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Abstract: To reveal the temperature rise evolution mechanism of isotropic media subjected to recipro-
cating motion constant-strength point heat source, various forms of analytical solutions are derived
on the basis of differentiated relative scales, and non-dimensionalized parameters are designed to
characterize the thermal distribution regularities by utilizing numerical calculations. Temperature rise
curves of media subjected to a reciprocating motion point heat source allow similar quasi-steady-state
characteristics to appear, which finally achieve a stable state, so that the values of surplus tempera-
ture oscillate around the constant time-average quantity. The time to reach quasi-steady state, the
time-averaged quantity and the fluctuation amplitude of surplus temperature are comprehensively
impacted by the dimensionless distance parameter γ, the convective heat transfer parameterω and
the velocity and travel parameter β. This work discusses influence rules of temperature evolution in
various relative-scale media and further enriches the moving heat source theory.

Keywords: reciprocating motion point heat source; analytical solutions; dimensionless parameters;
temperature evolution influence rules

1. Introduction

Studies on heat transfer in media subjected to moving heat sources have been moti-
vated by a broad range of applications. The research directions mainly focus on the heat
transfer in various relative-scale media subjected to heat source with different shapes and
moving paths. Heat transfer characteristics may appear differentiated among media with
the irregular shapes and discrete heating area [1]. Generally, the studies can be classified by
relative scales including the infinite [2], the semi-infinite [3] and the finite [4] media. Zhao
et al. [5] presented a mapped transient infinite element in the global coordinate system, of
which heat transfer functions were derived to solve thermal problems in the infinite media.
Sheng et al. [6] revealed the temperature evolution mechanism of infinite/finite-length
cylindrical solids and helped successfully predict the temperature rise in the ball screw
for engineering applications. Winczek et al. [7] proposed an analytical semi-infinite body
model for temperature field description of multi-pass arc weld surfacing. Discussed in a
rectangular coordinate system, when the sizes are negligible compared with these of the
heat transfer media in all three directions, the heat source can be regarded as a point heat
source [8]. Division of the line and the surface heat source [9] obeys the similar rule. In
addition, studies defined the spherical [10], the circular [11] and the cylindrical [12] heat
sources in their respective coordinate systems. Wang et al. [13] established the common
point and linear heat source model to simulate the temperature fields of electron beam
welding and predict the weld shapes. Azar et al. [14] utilized analytical and numerical
approaches to model a gas metal arc welding process with the discretely distributed point
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heat source. According to the various heat generation laws, the temperature solutions to a
moving point heat source can also be divided into periodic-type [15], gamma-type [16] vari-
able power and so on. The temperature field distribution in media subjected to straight [17],
alterable-direction [18] and specific included angle motion heat sources have also been
investigated; however, few studies considering the reciprocating characteristics of heat
source can be seen in our visible references.

For the specific media subjected to an excitation heat source with constant unidirec-
tional velocity, the transient heat conduction equation is commonly utilized to derive the
corresponding temperature-response function, of which the simplified solution has been
demonstrated effective by transforming into a moving coordinate whose origin moving at
the coincident velocity with the heat source [16]. Green’s function method is one of the most
significant tools for applying field theory in different branches of physic systems [19]. In the
light of heat sources with the reciprocating characteristics, Green’s functions are no doubt
able to construct a suitable mathematical description for the temperature field distribution.

Green’s functions can be utilized to deal with all kinds of unsteady-state heat conduc-
tion equations with heat source, non-homogeneous boundary and specific initial conditions.
Green’s function method is also known as pulse decomposition or point source super-
position method, which decomposes the physical quantities into pulses according to the
time and space instead of the spectrum. The decomposed active factors including sources,
boundary and initial disturbances are uniformly regarded as point sources. Sources gen-
erate fields and the heat conduction equations formed as partial differential are used to
describe the distribution and variation of temperature fields.

The early investigations mainly focused on heat generation laws, shapes of heat
sources, boundary conditions, etc., barely touching on the reciprocating motion of heat
sources. In this work, periodically reciprocating characteristics of point heat source has
been taken into prior consideration. Based on Green’s function method, analytical solutions
in the form of generalized incomplete Gamma functions to temperature field of various
relative-scale media are derived. Non-dimensionalized parameters are put forward to
characterize the temperature field distribution. Influences of the variables ξ, γ, κ,ω and
the reduced parameter β on the temperature field are discussed.

