) 

siibsl;ituted i n t o  Equation (1.5). 

--> 

(This corresponds Lo t he  

Equation (16) w i l l  then y i e l d  the  following resu1.ts ~ j i i e ~ i  

This i s  t h e  equation f o r  t h e  vec tor  p o t e n t i a l  i n  an i s o t r o p i c ,  l i n e a r ,  

inhomogeneous medium. For most c o i l  problems it i s  poss ib l e  t o  assume 

axial symmetry as shown i n  Fig. 1. The vec to r  p o t e n t i a l  w i l l  be sym- 

met r ic  about t h e  a x i s  of  t'ne c o i l .  Since t h i s  assumption i s  v a l j d  f o r  

most problems and t h e  a l t e r n a t i v e  t o  t h i s  assumption i s  a much more 

complicated and imprac t ica l  problem, axial symmetry i s  assumed. With 

axial symmetry, t h e r e  i s  only a 8 component of I and therefore  of  A. 

Expanding the  8 component OP Equation (17) gives:  

2 --f 

'"Philip M. Morse and I-Ieman Feshbach, Methods of Theore t ica l  
PhysFcs, I McGra,w-Bill Book Company, New York, 1953. 
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Fig. 1. Delta Function Coil above a Two-Conductor Plane. 

Assume that i is a sinusoidal function of time, i = i’ ejwt. Then the 

vector potential is likewise a sinusoidal -function o f  time, 

e j wt 

0 0 0 

A = A’e  j b t  + a )  = 

Substituting into Equation (18) gives: 
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j u t  
Canceling out  -the term e and dropping t h e  prime gives:  

Thj.s i s  t h e  genera l  d i f f e r e n t i a l  equation f o r  t h e  vec tor  p o t e n t i a l  

i n  a l inear. ,  inhomogeneous medium with a, s inusoida l  dr iv ing  cur-rent . 
s h a l l  now obta in  a "closed form'' so lu t ion  of Equation (19 ) .  

We 

CLOSED FOW SOLUTIONS OF 'THE VECTOR POTENTIAL 

We s h a l l  assume t h e  medium t o  be l i n e a r ,  i s o t r o p i c ,  and hornogcneous. 

When I i s  t h e  t o t a l  d r iv ing  cur ren t  i n  a d e l t a  func t ion  c o i l  a t  ( r  

iiie general. Equation (19) then becomes : 

z ), 
0' 0 

I_. a2A I--- + - - - -  a2A jWaA f pI 6(r - r0) 6 ( z  - zo) = 0 A 

a r 2  r. 3r & z 2  r2 

Once we have solved t h i s  l inear .  d i f f e r e n t i a l  equation f o r  a p a r t i c u -  

l a r  conductor configurat ion,  w e  can then superimpose any number of d e l t a  

funct ion c o i l s  t o  bu i ld  any des i r ed  shape of c o i l  (provided t h a t  -the 

curren t  i n  each c o i l  is known). 

We s h a l l  so lve  the  problem f o r  two d i f f e r e n t  conductor conPigura- 

t i o n s :  a c o i l  above a two-conductor p lane  and a c o i l  enc i r c l ing  a two- 

conductor rod. These two conf igura t ions  apply t o  a l a r g e  number of 

p r a c t i c a l  problems. 

Coi l  above a Two-Conductor Plane 

The c o i l  above a two-conductor p l ane  i s  shown i n  Fig. 1. We have 

divided t h e  probl-em i n t o  fou r  regions.  The d i f f e r e n t i a l  equation i n  a i r  

( reg ions  I and 11) is :  
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The differential equation in a conductor (regions I11 and IV) is: 

Setting A ( r , z )  I R(r) Z ( z )  and dividing by R ( r )  Z(z )  gives: 

1 &(r) 1 a 2 z ( q  1 
jwoi = 0 - - -  1 a2R(r) 

+-- f -  _I_ 

R(r) br2 rR(r) ar Z ( Z )  a z 2  r2  

We write f o r  the z dependence: 

o r  

We define: 

a.  1 =Jj”y”.i 

Equation (23) then becomes: 

