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ABSTRACT This paper is concerned with stability of interconnected systems with time delays. We develop

a self-contained approach to stability analysis for linear and nonlinear systems in a unified framework. New

lemmas are established on matrix properties and used as the key to make negativity of the derivative of the

Lyapunov function. The scalar and simple analytical stability conditions are given. Unlike the majority of

the literature on stability of delay systems, no matrix equations/inequalities are involved in our conditions,

which is true even for large-scale systems and nonlinear subsystems with delayed interconnections. They

are applicable to the more general nonlinear, time-varying, and/or interconnected systems than the relevant

results reported in the literature. The examples are presented for illustration of the new results.

INDEX TERMS Stability, interconnected systems, time delay, Lur’e Postnikov, arrow form matrix,

aggregation technique.

I. INTRODUCTION

In this paper, the stability of interconnected nonlinear systems

with delays is analyzed from a new perspective

y
(n)
j (t) +

n−1∑

i=0

fj,i (.) y
(i)
j (t) +

n−1∑

i=0

gj,i(.)y
(i)
j (t − τj(t)) = 0, (1)

with the initial time at t = t0 and the initial conditions:

y
(i)
j (t) = φj,i(t), t ∈ [t0 − τm, t0], i = 0, . . . , n− 1,

where yj(t) is the system output, and τj(t) is the time delay in

the system. In practice, the time delay may be unknown and

can vary over time in a certain interval. It is thus assumed

that τj(t) is continuous and differentiable over [0,+∞], and

has an upper limit τm. fj,i(.), gj,i(.): D × � × � → R, i =

0, . . . , n− 1, are the nonlinear functions of the time, output,

its (n − 1) derivatives, and delayed output and its (n − 1)

derivatives, where D = [−τm,∞], and � is a connected

domain of Rn containing a neighbourhood of 0. It is assumed

that fj,i and gj,i, i = 0, . . . , n − 1, are such that the system

(1) has a unique continuous solution for the given initial

condition.

The investigation of interconnected systems have been

substantially studied [1]–[6] in recent years due to their wide
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application in several domains such as physics, mechanics,

economics, chemistry, biology, telecommunication, Net-

worked Control Systems (NCS), Internet of Things (IoT),

etc. [7]–[12]. Great attention has been also paid to the prob-

lems ofmodeling, characterization, structural properties, con-

trol analysis, optimization and feedback design strategies of

these systems [13]–[19]. Despite the existence of several

analytical and designs methods, the choice of the adequate

technique remains quite open. In this context, engineering

intuition and human experience should be relied on in order to

assess modeling, measure information as well as plant struc-

ture and apply analytical and design processes accordingly.

In most existing approaches, a complex system is treated

as large scale if it is decoupled or divided into a set of

interconnected subsystems or the so-called small-scale sys-

tems for computational and practical reasons [20]–[24]. Such

treatment occurs when controlling strongly-related intercon-

nected power systems, water systems broadly distributed in

space as well as traffic systems having numerous external

signals or large-space flexible structures. In this case, the con-

trolled systems are too large and the problems that should be

resolved are so complex. Therefore, many research studies

have tried to divide the process of analyzing and synthesizing

the whole system into practically independent sub-problems

to deal with the incomplete information on the system, handle
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uncertainties and accommodate delays. One major approach

consists in treating the complexity as an important and dom-

inating problem in the systems theory and practice [25].

As the interconnected Lur’e Postnikov systems with time

delays is one of the most important connected systems,

we investigate, in this paper, their stability analysis. We also

present, for the first time, the stability conditions under

analytical form dependent on arbitrary-chosen parameters

named αi, in case of single nonlinear systems, and αj,i in

the case of interconnected systems. This analytical form can

be tuned by judicious choice of these parameters even if

the system or the subsystems is unstable. It should be noted

that the stability analysis of interconnected systems is not

easy even for small order linear systems where the stability

of each isolated subsystem does not imply the stability of

the global system as the magnitude of the interconnections

affects the stability of the composite system and difficulties

will be greater when delays appear in the interconnections

between the different subsystems. Moreover, the basic con-

trol feedback problem consists in finding a control input

vector on the basis of the a priori knowledge of the plant

described by its design model in the presence of a class of

nonlinearities. The control goal is usually given in the form

of the design requirements and the a posteriori information

about the outputs and the reference signals; that is why

this problem is not easy to solve in interconnected systems.

In fact, the controller receives all sensor data available from

the subsystems and determines all input signals of the plant

where all information is assumed to be available for a single

unit that designs and applies the controller to the plant. Unfor-

tunately, this procedure becomes incorrect when there is time

delay in the interconnection links. In fact, the transmission

of information from one subsystem to another may produce a

delay, as revealed in [26], [27]. Significant delaysmay also be

caused by the sensors, the actuators and the computing time

required for control [28]–[33]. In this case, the presence of

time delays may result in complex behaviors such as oscilla-

tions, instability, etc. [34], [35]. Thus, the task of well control-

ling a nonlinear system with interconnections and time-delay

remains one of the most challenging control problems [36].