2. Problem Description and Mathematical Modelling
2.1. Path Simplification

Inevitable acceleration and deceleration exists in the actual reciprocating motion
process of a heat source. The accompanying quadratic function of time presents great
difficulties in theoretical derivation [20]. The Laplace transform is one of the most effective
means to eliminate the partial derivatives of time variables in differential equations [21].
Nevertheless, neglecting the stages of variable speed motion is another more simple and
convenient method, and displacement curves of the practical and the simplified motion are
exhibited in Figure 1. Relationship between practical and simplified displacements can be
deducted as

S1 − S2

S2
=

1
1 + τu/τv

(1)

The two displacement curves trends to be close enough if the motion time τv of
variable speed is short enough compared with that τu of uniform speed, so that the motion
of point heat source is assumed as periodically reciprocating motion at the uniform velocity
of U from the outset O. The period of motion is T. Then, the displacement function S(τ) can
be expressed as

S(τ) =
{

U(τ − KT), KT ≤ τ ≤ (K + 1/2)T
U[(K + 1)T − τ], (K + 1/2)T < τ < (K + 1)T

(2)

where K is the integer of the ratio of time to period, K = [τ/T]. Representation method of
time-displacement in the following article obeys the calculation rule of S(τ).
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The reciprocating motion means that the heat source starts to make straight move-

ment from some point in the medium and return to the outset after a full motion cycle. 
Then, the heat source repeats this kind of reciprocating process. As the heat transfer me-
dium is infinite, we assume the outset of heat source as origin point and the move path 
direction as x axis. Then, we construct the corresponding rectangular coordinate system 
to study the heat transfer problem. The schematic diagram of the physical model is ex-
hibited as Figure 2. 

 
Figure 2. Schematic diagram of moving heat source in an infinite medium. 

Heat conduction happens in a homogeneous and isotropic medium of the infinite 
extension in all directions, of which the initial temperature is t∞. The point heat source 
starts periodically reciprocating motion along the x axis in a rectangular coordinate re-
gion (x, y, z). Introducing the surplus temperature θ = t(x, y, z, t) − t∞ and heating rate op-
erator gp of moving heat source, the general mathematical model of three-dimensional 
heat transfer problem subjected to a point heat source can be expressed as 

Figure 1. Displacement curves of practical and simplified motion.

2.2. Mathematical Modelling

The reciprocating motion means that the heat source starts to make straight movement
from some point in the medium and return to the outset after a full motion cycle. Then,
the heat source repeats this kind of reciprocating process. As the heat transfer medium is
infinite, we assume the outset of heat source as origin point and the move path direction
as x axis. Then, we construct the corresponding rectangular coordinate system to study
the heat transfer problem. The schematic diagram of the physical model is exhibited as
Figure 2.
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Figure 2. Schematic diagram of moving heat source in an infinite medium.

Heat conduction happens in a homogeneous and isotropic medium of the infinite
extension in all directions, of which the initial temperature is t∞. The point heat source starts
periodically reciprocating motion along the x axis in a rectangular coordinate region (x, y,
z). Introducing the surplus temperature θ = t(x, y, z, t) − t∞ and heating rate operator gp of
moving heat source, the general mathematical model of three-dimensional heat transfer
problem subjected to a point heat source can be expressed as

∂2θ

∂x2 +
∂2θ

∂y2 +
∂2θ

∂z2 +
1
k

gp(t)δ
(
x− x′

)
=

1
α

∂θ

∂t
, −∞ < x, y, z < +∞ (3)

with initial condition

θ = I(x, y, z, t), t = 0, −∞ < x, y, z < +∞ (4)

where δ function is the density representation of point source as a centrally distributed
physical quantity, δ(x − x′) represents the space distribution of point heat resource in the x
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axis [22], m, k is the thermal conductivity, and W/m·K, k = αρc. α is the thermal diffusivity,
m2/s.