This is a first-order Bessel equation and has the solutions: 

R(r) = C Jl(cxr) i- D Y1 (ar)  ( 2 8 )  

Combining the solutions we have: 

A(r,z) x [A ewiz + B e*iz][C Jl(ar) + D Yl(ar)] (29) 

We now need to determine the constants A, By C, and D. They are 

functions of the separation “constant” a and are  usually different f o r  

each value of a. Our complete solution would be a sum of all the indi- 

vidual solutions, if a were a discrete variable; but, since a is a 
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continuous va r i ab le ,  the complete so lu t ion  i s  an  i n t e g r a l  over the  e n t i r e  

range of a.  Thus, t he  general. so lu t ion  i s :  

-€xi z 
A(r , z )  = , fm[A(a)  0 eai-' + B(a) e ] [ C ( a )  J1(ar) 4 D(a) Y l ( a r ) ]  da: . (39) 

We must take  A(a) = 0 i n  region I, Twhere z goes t o  p l u s  i n f i n i t y .  

Due Lo t he  divergence of  Yl a t  t h e  o r ig in ,  D(a) = 0 i n  a l l  regtons.  

region IVY where z goes t o  minus i n f i n i t y ,  B(a) must, vanish.  

tions i n  each region then  become: 

In 

The solu- 

T'ne boundary condi t ions between t h e  d i f f e r e n t  regions are:  
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Equation (35) gives: 

* a  

( 4 1 )  
JmBl(a) e-’ Jl(ar) da sr: flC2(a) ea’ I. B2(a) e 1 J,(ar) dcx 
0 0 

M 

If we multiply both sides of Equation (41) by l Jl(a’r)r dr and. then 
0 

reverse the order of integration, we obtain: 

We can simplify Equation ( 4 2 )  by use of the Fourier-Bessel equation, 

which is: 

Equation (42)  then becomes : 

B1 .*‘a c, a B, e-af ,e 
x -  f -  I 

a‘ a‘ a’ 

We can evaluate the other integral equations in a similar manner. 

We get (after dropping the primes on the a ) :  

aa * a  - B, e -B e * a  = C, e - pIro ~ ~ ( a r ~ )  
1 

3 
B C B  

a a a a  
- c 2  f 2 = -  + -  

a1 
C, - B, - C 3  - B3 

a 

( 4 3 )  

( 4 9 )  
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We now have six equations with six unknowns. Their solution is: 

We can now write ihe expressjons for the vecior  p o t e n t i a l  Tn 

each region: 
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These are the equations for the vector potential of a delta function 

coil a,bove a two-conductor plane. Next we shall consider the derivation 

of the vector potential of a delta function coil encircling a two- 

conductor rod. 

Coil Encircling a Two-Conductor Rod 

We shall assume a delta function coil encircling an infinitely long, 

two-conductor rod, as shown in Fig. 2. 

The general differential equation is the same as Equation (23) f o r  

a coil above a conducting plane. 

1 hR( r )  1 1 
+--+- - - -  jwpo x 0 

1 a 2 R ( r )  
I_ 

R ( r )  ar2 r R ( r )  ar z(z) 322 r2 

Now, however, we shall assume the separation constant to be negative: 

Then 

Z(z) = F Sim(z-z ) i- G CO%(Z-Z ) 

and Equation (60) becomes: 

0 0 
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Fig. 2 .  Delta Function Coil Encircltng a Two-Conductor Rod. 



The s o l u t i o n  t o  Equation ( 5 3 )  i n  terms of modified Bessel f imctions 

i s  : 
1 1 

~ ( 1 - 1  = CI,[(~~ + jupc~)'r] i D K ~ [ ( ~ ~  + j ~ c y l a ) ~ r ]  (64 1 

We can now w r i t e  t h e  vec tor  p o t e n t i a l  i n  each region. We s h a l l  use 

t h e  f a c t  t h a t  it i s  symmetric (with respec t  t o  z-z ) t o  e l imina te  t h e  

s i n e  terms, and t h e  f a c t  t ha t  Kl(o) and I~(M) both diverge t o  e l imina te  

t h e i r  c o e f f i c i e n t s  i n  regions I and I V ,  r e spec t ive ly .  Thus w e  have: 