To deal with issue, interconnection terms between the various

subsystems should be handled using various approaches. For

instance, in [37]–[40], the variable structure control approach

was used to control an interconnected system. Several other

researchers [41]–[43] presented robust decentralized variable

structure control for such systems.

Obviously, the above-mentioned approaches did not con-

sider time-delay in the interconnections. Besides, many sta-

bility criteria were proposed on delay systems by using

aggregation techniques and radially unbounded Lyapunov

functions [44]–[49]. It is well known that the major-

ity of the literature on stability of delay systems studied

stability conditions in terms of linear matrix inequalities

(LMIs) [50]–[53]. This observation remains true until now

in a huge volume of publications and the size of LMIs

increases with order/complexity of the systems. It is desirable

to have a very few number of stability conditions, regardless

of order/complexity of a delay system. We present, in this

work, a self-contained approach of stability analysis for linear

and nonlinear systems with delay in a unified framework.

New lemmas are established on matrix properties and used to

make the derivative of the Lyapunov function negative. The

scalar and simple analytical stability conditions are obtained.

Unlike the majority of the literature on stability of delay

systems, no matrix equations/inequalities are involved in

our conditions, which is true even for large scale systems

and nonlinear subsystems with delayed interconnections. The

contributions are highlighted with regards to the relevant

literature as follows:

1) The Lyapunov function used in this paper is not the

same as that applied in [54].

2) The condition of making the derivative of the Lyapunov

in [54] negative is based on M-matrices and related

properties [54]–[56]; whereas, in this study, the two

elements are not utilized. We develop two brand new

lemmas to solve this problem of negativity.

3) Theorem 1, applied in our paper, enables stability

analysis for a general system, where all the ele-

ments of an arrow-form matrix can be nonlinear or

time-varying including both the system’s coefficient

functions, fi and gi; and artificially introduced param-

eters, αi. This greatly generalizes the results presented

in [54], [58]–[61] where only one row or one column

of the arrow form matrix could be so and its diagonal

elements must be constant. The new capacities are

illustrated in our examples.

4) In case of constant delays (then its time derivative is

zero), the first condition of Theorem 1 is always satis-

fied and the stability condition of Theorem 1 is reduced

to its second condition only, regardless of delay. Fur-

thermore, in the case of variable delays, the condition

on delay depends only on the coefficients δj,i(.). These

results were not given in [54].

5) This paper presents the modelling of a system con-

sisting of two Lur’e Postnikov plants with delayed

inter-connections and feedbacks, and its stability con-

ditions (Theorem 2), while such a system was not

considered in [54].

Notations: Throughout this paper, let R = (−∞, + ∞)

andRn be an n−dimensional linear vector space over the reals

with the norm ‖.‖. Let Cn = C([−τm, 0];�) be the Banach

space of continuous functions mapping the interval [−τm, 0]

into � ⊂ Rn with the topology of uniform convergence. For

a given φ ∈ Cn, we define ‖|φ‖| = sup−τm≤θ≤0 ‖φ(θ )‖.

The notations ‖.‖ refers to the Euclidean vector norm or

the induced matrix norm, as appropriate. If their dimensions

are not explicitly stated, matrices, are assumed to have com-

patible dimensions. Let supD |f (.)| be the supremum of f (.)

calculated over D × � × �, where f (.) can be any of fi and

gi and their algebraic combination. Finally, we denote the

right Dini derivative of a function V (t) with respect to time t

by D+V (t).
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The rest of the paper is organized as follows: Section 2

presents stability analysis for single systems, while

Section 3 extends to interconnected Lur’e systems. Section 4

concludes the paper.

II. SINGLE NONLINEAR SYSTEMS

Consider a class of nonlinear systems in the form of

y(n)(t) +

n−1∑

i=0

fi (.) y
(i)(t) +

n−1∑

i=0

gi(.)y
(i)(t − τ (t)) = 0, (2)

with the initial time at t = t0 and the initial conditions:

y(i)(t) = φi(t), t ∈ [t0 − τm, t0], i = 0, . . . , n− 1,

It should be pointed out that several systems can be modeled

by (2), see [54], [55] and the references therein. One example

is the well known Lur’e Postnikov system [44], [46], [47],

[54]–[56], [61], [62]. Stability of such systems is difficult to

analyze, even for second-order systems with a constant delay

and single nonlinear coefficient [63].