Due to the periodical characteristics of point heat source, departure and back travels
consume the same time, so that the integral limit 0~t can be split by the interval T/2.
Solutions to temperature field can be calculated as

θ =

(∫ T
2

0
+
∫ T

T
2

+
∫ 3T

2

T
+ · · ·

∫ (K− 1
2 )T

(K−1)T
+
∫ KT

(K− 1
2 )T

+
∫ t

KT

)
Ggp(τ)dτ (5)

Tallying up the reciprocating regular pattern, the integral form of surplus temperature
can be generally expressed as

θ =

(
K−1

∑
N=0

∫ (N+ 1
2 )T

NT
+

K−1

∑
N=0

∫ (N+1)T

(N+ 1
2 )T

+
∫ t

KT

)
Ggp(τ)dτ (6)

where K = 1, 2, ··· and NT~(N + 1/2)T represents the time period of departure while
(N + 1/2)T~(N + 1)T represents that of back tracking. KT~t represents the rest time af-
ter deducting all the complete cycles. G is Green’s function of the corresponding heat
transfer problem.

2.3. Integral Form of Surplus Temperature

Substituting (t − τ) for t, separated variable method has been utilized to work out the
one-dimensional Green’s function in x direction formed as [23]

G
(
x, t
∣∣x′, τ

)
=

α

k
1√

4πα(t− τ)
exp

[
− (x− x′)2

4α(t− τ)

]
(7)

Green’s functions in the other two directions have the similar forms so that corre-
sponding Green’s function of the multidimensional heat transfer problem in an infinite
medium can be expressed as the product form of three one-dimensional problem solutions.
It is worth noting that the coefficient (α/k) can only appear once, no matter whether the
heat transfer problem is one or multidimensional [22]. So, the Green’s function of above 3D
heat transfer problem can be expressed as

G
(

x, y, z, t
∣∣x′, y, z, τ

)
=

α

k
1

[4πα(t− τ)]3/2 exp[− [x− S(τ)]2 + y2 + z2

4α(t− τ)
] (8)

In our study, the heating power is a constant unchangeable with time so that operator
gp(t) = Q. For a reciprocating motion heat source, x′ = S(τ) is introduced in calculation.
Then, the integral form of surplus temperature can be calculated as

θ =
Q

(4πα)3/2
α

k

(
K−1

∑
N=0

∫ (N+ 1
2 )T

NT
+

K−1

∑
N=0

∫ (N+1)T

(N+ 1
2 )T

+
∫ t

KT

)
1

(t− τ)3/2 exp [− [x− S(τ)]2 + y2 + z2

4α(t− τ)
]dτ (9)

where Q is the rate of heat transfer from a point source [24], W. Locating point heat source
at x = x′, the temperature distribution produced by point heat source can be represented as
T(x) = (Q/ρc) × δ(x − x′). This formula constructs a bridge between temperature and heat
conversion.

The formula can be solved in three sections, introducing

θN
1 =

Q/(ρc)

(4πα)3/2

∫ (N+ 1
2 )T

NT

1

(t− τ)3/2 exp

[
− [x− S(τ)]2 + y2 + z2

4α(t− τ)

]
dτ (10)

Bringing in the displacement calculation formula of the first half cycle, the position
variable (x − x′) over time can be noted: x − U(τ − NT) = x + UNT − Ut + U(t − τ).
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Substituting variables as XN = x + UNT − Ut; RN
2 = XN

2 + y2 + z2 and ϕ = RN
2/[4α(t − τ)],

then Equation (10) can be rewritten in the following form

θN
1 = Q

4kπ3/2RN
exp(−XNU

2α )

×
∫ RN

2/{4α[t−(N+1/2)T]}
RN 2/[4α(t−NT)] φ−

1
2 exp(−φ− U2RN

2

16α2 φ−1)dφ
(11)

The expression can be denoted by the generalized incomplete Gamma functions [12]
in the form as

θN
1 = Q

4kπ3/2RN
exp(−XNU

2α )

×
[
Γ
(

1
2 , RN

2

4α(t−NT) ; U2RN
2

16α2

)
− Γ

(
1
2 , RN

2

4α[t−(N+1/2)T] ;
U2RN

2

16α2

)] (12)

The generalized incomplete Gamma function is proved useful in the analytical study
of heat conduction problems in an infinite medium [16], of which the general form can be
expressed as