0 

M 1 

A(')(r,z-z0) = /C,[a)I,[(a2 0 f j y ' ' ~ ~ ) ~ r ]  cosM(z-zO) dcr: (65 1 

co 

A(4)(r ,z-z  ) = ID4(a)K,(ar) cosa(z-zo) dar 
0 0  

The boundary condi t ions  between t h e  d i f f e r e n t  regions a re :  

A(')(a,z-z 0 ) = A(2)(n,z-zo) 

r= a r r a  

( 3  1 (4 1 
A ( ro , z -zo )  = A (ro,z-zo) 
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If we mul t ip ly  both s ides  of Equation (69) by cosa' (z-zo) and i n t e g r a t e  

f r o m  ze ro  t o  i n f i n i t y ,  we obta in :  

1 m a r  
J J ~~(a)~~[(ar' + j q ~ c r ~ ) ~ r ]  cosa(z-zo) c o s a ~ ( z - z o )  
0 0  

x [cosa(z-z  0 ) c o s a ' ( z - z o ) ]  dl-2 d(Z-Zo) (75) 

We can reverse t h e  order  of i n t e g r a t i o n  and use t h e  or thogonal i ty  

p rope r t i e s  of t he  cosine i n t e g r a l  o r  use the  Fourier  tntegra.1 theorem: 

l o o  00 

7 ./ f(a)[/ COS~(Z-Z ) C O S C ~ ' ( Z - Z  ) d(z-Z,)] da =s f(a') 
0 0 0 0 

Thus, we can solve t h e  i n t e g r a l  equations (67) through (74.). 

a1 and a2 t o  designate  (a2 f. jwpol)2 and (a2 + jwpu2)'. 

t o  designate  de r iva t ives  with respec t  t o  the argument. We g e t  from bhe 

i n t e g r a l  equations (69) through (74 ) :  

We s h a l l  use 
1 1 

We s h a l l  use primes 

C311(ar,) f D 3 K L ( a r o )  = D4K, (a ro )  (81) 



Now we have s ix  equations with s ix  unknown constants. The equations 

may be solved to give the constants. We define: 

The constants are 
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We can now write f o r  the vector potential in each region: 

Equations (90) through (93) are the equations f o r  the vec-tor poten- 

tial- of a delta function coil encircling a two-conductor rod. We w i l l .  

now consider the superposition of the delta function coils to form "real" 

coi . ls .  
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Coi ls  of F i n i t e  Cross Section 

We have t h e  equations for t h e  vec to r  p o t e n t i a l  produced by a single 

d e l t a  func t ion  c o i l .  We can now approximate any c o i l  such as the ones 

shown i n  Figs.  3 and 4 by t h e  superpos i t ion  of a number of d e l t a  fvnction 

c o i l s .  

ORNL- DWG 67- 2523 

I 

= O  

Fig. 3 .  Rectangular Cross-Section Coi l  above a Two-Conductor Plane.  
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r i - 4  1 

- - - r 2 -  -7 

Fig.  i k .  Rectangular Cross-Section C o i l  Encircl ing a Two-Conductor Rod. 

In  general ,  we have: 

(94.) 
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This equation is good for coils of any cross section. If we let the 

current distribution in the delta function coils approach a continuous 

current distribution, we obtain: 

A( r, z , ro, R ) d( area) s A( r, z )  (total) = 

coil 

( 9 5 )  

cross section 

where A(r,z,R,r ) is the vector potential produced by an a-pplied current 

density io(Rjr ) . 
Figs. 3 and 4 ,  we have: 

0 

If the coil has a rectangular cross section, as in 
0 

r2 R2 

A(r,z)(total) =j lA(r,z,ro,k?) dr dR 
I? 

0 

r R  
1 1  

We will now assume that the applied current density i (R,r ) is a 

constant over the dimensions of the coil; that is, the current in each 

loop has the same phase and amplitude. We shall apply these results to 

Equation (56), the case of a probe coil above a two-conductor plane. 