Define the state variables:

xi+1(t) = y(i)(t), i = 0, . . . , n− 1,

which lead to

ẋi(t) = xi+1(t), i = 0, . . . , n− 1.

Let x(t) = [x1(t), . . . , xn(t)]
T ∈ Rn.

The system (2) is then described by the following state

space representation,

ẋ(t) = A(.)x(t) + B̃1(.)x(t − τ (t)),

x(t) = φ(t), ∀t ∈ [t0 − τm, t0], (3)

where

A(.) =




0 1 · · · 0

0 0
. . . 0

...
...

. . .
...

0 0 . . . 1

−f0(.) −f1(.) · · · −fn−1(.)



,

and

B̃1(.) =




0 0 · · · 0

0 0 · · · 0
...

...
...

...

0 0 . . . 0

−g0(.) −g1(.) . . . −gn−1(.)



.

Apply the following state transformation,

x = Pz, where P=




1 1 · · · 1 0

α1 α2 · · · αn−1 0
...

... · · ·
...

...

αn−2
1 αn−2

2 · · · αn−2
n−1 0

αn−1
1 αn−1

2 · · · αn−1
n−1 1



,

(4)

with αi 6= αk , ∀i, k = 1, . . . , n− 1, and α
j
i , j = 1, . . . , n− 1,

denote power j of αi. The system (3) becomes

ż(t) = F(.)z(t) + B̌1(.)z(t − τ (t)),

z(t) = P−1φ(t), ∀t ∈ [t0 − τm, t0], (5)

where

F(.) = P−1A(.)P

=




α1 0 . . . 0 β1

0 α2
. . .

... β2
...

. . .
. . . 0

...

0 · · · 0 αn−1 βn−1

γ1(.) · · · · · · γn−1(.) γn(.)



,

B̌1(.) = P−1B̃1(.)P

=




0 0 · · · 0

0 0 · · · 0
...

...
...

...

0 0 . . . 0

δ1(.) δ1(.) · · · δn(.)



,

for any i = 1, . . . , n−1, βi =

n−1∏

k 6=i

(αi−αk )
−1, γi(.) = −(αni +

∑n−1
j=0 fj(.)α

j
i) = −pF(.)(αi), δi(.) = −

∑n−1
j=0 gj(.)α

i
i =

−pA1(.)(αi), and

γn(.) = −fn−1(.) −

n−1∑

j=1

αj,

δn(.) = −gn−1(.). (6)

Define the matrix Ŵ(.) as follows,

Ŵ(.) =




α1 0 . . . 0 γ̃1(.)

0 α2
. . .

... γ̃2(.)
...

. . .
. . . 0

...

0 · · · 0 αn−1 γ̃n−1(.)

|β1| · · · · · · |βn−1| γ̃n(.)




(7)

where, γ̃i(.) = |γi(.)| + supD (|δi(.)|), ∀i = 1, . . . , n − 1,

γ̃n(.) = γn(.) + supD (|δn(.)|). Let h(z) be a function of z on

the domain D. H (z) ,
|h(z)|

supD |h(z)| is well defined if h(z) 6= 0,

for some z ∈ D; otherwise, H (z) = 0 if h(z) ≡ 0, for all

z ∈ D.

We are now in the position to state the main result of this

section.

Theorem 1: The time-delay system (5) is asymptotically

stable if there exist distinct real numbers, αi < 0, i =

1, . . . , n− 1, such that the following inequalities hold true,

τ̇ (t) + max
1≤j≤n

{
|δj(.)|

supD |δj(.)|

}
≤ 1, (8)

γ̃n(.) −

n−1∑

i=1

γ̃i(.)|βi|

αi
< 0. (9)
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Note first that the advantage of Theorem 1 is its simple

and scalar conditions, where no Linear Matrix Inequality is

present to be solved. It accommodates the parameter uncer-

tainties. It allows great freedoms of a judicious choice of αi,

i = 1, . . . , n − 1. The proof of Theorem 1 needs two new

lemmas. Define a 3-matrix with the following special form:

3 =




λ1,1 0 . . . 0 λ1,n

0 λ2,2
. . .

... λ2,n
...

. . .
. . . 0

...

0 · · · 0 λn−1,n−1 λn−1,n

λn,1 λn,2 · · · λn,n−1 λn,n



, (10)

where λi,n, λn,i > 0, i = 1, . . . , n − 1; and λi,i < 0, i =

1, . . . , n.