Γ(α, t; b) =
∫ ∞

t
xα−1 exp(−x− bx−1)dx (13)

Similarly, substituting variables as YN = x + Ut − U(N + 1)T; SN
2 = YN

2 + y2 + z2 and
η = RN

2/[4α(t − τ)]. The second half cycle part can be expressed as

θN
2 = Q

4kπ3/2SN
exp(−YNU

2α )

×
[
Γ
(

1
2 , SN

2

4α[t−(N+1/2)T] ;
U2SN

2

16α2

)
− Γ

(
1
2 , SN

2

4α[t−(N+1)T] ;
U2SN

2

16α2

)] (14)

In particular, the role of rest time should be discussed separately according to whether
the half cycle is full or not.

If t − KT ≤ T/2,

θr =
Q

4kπ3/2RK
exp(−XKU

2α
)× Γ

(
1
2

,
RK

2

4α(t− KT)
;

U2RK
2

16α2

)
(15)

If t − KT > T/2,

θr = θK
1 +

Q
4kπ3/2SK

exp(−YKU
2α

)× Γ
(

1
2

,
SK

2

4α[t− (K + 1/2)T]
;

U2SK
2

16α2

)
(16)

where θK
1 , XK, YK are obtained from θN

1 , XN, YN by changing N to K. Then, the complete
integral form of temperature field can be expressed as

θ =
K−1

∑
N=0

(
θN

1 + θN
2

)
+ θr (17)

stipulating when K = 0, θ = θr.

3. Non-Dimensionalization and Parameter Discussions
3.1. Dimensionless Parameters Design and Non-Dimensionalization

The essence of dimension is expansion of the quantity coefficient according to basic
quantity class. The different selection of basic quantity class, or even of families the
unit system belongs to, may cause the expression form of dimensional equations to be
changed. Non-dimensionalization means all the dimensions are constructed into one
through appropriate variable substitutions. Thus, some or all units involved in the physical
quantity equations are removed to ensure the form of the equations remains independent
from unit system families. For convenient analysis, dimensionless parameters are designed
by introducing the variables group listed as
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Θ = 8αkθ π3/2

QU : dimensionless surplus temperature;

ξ = Ux
2α ; µ = Uy

2α ; ς = Uz
2α : dimensionless coordinate;

γ2 = µ2 + ς2: dimensionless distance away from the x axis;
κ = t

T : dimensionless time;

β = U2T
2α : dimensionless velocity and travel parameter.

Then, the non-dimensionalized forms of each parts can be expressed as

ΘN
1 =

e−[ξ+β(N−κ)]√
[ξ+ β(N − κ)]2 + γ2

×

 Γ
(

1
2 , [ξ+β(N−κ)]2+γ2

2β(κ−N)
; [ξ+β(N−κ)]2+γ2

4

)
−Γ
(

1
2 , [ξ+β(N−κ)]2+γ2

2β(κ−N−1/2) ; [ξ+β(N−κ)]2+γ2

4

)
 (18)

ΘN
2 = eξ+β(κ−N−1)√

[ξ+β(κ−N−1)]2+γ2

×

 Γ
(

1
2 , [ξ+β(κ−N−1)]2+γ2

2β(κ−N−1/2) ; [ξ+β(κ−N−1)]2+γ2

4

)
−Γ
(

1
2 , [ξ+β(κ−N−1)]2+γ2

2β(κ−N−1) ; [ξ+β(κ−N−1)]2+γ2

4

)
 (19)

If κ − K ≤ 1/2,

Θr =
e−[ξ+β(K−κ)]√

[ξ+ β(K− κ)]2 + γ2

[
Γ

(
1
2

,
[ξ+ β(K− κ)]2 + γ2

2β(κ− K)
;
[ξ+ β(K− κ)]2 + γ2

4

)]
(20)

If κ − K > 1/2,

Θr = ΘK
1 + eξ+β(κ−K−1)√

[ξ+β(κ−K−1)]2+γ2

×
[

Γ
(

1
2 , [ξ+β(κ−K−1)]2+γ2

2β(κ−K−1/2) ; [ξ+β(κ−K−1)]2+γ2

4

)] (21)

specifying when K = 0, Θ = Θr.