0 0 

After reversing the order of integration, we write: 

We shall express the integral over r as: 
0 

r =r 
0 1  

ar ;earl 
0 
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The in - t eg ra l  over R is :  

R,.e, 

Upon applying Equations 

R=R 
1 

(98) a n d  (99), t h e  equations for the vector  

p o t e n t i a l  i n  t h e  var ious  regions f o r  a rec tangular  c ross -sec t ion  c o i l  

become: 

o u  
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Equation (100) for A(') is valid in the region above the coil and 

Equation (101) for A(2) is valid f o r  the region below the coil. 

to give special treatment to region 1-11, between the top and bottom of 

the coil. 

A(')(r,z) f o r  the portion of the coil from z down to R 1  and the equation 

A(2)(r,~) for the portion of the coil from z up to 12. If we substitute 

,l2 = z in Equation (100) and 4 1  = z in Equation (101) and add the two 

equations, we get: 

We have 

For a point (r,z) in region 1-11, we can use the equation 

We now have the equations for the vector potential in all the 

regions. 

CALCULATION OF PHYSICAL PHENOMENA 

Once we have determined the vector potential, we can calculate any 

physically observable electromagnetic induction phenomenon. We shall now 

give the equations and perform the calculations for some of the phenomena 

of interest in eddy-current testing. 

Induced Eddy Currents 

We have, from Ohm's law: 

From the axial symmetry, Equation (105) becomes: 

J z - jwaA(r,z) (106) 

where A(r,z) is given by either Equation (102) or (103), depending on the 

region of interest. 
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Induced Voltage 

We have, for the voltage induced in a length of wire,: 

For an axially symmetric coil with a single loop of radius r ,  

Equation (107) becomes: 

v = jw 2xr A(r,Z) 

The total voltage induced in a coil of n turns is then: 

(1.08) 

We can approximate the above summation by an integral over a turn 

density of N turns per unit cross-sectional area: 

V 2; j 21-r~ [j rA(r,z) Ndrdz (119 

coj.1. 
cross section 

For coils with a constant number of turns per unit cross-sectional area: 

j 2nw n 

coil cross section 
v =  J J rA(r,z) drdz 

coil 
cross section 

T h i s  is the equation for the voltage induced in a coil by any 

coaxial coil. 

When the two coils are one and. the sane, with cross-sectional area 

equal- to ( a ,  - Jl)(r2 - rl), the self-induced voltage is: 

( 1.11.) 
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Coil Impedance 

From the self-induced voltage, we can calculate the coil impedance 

The current i n  a single loop is related to the applied current density, 

i by: 
0' 

The coil impedance becomes : 

This equation can be made more general by normalizing all the dim- &tsions 

in terms of a mean coil radius, r. 
- 

A l l  lengths are divided by r and a l l  a ' s  are multiplied by 7. 

Upon normalization, Equation (115) becomes: 



26 

'The impedance may be nornialized by d iv id ing  it 'uy t h e  magnitude of 

t he  aj.r impedance. For the a i r  impedance a l = a 2 a  and: 

r _. 

Flaw Imp e danc e 

Once t h e  eddy-current densi.t,y i s  known, we can simulate a flaw by 

superimposing a small current  flowing i n  t h e  opposite d i r ec t ion .  The 

normalized impedance change due t o  a s m a l l ,  spheri-cal  defec t  not t o o  

c lose  t o  t h e  sur face  (Burrows2') i s :  

/, 

3 

2 \ I  
Z' zz - u vel( 

where A i s  t he  vec tor  p o t e n t i a l  a t  t h e  defec t ,  given by t h e  equa- 

t i o n s  f o r  e i t h e r  A ( 3 )  and A ( 4 )  and "vol" i s  t he  volume of the  defec t .  

defec t  

Coi l  Inductance 

The c o i l  indue-Lance i s  r e l a t e d  t o  t h e  magnitude of the  a i r  impedance 

by : 