Lemma 1: Given a constant 3-matrix and any constant

vector η < 0, there is ρ > 0 for 3ρ < η, if

λn,n −

n−1∑

i=1

λn,iλi,n

λi,i
< 0. (11)

Proof: We first show existence of a solution ρ for

3ρ < η. One evaluates

det(3) = ψ

n−1∏

j=1

λj,j, ψ = λn,n −

n−1∑

i=1

λn,iλi,n

λi,i
,

which is not zero under the assumed condition: ψ < 0. Thus,

3−1 exists. Then for all η < 0, construct ρ , 3−1(η − ǫ),

for ǫ > 0, with ǫ ∈ Rn. It follows that3ρ = 33−1(η− ǫ) =

η − ǫ < η. Next, we show the positivity of ρ for 3ρ < η.

Consider the inequality, 3ρ < η, for any η < 0. We split it

into two parts:

λi,iρi + λi,nρn < ηi, i = 1, . . . , n− 1, (12)

n−1∑

i=1

λn,iρi + λn,nρn < ηn. (13)

Equation (12) is equivalent to


ρ1
...

ρn−1


 >



λ1,1

. . .

λn−1,n−1




−1

×







η1
...

ηn−1


−



λ1,n
...

λn−1,n


 ρn




, (14)

where the inequality direction has been reversed since

λi,i < 0. Due to λn,j > 0, j = 1, . . . , n − 1, the above is

changed to

−



λn,1
...

λn,n−1




T 

ρ1
...

ρn−1




< −



λn,1
...

λn,n−1




T 

λ1,1

. . .

λn−1,n−1




−1

×







η1
...

ηn−1


−



λ1,n
...

λn−1,n


 ρn




.

It follows from (13) that

λn,nρn < −

n−1∑

i=1

λn,iρi + ηn (15)

= −



λn,1
...

λn,n−1




T 

ρ1
...

ρn−1


+ ηn. (16)

Using (15), (16) is re-written as

λn,nρn < −

n−1∑

i=1

λn,iηi

λi,i
+

n−1∑

i=1

λn,iλi,n

λi,i
ρn + ηn, (17)

that is,

(
λn,n −

n−1∑

i=1

λn,iλi,n

λi,i

)
ρn < ηn −

n−1∑

i=1

λn,iηi

λi,i
. (18)

It is easy to verify from signs of relevant elements in (18) that

the right-hand-side of (18) is strictly negative. This alongwith

condition (11) implies that

ρn >

ηn −
n−1∑
i=1

λn,iηi
λi,i

(
λn,n −

n−1∑
i=1

λn,iλi,n
λi,i

) > 0. (19)

It then follows from (14) that ρi > 0, i = 1, . . . , n−1, which

together with (19) indicates ρ > 0. The proof is completed.�

Lemma 2:Given a3(.)-matrix with uncertain elements and

any η < 0, there is ρ̄ > 0 for

3(.)ρ̄ < η(.), (20)

if

λn,n(.) −

n−1∑

i=1

λn,i(.)λi,n(.)

λi,i(.)
< 0. (21)

Proof: We want to show that (12) and (13) hold with ρ

replaced by ρ̄. Let

ρ̄n > sup
D





ηn −
n−1∑
i=1

λn,i(.)ηi
λi,i(.)

λn,n (.)−
n−1∑
i=1

λn,i(.)λi,n(.)

λi,i(.)





≥

ηn −
n−1∑
i=1

λn,i(.)ηi
λi,i(.)

λn,n (.)−
n−1∑
i=1

λn,i(.)λi,n(.)

λi,i(.)

, (22)
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and




ρ̄1

...

ρ̄n−1


 > sup

D








λ1,1(.)

. . .

λn−1,n−1(.)




−1

×







η1

...

ηn−1


−




λ1,n(.)

...

λn−1,n(.)





 ρ̄n





≥








λ1,1(.)

. . .

λn−1,n−1(.)




−1

×







η1

...

ηn−1


−




λ1,n(.)

...

λn−1,n(.)





 ρ̄n




. (23)

Equation (22) implies that

ρ̄n >

ηn −

n−1∑

i=1

λn,i(.)ηi

λi,i(.)

(
λn,n (.)−

n−1∑

i=1

λn,i(.)λi,n(.)

λi,i(.)

) , (24)

which, by following the proof of Lemma 1, yields (13).

Similarly, (23) will give (12). �

Proof of Theorem 1: Since αi, i = 1, . . . , n − 1, are arbi-

trary, we choose αi < 0 with αi 6= αk , ∀i, k = 1, . . . , n − 1,

so that Ŵ(.) is a 3-matrix, indeed. Thus, it follows from

Lemma 2 that if

γ̃n(.) −

n−1∑

i=1

γ̃i(.)|βi|

αi
< 0, (25)

there exists a constant vector ρ > 0 such thatŴ(.)ρ < η holds

true for η < 0. Hence, we choose the radially unbounded,

positive definite Lyapunov function candidate as

V (t) =

n∑

i=1

ρi|zi(t)| + ρn

n∑

i=1

sup
D

|δi(.)|

∫ t

t−τ (t)

|zi(υ)| dυ.