3.2. Discussions on Dimensionless Parameters

Non-dimensionalization helps appropriately reduce the number of variables in equa-
tions, reveal the mathematical essence of physical formulas, and facilitate the relative value
comparisons of various items, so as to simplify the calculation and facilitate the analysis.
This is guided by the generalized incomplete Gamma formula [13]

Γ
(

1
2

, x; b
)
=

√
π

2

[
e−2
√

berfc(
√

x−
√

b
x
) + e2

√
berfc(

√
x +

√
b
x
)

]
(22)

where erfc is complementary error function. Numerical results with various values of
dimensionless parameters are graphically discussed in this section.

To reveal the temperature evolution regularities over time, Figure 3a shows that the
curves experience a rapid ascending process at the initial period of heat source effect
and then gradually flatten out. The dimensionless surplus temperature finally rises to
a stable fluctuation state over time. The curves perform the characteristics of almost
unchangeable time-averaged quantity but periodically fluctuated instantaneous quantity.
The surplus temperature fluctuation mainly results from periodic motion of the point heat
source. Dimensionless parameter γ represents the distance away from x axis. Meanwhile,
the smaller the γ values, the higher the time-averaged quantity and the more violent
fluctuation the dimensionless surplus temperature develops, the less time used to reach a
stable state. As moving along the x axis, the point heat source impacts much more on the
regions nearby (smaller γ values) rather than those far away. The fluctuation amplitude
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A is defined as the maximum offset quantity compared to the time-average value during
oscillation process. Figure 3b clarifies more clearly the relationship between the fluctuation
amplitude and the distance parameter. With fixed β values, the smaller the distance away
from the x axis, the larger fluctuation amplitude. The fluctuation amplitudes A over
dimensionless velocity and travel parameter βwith various γ values show a similar rule,
which performs a rapid increase at first and then reaches a stable state when parameter β
starts to increase from zero. However, β only affects the fluctuation amplitude within a
certain range, in which the larger β values aggravate the oscillation of surplus temperature
With smaller γ values, fluctuation amplitudes reach a stable state more rapidly and remain
unchanged as parameter β increases. Moreover, the values of A are larger at a stable state,
which indicates that the distance parameter is still the main influence factor of fluctuation
amplitude compared with parameter β.

Figure 3c reveals the influence of reduced parameter β, the smaller β values, the
greater time consumption for surplus temperature to reach a stable state and the lower
final time-average value it ascends to. For a reciprocating moving heat source with a fixed
travel, the lower velocity means larger time intervals between twice heating effects, and
untimely heat compensation for that transferred to low-temperature regions causes the
difficulty in temperature rise. Additionally, the value of β is inversely proportional to that
of the thermal diffusivity. For regions in the infinite medium with inapparent temperature
fluctuation, a lower β value means a faster heat transfer of media, so that the surplus
temperature increases more slowly due to the increased heat dissipation. Moreover, more
time is needed to reach a steady state, and its steady-state value is higher.

Figure 3d displays the evolution process of dimensionless surplus temperature. For
suitable β and γ values, the received heat is more than the dissipated. Because of the
reciprocating motion, for each value the point heat source passes by, it will cause the
accumulation of residual heat, so that the surplus temperature continuously increases over
time. The ξ-Θ curves have a peak value and symmetry about some point on the horizontal
coordinate ξ. As the point heat source periodically moves between (0, 0, 0) and (UT/2, 0, 0)
on the x axis, the most affected point is located at (UT/2), where the influence of the heat
source continues for the longest time, and surplus temperature values are at the maximum.
The point location at the converted horizontal coordinate is ξ = β/4. What needs to be
particularly indicated is that the heating conditions are not symmetrical about ξ = β/4
at the early stage of the heat source motion, which is also the case for the temperature
distribution. Only when the reciprocating time is enough, ξ = β/4 is flanked by almost the
same heating conditions, and the Θ curve is considered symmetrical.