2%ichae1 Leonard Burrows, A Theory of  Eddy Current Flaw Uetection, 
Universi ty  Microfilms, Inc . ,  Ann Arbor, Michigan, 1964. 
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W L  = IZairl 

o r  

Mutual Inductance 

The voltage generated in a "pickup" coil with dimensions r;, rip j ' , ,  

1; by a current I flowing i n  a "driver" coil with dimensions %2, rl, a 2 ,  

a, is: 

or 

v 
j w I  

M = -  

U s i n g  Equation (111) t o  calculate the voltage we have: 

rA(r,z)  drdz 
2z n' 

M =  
(coil cross section)' 

(coil 
cross section)' 

The equation f o r  A w i l l  vary, depending on the region where the 

pickup coil is located. 

the mutual inductance is: 

If the pickup coil is located in region 1-11, 
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This  i s  t he  mutual inductance between t h e  d r i v e r  co i l  and the  pickup 

c o i l  i n  t h e  presence of a c lad  conductor. By t h e  r e c i p r o c i t y  t'neorem, 

t h i s  i s  equal t o  the  mutual inductance between the  pickup c o i l  and the  

d r i v e r  coi.1. 

Evaluation of I n t e g r a l s  

The normalized impedance has been ca l cu la t ed  using a C-E-I-R time- 

shar ing computer t o  evaluate  i n t e g r a l  equations (117) and (118). The 

so lu t ions  have been programmed f o r  any rec tangular  c o i l  dimensions and 

l i f t - o f f  as wel l  as f o r  a metal of any conduct ivi ty  c l ad  ( i n  varying 

th ickness)  onto a base metal  of any conduct ivi ty .  

"EASTC" language, and t h e i r  descr ip t ions  a r e  given i n  Appendix B. 

The programs, i n  

Figure 5 shows how t h e  normalized impedance v a r i e s  a s  a func t ion  

of  c l ad  thickness .  

EXPERLMENTAL VERIFICATION 

A family of  four  c o i l s  was constructed with d i f f e r e n t  mean r a d i i  

but  a l l  with the same normalized dimensions. The c o i l  impedance was 

measured a t  vari-ous values  of normalized l i f t - o f f  and. a t  various values 

of r2wwo. The values  o f  the  experimental  normalized c o i l  impedance and 
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Fig. 5. Variation of Normalized Impedance with Clad Thickness. 

the calculated normalized coil impedance are plotted in Fig. 6. The 

agreement between the calculated and measured values is excellent at the 

higher frequencies. A t  the lower frequencies the measurements are very 

difficult to make, and the accuracy of the measured values becomes very 

poor. (Because of this, few eddy-current tests are made at these freq- 

uencies.) 

values at the frequencies of interest in eddy-current testing. 

Thus the theory is in excellent agreement with experimental 

ACCURACY OF CALCULATIONS 

This technique, like most others used in engineering, is "exact, 

except for a few assumptions we have t o  make in order t o  work the 

problem." We will now discuss the  probable er rors  in some of these 

assumptions. 
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Fig. 6. Variation of Experimental and Calculated Values of Normal- 
ized Impedance with Frequency and Lift-off. 

Axial Syrmnetry 

This is a very good assqtion, but we cannot easily wind coils that 

This 2 r r o r  will vary with the winding tech- have perfect axial symmetry. 

nique and will decrease as the number of turns on the coil and the coil- 

to-conductor spacing increases. This error will be effectively reduced 

when normalized impedance is calculated. For a typical coil it should 

be less than 0.01%. 

Current Sheet Approximation 

This error arises because we have assumed a current sheet, while we 

actiially have a coil wound. with round, insulated wire. Some correction 
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formulas are given by Rosa and Grover'l for the inductance of a coil in 

air. 

the following correction formula: 

From Equations (87 )  and (93) by Rosa and Grover, we have calculated 

[0.5058r2 - 0.2'742r, -t 0.44 (i2-,t1)] 
- -  I! - n (Rn -t 0.155) 
& 

where all dimensions are normalized by the mean coil radius. The symbols 

D and d are the wire diameters with and without insulation, respectively. 

For a typical coil with 100 turns the change in inductance is 0.19%. The 

change in normalized impedance will be a small fraction of the change in 

inductance. 