(26)

Because ρ > 0, V (t) > 0. The initial condition for the

solution of system (5) is given by zt0 = P−1xt0 (θ ) =

P−1x(t0 + θ ) = P−1φ(θ ),−τm ≤ θ ≤ 0. Then, we have

V (t0) ≤ ‖P−1‖

{
n∑

i=1

ρi|xi(t0)| + ρn

n∑

i=1

sup
D

|δi(.)| ‖|φ‖|τm

}

< ∞.

The right Dini derivative of V (t, z) under the solution of (5)

is given by

D+V (t, z(t))

=

n−1∑

i=1

ρi
d+|zi(t)|

dt+
+ ρn

d+|zn(t)|

dt+

+ρn

n∑

i=1

sup
D

|δi(.)|
[
|zi(t)| − (1 − ˙τ (t)) |zi(t − τ (t))|

]
.

(27)

It is seen that
d+|zi(t)|

dt+
= żi(t)sign(zi(t))

= (αizi(t) + βizn(t)) sign(zi(t))

≤ αizi(t)sign(zi(t) + |βi||zn(t)|

= αi|zi(t)| + |βi||zn(t)|,

and

d+|zn(t)|

dt+

=

(
n∑

i=1

γi(.)zi(t) +

n∑

i=1

δi(.)zi(t − τ (t))

)
sign(zn(t))

≤ γn(.)zn(t)sign(zn(t)) +

n−1∑

i=1

|γi(.)||zi(t)|

+

n∑

i=1

|δi(.)||zi(t − τ (t))|

= γn(.)|zn(t)| +

n−1∑

i=1

|γi(.)||zi(t)| +

n∑

i=1

|δi(.)||zi(t − τ (t))|.

(28)

Using (8), it follows that

−(1 − τ̇ (t)) ≤ − max
1≤j≤n−1





∣∣δj(.)
∣∣

sup
D

∣∣δj(.)
∣∣





≤ −
|δi(.)|

sup
D

|δi(.)|
,

(29)

for i = 1, . . . , n− 1. Therefore, it follows from (29) that

d+|zn(t)|

dt+
+

n∑

i=1

sup
D

|δi(.)| [|zi(t)| − (1 − τ̇ (t)) |zi(t − τ (t))|]

≤

(
γn(.) + sup

D

|δn(.)|

)
|zn(t)|

+

n−1∑

i=1

(
|γi(.)| + supD |δi(.)|

)
|zi(t)|. (30)

Substituting (30) to (27) yields

D+V (t, z(t)) ≤

n−1∑

i=1

ρi (αi|zi(t)| + |βi||zn(t)|)

+ρn

[(
sup
D

|δn(.)| + γn(.)

)
|zn(t)|
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+

n−1∑

i=1

(
|γi(.)| + sup

D

|δi(.)|

)
|zi(t)|

]

=

n−1∑

i=1

[ρiαi + ρnγ̃i(.)] |zi(t)|

+

[
ρnγ̃n(.) +

n−1∑

i=1

ρi|βi|

]
|zn(t)|

= |z(t)|TŴ(.)ρ < |z(t)|T η < 0, (31)

since η < 0. The proof is completed. �

Remark 1: Theorem 1 enables stability analysis for the

systems with time delay, where all the elements of Ŵ(.) could

be nonlinear or time-varying, including both the system’s

coefficient functions, fi and gi; and artificially introduced

parameters, αi, i = 1, . . . , n − 1. This greatly generalizes

all the results based on the arrow form matrix where the stud-

ied system is without delay in [58]–[60] and the references

therein, or with delay but constant αi in [54]–[57] and [61].

The conditions of Theorem 1 can be simplified in certain

cases.

Corollary 1: If there exist distinct αi < 0, i = 1, . . . , n−1,

such that γi(.)βi > 0, the stability conditions of Theo-

rem 1 reduce to

τ̇ (t) + max
1≤j≤n

{
|δj(.)|

supD |δj(.)|

}
≤ 1,

sup
D

(|δn(.)|)−

n−1∑

i=1

supD |δi(.)||βi|

αi
<

pF(.)(0)∏n−1
j=1 (−αj)

.

Proof: Note that the first condition of Theo-

rem 1 remains same as in Corollary 1. The simplification is

in the second condition which is to be shown now. Take the

partial fraction expansion of
pF(.)(s)∏n−1
j=1 (s−αj)

:

pF(.)(s)∏n−1
j=1 (s− αj)

= s+ fn−1(.) +

n−1∑

i=1

αi +

n−1∑

i=1

Ri(.)

s− αi
, (32)

where Ri(.), i = 1, . . . , n− 1, are given by

Ri(.) =

[
pF(.)(s)(s− αi)∏n−1

j=1 (s− αj)

]

s=αi

= −γi(.)βi.