Figure 3e further confirms the symmetry as peak points of the fluctuation amplitude
a and b, d and e are symmetrical about ξ = β/4, respectively. The most violent oscillation
appears in the adjacent regions outside the abscissa interval [0, β/2] and then decreases
quickly to almost zero. Due to shorter heating intervals, the fluctuation amplitude curves
of surplus temperature reach a local trough of the wave at the symmetrical points, which
indicates that, on the contrary, oscillation at the position of the heat source motion center
is not violent. Fluctuation curves in the regions too far away from the symmetric center
show more smooth features for the opposite reason. The regions of maximum surplus
temperature and most violent fluctuation amplitude are abhorrent.
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Figure 3. Graphical exhibition of numerical results with various dimensionless parameter values:
(a) Dimensionless surplus temperature profiles over time parameter for various values of γ with
fixed ξ = 0 and β = 2; (b) Fluctuation amplitude profiles over heat conduction parameter for various
values of γ with fixed ξ = 0; (c) Dimensionless surplus temperature profiles over time parameter
for various values of β with fixed ξ = 0 and γ = 2; (d) Dimensionless surplus temperature profiles
over location parameter for various values of κ with fixed β = 2 and γ = 1; (e) Fluctuation amplitude
profiles over location parameter for various values of βwith fixed γ = 1.
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4. Analytical Solutions of Semi-Infinite Media

Assuming the boundary surface xoy of a specific semi-infinite medium, when t > 0, the
medium conducts convective heat transfer with ambiance on the boundary z = 0. The initial
temperature is set ti, while the convective heat transfer coefficient is h. Rate of heat transfer
from a point heat source valued Q starts from the original point o to perform a periodically
reciprocating motion along the positive direction of the x axis with the velocity U and the
period T. A graphical description of the heat transfer problem is shown in Figure 4.
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The boundary condition is

− k
∂θ
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+ hθ = 0, z = 0, t > 0 (24)

The initial condition is

θ = I(z, t), t = 0, 0 ≤ z < +∞ (25)

4.1. Solutions of Green’s Function

The solution process of the Green’s function is similar with that of the heat transfer
problem in an infinite medium. In fact, the three-dimensional unsteady-state heat transfer
process, in a semi-infinite medium with the third kind of boundary condition, can been
seen as the superposition of three one-dimensional problems. The Green’s function finally
appears in the form of the product of three single functions.

G
(
x, t
∣∣x′, τ

)
=

α

k
1√

4πα(t− τ)
exp

[
− (x− x′)2

4α(t− τ)

]
(26)

G
(
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∣∣y′, τ
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1√
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4α(t− τ)

]
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−HeH(z+z′)+H2α(t−τ)erfc

(
z+z′√
4α(t−τ)

+ H
√

α(t− τ)

)
 (28)
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where H = h/k. So, for the r = (x, y, z) in semi-infinite media, Green’s function can be
calculated as

G
(
r, t
∣∣r′, τ

)
= G

(
x, t
∣∣x′, τ

)
· G
(
y, t
∣∣y′, τ

)
· G
(
z, t
∣∣z′, τ

)
(29)

4.2. Integral Form of Surplus Temperature

For a moving inner point heat source, the integral form of surplus temperature θ =
t(r,τ) − t∞ should be calculated as [22,23]

θ(r, t) =
k
α

∫
R

G
∣∣
τ=0F

(
r′
)

dv′ +
∫ τ

0
G
(
r, t
∣∣r′, τ

)
gp(r′, τ) d τ (30)

where F(r′) is the initial surplus temperature distribution and F(r′) = ti − t∞. R is the whole
integral domain. In particular, the ambient surplus temperature can be expressed as [22]

θamb = θ0
t

R
G(x, y, z, t|x′, y′, z′, 0 ) dx′ dy′ dz′

= θ0

[
erf

( z
4αt
)
+ eHz+H2αterfc

(
z

4αt + H
√

αt
)] (31)

where erf is the error function.
The calculation of the second half obeys the rule of Equation (4), and the resulting

expressions are given directly to avoid repeats and save article space. So,

θN
12 =

QHeHz− XNU
2α

2kπ

 χ

(
0, z√

4α(t−NT)
; XN

2+y2

x2 , z2(U2−4α2 H2)
16α2 , Hz

2

)
−χ

(
0, z√

4α[t−(N+1/2)T]
; XN

2+y2

x2 , z2(U2−4α2 H2)
16α2 , Hz

2

)
 (32)

where χ(α, t; a, b, c) is the custom expression which cannot be defined by the ready-made
functions. The form of χ can be expressed as