High Frequency Effects 

These are probably the most serious sources of error in this calcu- 

lation technique. As the frequency increases, the current density ceases 

to be uniformly distributed over the cross section of the wire but 

becomes concentrated near the surface. The resistance of the coil 

increases, and the inductance decreases. The current is capacitively 

coupled between the turns in the coil, tending to flow across the loops 

of wire rather than through them. Both the interwinding capacitance 

and the coil-to-metal sample capacitance increase. The coil-to-sample 

capacitance can be reduced by winding the coil such that the turns 

nearest the sample are electrically near alternating-current ground. 

The coil-to-sample capacitance will be much less than the interwinding 

capacitance. 

capacitance has a small effect, the error in calculated normalized 

impedance will be a much smaller effect. 

If the coil is used at frequencies where the interwinding 

21Edward B. Rosa and Frederick W. Grover, "Formulas and Tables for 
the Calculation of Mutual and Self-Inductance," Nat. Bur. Std. (U.S.), 
Tech. News Bull. - S(l), 1-237 (1912). - 



CONCLUSIONS 

This technique presents a quick and easy way to calculate the 

observed effects of actual eddy-current tests to a high degree of 

accuracy. 

The authors wish to express their appreciation to W. A. Sim-pson 

for performing the experimental measurements, to J. W. Liiquire and 

W. G. Spoeri for editing and checking the equations and their assistance 

in programming the stepwise solution of the integral equations. 
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APPENDIX A 

List of Symbols 

In the first column the symbol used is given, and in the second 

c01um.n the name. 

are given. 

In the third column the meter-kilogram-second (MKS) units 

In the last colurnn the dimensions are given in terms of mass (M), 

length 

Symbol 

A 

B 

C 

D 

E 

H 

I 

i 
0 

J 

3 

L 

R 

a2 

R1 

(L), time (T), and electric charge (Q). 

Name MKS Units 

vector potential 

magnetic induction 

clad thickness 

electric displacement 

electric intensity 

magnetic intensity 

webers 
meter 

webers 

meter2 

meter 

coulomb 

meter2 

volt 

meter 

ampere 

meter 

applied current ampere 

applied current density 

current density 

ampere 

meter2 

ampere 

meter2 

square root of minus one 

inductance henries 

distance from metal to delta function coil meter 

distance from metal to top of the coil meter 

distance from metal to bottom of the coil meter 

Dimensions 

M 

TQ 

I 

L 

Q 
L2 
- 
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MKS Units 

turns 

Symbol Name 

N turns per unit area 

Diniens ions 

1 - 
L2 meter2 

n number of turns 

rl coil inner radium 

12 coil outer radius 

r mean coil radius 

t ti.me 

v vol.tage 

- 

turns 

meters L 

met e r s L 

meters L 

seconds T 

ML2 

T2Q 

M L ~  

T Q ~  

I_ 

- 

volt 

Z imp e clan c e ohms 

1 

L 
- met e r-' a separation constan-t 

1 

L 
- met e r - 

farad T2Q2 

ML3 
E di. elec tric constant 

meter 

ML henry 

meter 
P permeability 

Q2 

TQ2 - 
ML3 

mho 

meter 
0 conductivity 

radians 1 

T 
- w angul-ar frequency 

second 
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APPENDIX B 

This appendix contains  two "BASIC" programs which were used t o  ca lcu la t e  

ed-dy-current c o i l  impedance using t h e  C-E-I-R time-sharing computer system. 

The f i r s t  program, CLAM75, i s  t h e  more general  program and will ca lcu la t e  t he  

impedance of a c o i l  of any rectangular  cross  sec t ion  posi t ioned any d is tance  

above one conductor of any conduct ivi ty  clad on another  conductor of  any 

conduct ivi ty .  The second program i s  a spec ia l  case of t h e  f i rs t  program 

where t h e  two metals have t h e  same conduct ivi ty .  While t h e  i n t e g r a l  over a 

i s  from o t o  00, t he  i n t e g r a l s  converge t o  with in  about 0.03$ of t h e i r  f i n a l  

value f o r  t he  i n t e g r a l  of o t o  a-35. 
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