Knowing from (6) that γn(.) = −fn−1(.)−
∑n−1

i=1 αi, then (32)

becomes

pF(.)(s)∏n−1
j=1 (s− αj)

= −γn(.) −

n−1∑

i=1

γi(.)βi

s− αi
,

which leads to

pF(.)(0)∏n−1
j=1 (−αj)

= −γn(.) +

n−1∑

i=1

γi(.)βi

αi
.

Then, if γi(.)βi > 0, the inequality (9) becomes the 2nd

condition in this corollary. The proof is completed. �

If the roots of p
B̌1
(.) are all real, negative and distinct,

we can choose the αi to be equal to these roots.

Corollary 2: If p
B̌1(.)

(αi) = 0, αi < 0, i = 1, . . . , n − 1,

where αi 6= αj for all i 6= j = 1, . . . , n − 1, such that

γi(.)βi > 0, then the stability conditions of Theo-

rem 1 become

τ̇ (t) +
|δn(.)|

supD |δn(.)|
≤ 1, (33)

sup
D

(|δn(.)|) < gn−1(.)
pF(.)

p
B̌1(.)

. (34)

Proof: If p
B̌1(.)

(αi) = 0, we obtain δi(.) = −p
B̌1(.)

(αi) =

0, i = 1, . . . , n − 1, p
B̌1(.)

(0) = gn−1(.)
∏n−1

j=1 (−αj). Since

γi(.)βi > 0 is assumed, Corollary 1 is then applicable and

its conditions become those in this corollary after using the

above relations. The proof is completed. �

III. INTERCONNECTED NONLINEAR SYSTEMS

Consider two coupled Lur’e Postnikov systems with delayed

interconnections, as shown in Fig. 1. Each open-loop plant

without interconnections (rj−(−1)j,j = 0) is described by its

state space representation:

Sj :





ẋj(t) = Ajxj(t) + Bjuj(t), j = 1, 2,

uj(t) = ϕj(εj(t)); ϕj(0) = 0,

εj(t) = −Cjx(t − dj),

(35)

where

xj(t) =
[
yj(t), ẏj(t), . . . , y

(n−1)
j (t)

]T
,

Aj =




0 1 0 · · · 0
...

. . . 1
. . .

...
...

. . .
. . . 0

0 · · · · · · 0 1

−
a
j
0

a
j
n

−
a
j
1

a
j
n

−
a
j
2

a
j
n

· · · −
a
j
n−1

a
j
n




,

Bj =
[
0 . . . 0 bj

]T
, bj =

kj

a
j
n

,

Cj =
[
c
j
0 . . . c

j
n−2 c

j
n−1

]T

τj, dj : are time delays,

rj,j−(−1)j : are the interconnection variables.

Using the Mean Value Theorem, one gets

ϕj(εj(t)) − ϕj(0) =
∂ϕj(εj)

∂εj

(
εj(t) − 0

)
,

which gives

ϕj(εj(t)) = −ϕ̃j(.)Cjx(t − dj).

Therefore, ϕ̃j(.) can be interpreted, in certain cases, as the

instantaneous gain at any point of the characteristic of the

nonlinearity ϕj. Then (35) becomes

ẋj(t) = Ajxj(t) + B̃1j (.)xj(t − dj), (36)
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FIGURE 1. Two coupled Lur’e Postnikov systems with delayed interconnections.

with

B̃1j (.) = −Bjϕ̃j(.)C
T
j

=




0 · · · 0 0
...

...
...

0 · · · 0 0

−b̃
1,j
0 (.) · · · −b̃

1,j
n−2(.) −b̃

1,j
n−1(.)


 .

From the equation (36), we notice that the system Sj is a

particular form of (1).

Now, we consider the interconnection between Sj and

Sj−(−1)j given by Fig.1 with rj,j−(−1)j 6= 0. Then, we obtain

uj(t) = ϕ̃j(.)εj(t) + rj−(−1)j,jεj−(−1)j (t − τj−(−1)j ),

and the system (36) changes to

ẋj(t) = Ajxj(t) + B̃1j (.)xj(t − dj)

+B̃2
j−(−1)j

xj−(−1)j (t − (dj−(−1)j + τj−(−1)j )), (37)

where

B̃2j = −Bjrj−(−1)j,jC
T
j−(−1)j

=




0 · · · 0 0
...

...
...

0 · · · 0 0

−b̃
2,j
0 · · · −b̃

2,j
n−2 −b̃

2,j
n−1


 ,

with b̃
1,j
i (.) = bjc

j
iϕ̃j(.) and b̃

2,j
i = rj,j−(−1)jbj−(−1)jc

j
i.