χ(α, t; a, b, c) =
∫ ∞

t
xα−1 exp

(
−ax2 − bx−2

)
erfc(x + cx−1)dx (33)

Similarly,

θN
22 =

QHeHz− YNU
2α

2kπ

 χ

(
0, z√

4α[t−(N+1/2)T]
; YN

2+y2

x2 , z2(U2−4α2 H2)
16α2 , Hz

2

)
−χ

(
0, z√

4α[t−(N+1)T]
; YN

2+y2

x2 , z2(U2−4α2 H2)
16α2 , Hz

2

)
 (34)

If t − KT ≤ T/2

θr2 =
QHeHz− XKU

2α

2kπ

[
χ

(
0,

z√
4α(t− KT)

;
XK

2 + y2

x2 ,
z2(U2 − 4α2H2)

16α2 ,
Hz
2

)]
(35)

If t − KT > T/2,

θr2 = θK
12 +

QHeHz− YKU
2α

2kπ

[
χ

(
0,

z√
4α[t− (N + 1/2) T]

;
YK

2 + y2

x2 ,
z2(U2 − 4α2H2)

16α2 ,
Hz
2

)]
(36)

where θK
12, XK, YK are obtained from θN

1 , XN, YN by changing N to K. Then, the complete
integral form of temperature field can be expressed as

θ(x, y, z, t) = θamb +
K−1

∑
N=0

[(
θN

11 − θN
12

)
−
(

θN
21 − θN

22

)]
+ (θr1 − θr2) (37)
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where θN
11, θN

21 and θr1 are the calculation expressions of the parts which satisfied ready-
made functions in the integral solutions and they have the same form with θN

1 , θN
2 and θr in

Equation (17).

4.3. Non-Dimensionalization and Parameter Discussion

By introducing one more dimensionless parameterω = (2αH)/U, the non-dimensionalized
forms of each parts can be expressed as

Θamb = Θ0

[
erf
(

ς√
2κβ

)
+ e(ως+ κβς2

2 )erfc

(
ς2

2κβ
+ω

√
κβ

2

)]
(38)

ΘN
12 =

√
πωeως−ξ−β(N−κ)

×

 χ

(
0, ς√

2β(κ−N)
; [ξ+β(κ−N) ]2+µ2

ς2 , (
1−ω2)ς2

4 , ως
2

)
−χ

(
0, ς√

2β[κ−(N+1/2)]
; [ξ+β(κ−N) ]2+µ2

ς2 , (
1−ω2)ς2

4 , ως
2

)
 (39)

ΘN
22 =

√
πωeως−ξ−β(N−κ)

×

 χ

(
0, ς√

2β[κ−(N+1/2)]
; [ξ+β[κ−(N+1)] ]2+µ2

ς2 , (
1−ω2)ς2

4 , ως
2

)
−χ

(
0, ς√

2β[κ−(N+1)]
; [ξ+[κ−(N+1)] ]2+µ2

ς2 , (
1−ω2)ς2

4 , ως
2

)
 (40)

If κ − K ≤ 1/2,

Θr2 =
√
πωeως−ξ−β(K−κ)

[
χ

(
0,

ς√
2β(κ− K)

;
[ξ+ β(κ− K) ]2 + µ2

ς2 ,

(
1−ω2)ς2

4
,
ως

2

)]
(41)

If κ − K > 1/2,

Θr2 = ΘK
12 +
√
πωeως−ξ−β(K−κ)

×
[

χ

(
0, ς√

2β[κ−(K+1/2)]
; [ξ+β[κ−(K+1)] ]2+µ2

ς2 , (
1−ω2)ς2

4 , ως
2

)] (42)

specifying when K = 0, Θ = Θamb + (Θr1 − Θr2).
It is easy to see that β characterizes the relative speed and motion range of the heat

source, ω characterizes the relative intensity of boundary convective heat transfer, and
Θ0 characterizes the difference between initial and ambient temperature. These three
comprehensively describe the influence factors of temperature field from various angles.

Finally, two points are discussed about the temperature field.