Apply the state transformation:

X (t) =

[
P1 0

0 P2

]
Z (t), (38)

where

X (t) =
[
xT1 (t), x

T
2 (t)

]T

Z (t) =
[
zT1 (t), z

T
2 (t)

]T
,

and

Pj =




1 · · · 1 0

(αj,1) · · · (αj,n−1)
...

(αj,1)
2 · · · (αj,n−1)

2
...

...
...

... 0

(αj,1)
n−1 · · · (αj,n−1)

n−1 1




, j = 1, 2,

αj,i 6= αj,k , i, k = 1, 2, · · · , n− 1.

The whole system is given by

Ż (t) =

[
F1 0

0 F2

]
Z (t) +

[
B̌11 0

0 B̆12

]
Z (t − d̄1)

+

[
0 B̌21
B̆22 0

]
Z (t − d̄2), (39)

where

Z (t − d̄1) =
[
zT1 (t − d1), z

T
2 (t − d2)

]T
,

Z (t − d̄2) =
[
zT1 (t − (τ1 + d1)),

zT2 (t − (τ2 + d2))
]T
,

Fj = P−1
j AjPj

=




αj,1 0 . . . 0 β
j
1

0 αj,2
. . .

... β
j
2

...
. . .

. . . 0
...

0 · · · 0 αj,n−1 β
j
n−1

γj,1 · · · · · · γj,n−1 γj,n




,

B̌1j = P−1
j B̃1j (.)Pj
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=




0 · · · 0 0
...

...
...

0 · · · 0 0

δ1j,1(.) · · · δ1j,n−1(.) δ1j,n(.)


 ,

B̌2j = P−1
j B̃2j Pj−(−1)j

=




0 · · · 0 0
...

...
...

0 · · · 0 0

δ2j,1 · · · δ2j,n−1 δ2j,n


 ,

with, j = 1, 2,

γj,i = −pAj (αj,i),

δ1j,i(.) = −pB̃1j (.)
(αj,i),

δ2j,i = −pB̃2j
(αj−(−1)j,i),

i = 1, . . . , n− 1,

γj,n = −
a
j
n−1

a
j
n

−

n−1∑

i=1

αj,i,

δ1j,n(.) = −b̃
1,j
n−1(.),

δ2j,n = −b̃
2,j
n−1,

pAj (s) = sn +

n−1∑

i=0

a
j
i

a
j
n

si,

pB̃1j (.)
(s) =

n−1∑

i=0

b̃
1,j
i (.)si,

pB̃2j
(s) =

n−1∑

i=0

b̃
2,j
i si.

Applying two permutations to the state vector: the first

is between n−th and (2n − 1)-th rows, the second between

n-th and (2n− 1)-th columns. The new state space represen-

tation (while we retain Z as the state) is given by

Ż (t) = ϒZ (t) +41(.)Z (t − d̄1) +42Z (t − d̄2), (40)

where

ϒ =



ϒ1,1 0 ϒ1,3

0 ϒ2,2 ϒ2,3

ϒ3,1 ϒ3,2 ϒ3,3


 ,

4j(.) =




0 0 0

0 0 0

4
j
3,1(.) 4

j
3,2(.) 4

j
3,3(.)


 , j = 1, 2,

with

ϒ1,1 = diag
(
α1,1 α1,2 . . . α1,n−1

)
,

ϒ2,2 = diag
(
α2,n−1 α2,1 . . . α2,n−2

)
,

ϒ1,3 =

[
β1,1 β1,2 · · · β1,n−1

0 0 · · · 0

]T
,

ϒ2,3 =

[
0 0 · · · 0

β2,n−1 β2,1 · · · β2,n−2

]T
,

ϒ3,1 =

[
γ1,1 γ1,2 · · · γ1,n−1

0 0 · · · 0

]
,

ϒ3,2 =

[
0 0 · · · 0

γ2,n−1 γ2,1 · · · γ2,n−2

]
,

ϒ3,3 =

[
γ1,n 0

0 γ2,n

]
,

41
3,1(.) =

[
δ11,1(.) δ11,2(.) · · · δ11,n−1(.)

0 0 · · · 0

]
,

41
3,2(.) =

[
0 0 · · · 0

δ12,n−1(.) δ12,1(.) · · · δ12,n−2(.)

]
,

41
3,3(.) =

[
δ11,n(.) 0

0 δ12,n(.)

]
,

42
3,1 =

[
0 0 · · · 0

δ21,1 δ21,2 · · · δ21,n−1

]
,

42
3,2 =

[
δ22,n−1 δ22,1 · · · δ22,n−2

0 0 · · · 0

]
,

42
3,3 =

[
0 δ22,n
δ21,n 0

]
.