(1) If the initial temperature is equal to the ambient temperature, which means Θamb = 0,
then

Θ =
K−1

∑
N=0

[(
ΘN

11 −ΘN
12

)
+
(

ΘN
21 −ΘN

22

)]
+ (Θr1 −Θr2) (43)

Hence, the initial temperature only has an influence on the component Θamb of Θ but
has nothing to do with the other components.

(2) The situation ofω = 0.

With the two conditions listed as
1© h = 0, which means the adiabatic boundary. ω = 0 leads ΘN

12 = ΘN
22 = Θr2 = 0.

2© Neglecting the influence of initial temperature, Θamb = 0.
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Then, the expression of dimensionless surplus temperature degenerates into the
form as

Θ =
K−1

∑
N=0

(ΘN
11 + ΘN

21) + Θr1 (44)

The equation is the surplus temperature solution in the region 0 < z < +∞ of an infinite
medium induced by a 2Q-strength point heat source moving along x axis. Therefore, if
Θamb = 0, it can be inferred that the temperature field of a semi-infinite medium subjected
to a periodic-motion point heat source is similar to that in an infinite medium. However,
the former temperature values are lower than the latter, due to surface cooling.

5. Conclusions

In this study, analytical solutions to the various relative-scale media are derived,
including infinite and semi-infinite ones. Dimensionless parameters are designed to reveal
the temperature evolution regularities from the heating mechanism. Some conclusions are
made below:

1. The temperature field evolution is the comprehensive result of dimensionless parame-
ters γ, β,ω and Θ0. In general, the smaller the distance away from the heat source, the
shorter the time intervals brought by larger velocity, the lower the relative intensity of
boundary-convective heat transfer and the higher the initial temperature, the greater
the benefit will be to heat accumulation and temperature rise. Among which, the
most important influence factor can be γ, as the regions far away from the point heat
source are little impacted.

2. The periodically reciprocating motion of point heat source results in surplus tem-
perature appearing as a special feature, oscillating around the stable time-averaged
quantity. For an infinite medium, the surplus is symmetrical about the horizontal
coordinate at ξ = β/4. The maximum temperature value is obtained at the same
location, but the peak value of fluctuation amplitude appears outside the abscissa
interval [0, β/2], the regions of maximum surplus temperature and most violent
fluctuation amplitude are abhorrent.

3. The reduced parameter β has a critical influence on temperature distribution, the
amplitude of temperature fluctuation, the time to reach steady-state and the stable
time-averaged quantity. In the regions of an infinite medium where temperature fluc-
tuation is not obvious, surplus temperature reaches a steady state more quickly, and
the stable time-averaged quantity is larger when the reduced parameter β increases.

4. Only if some specific conditions are satisfied, such as adiabatic boundary and neglect-
ing the influence of the initial temperature, the analytical solutions to the temperature
field of the semi-infinite media degenerate into a similar form to these infinite media.

Studies on the temperature evolution mechanism help further enrich the moving heat
source theory and have great potential to provide theoretical guidance for engineering
practice, such as in the fields of welding, heat exchangers and so on.
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Glossary

Nomenclature
A dimensionless fluctuation amplitude, (-)
a, b, c general expression of variables, (-)
c specific heat capacity of mass, (J/kg·K)
g heating rate operator, (-)
H prescribed form, H = h/k, (-)
h convective heat transfer coefficient, (W/m2·◦C)
I(*) initial condition, (-)
K integer of the ratio of time to period, (-)
k thermal conductivity coefficient, (W/m·K)
N sequence number of complete cycles, (-)
O origin coordinate, (-)
Q Heat power, (W)
r position vector, (-)
S displacement, (m)
T motion period, (s);temperature distribution, (◦C)
t temperature, (◦C); time, (s)
U uniform motion velocity, (m/s)
x:y,z coordinate position, (m)
Greek symbol
α thermal diffusivity, (m2/s)
θ surplus temperature, (◦C)
ρ medium density, (kg/m3)
τ time, (s)
δ(x − x′) distribution of physical quantities in space, (m)
Superscripts
K the former k complete periods
N sequence number of complete cycles
Subscripts
1 simplified situation;former half of the kth complete period
2 practical situation;latter half of the kth complete period
p point heat source
u uniform velocity motion
v variable velocity motion
∞ environment
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