Theorem 2: The closed-loop system (37) is asymptotically

stable if there exist distinct αj,i < 0, j = 1, 2, i = 1, . . . ,

n− 1, such that there holds the following,

max
(
γ̄1,n(.), γ̄2,n(.)

)
−

2∑

j=1

n−1∑

i=1

γ̄j,i(.)
∣∣βj,i

∣∣
αj,i

< 0. (41)

Proof: Consider the matrix Ŵ(.) given in (42), as

shown at the bottom of the next page, with γ̄j,i(.) = γj,i +

| supD δ
1
j,i(.)| + |δ2j,i|, ∀i = 1, . . . , n − 1, j = 1, 2, γ̄j,n(.) =

γj,n+| supD δ
1
j,n(.)|+|δ2j,n|. Since αk,i, k, i = 1, . . . , n−1, are

arbitrary, we choose αk,i < 0 with αk,i 6= αℓ,j, ∀k, ℓ = 1, 2,

∀i, k = 1, . . . , n − 1, such that Ŵ(.) is a 3-matrix. Thus,

it follows from Lemma 2 that if (41) holds true, there exists

a constant vector ρ > 0 such that Ŵ(.)ρ < η for η < 0.

Hence, we choose the radially unbounded, positive definite

Lyapunov function candidate as

V (t) =

2n−2∑

i=1

ρi|Zi(t)| + ρ2n−1 (v2n−1(t) + v2n(t)) , (43)

with

v2n−1(t) = |Z2n−1(t)| +

n−1∑

i=1

sup
D

∣∣∣δ11,i(.)
∣∣∣
∫ t

t−d̄1

|Zi(ν)|dν

+ sup
D

∣∣∣δ11,n(.)
∣∣∣
∫ t

t−d̄1

|Z2n−1(ν)|dν

+
∣∣∣δ22,n−1

∣∣∣
∫ t

t−d̄2

|Zn(ν)|dν

+

n−2∑

i=1

∣∣∣δ22,i
∣∣∣
∫ t

t−d̄2

|Zn+i(ν)|dν

+
∣∣∣δ22,n

∣∣∣
∫ t

t−d̄2

|Z2n(ν)|dν,
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and

v2n(t) = |Z2n(t)| + sup
D

∣∣∣δ12,n−1(.)

∣∣∣
∫ t

t−d̄1

|Zn(ν)|dν

+

n−2∑

i=1

sup
D

∣∣∣δ12,i(.)
∣∣∣
∫ t

t−d̄1

|Zn+i(ν)|dν

+ sup
D

∣∣∣δ12,n(.)
∣∣∣
∫ t

t−d̄1

|Z2n(ν)|dν

+

n−1∑

i=1

∣∣∣δ21,i
∣∣∣
∫ t

t−d̄2

|Zi(ν)|dν

+
∣∣∣δ21,n

∣∣∣
∫ t

t−d̄2

|Z2n−1(ν)|dν.

The right Dini derivative ofV (z(t)), along the solution of (40),

is given by

D+V (t) =

2n−2∑

i=1,i 6=n

ρi
d+|Zi(t)|

dt+
+ ρn

d+|Zn(t)|

dt+

+ρ2n−1

(
d+v2n−1(t)

dt+
+
v2n(t)

dt+

)
.

It is seen that

d+ |Zi(t)|

dt+
= sign (Zi(t))

d+Zi(t)

dt+

= sign (Zi(t))
(
α1,iZi(t) + β1,iZ2n−1(t)

)

≤ α1,i |Zi(t)| +
∣∣β1,i

∣∣ |Z2n−1(t)|

i = 1, . . . , 2n− 2, i 6= n, (44)

d+|Zn(t)|

dt+
= sign(Zn(t))

(
α2,n−1Zn(t) + β2,n−1Z2n(t)

)

≤ α2,n−1 |Zn(t)| +
∣∣β2,n−1

∣∣ |Z2n(t)| , (45)

d+v2n−1(t)

dt+
=

d+ |Z2n−1(t)|

dt+
+

n−1∑

i=1

sup
D

∣∣∣δ11,i(.)
∣∣∣ (|Zi(t)|

−
∣∣Zi(t − d̄1)

∣∣)+ sup
D

∣∣∣δ11,n(.)
∣∣∣ (|Z2n−1(t)|

−
∣∣Z2n−1(t − d̄1)

∣∣)+
∣∣∣δ22,n−1

∣∣∣ (|Zn(t)|

−
∣∣Zn(t − d̄2)

∣∣)+

n−2∑

i=1

∣∣∣δ22,i
∣∣∣ (|Zn+i(t)|

−
∣∣Zn+i(t − d̄2)

∣∣)+
∣∣∣δ22,n

∣∣∣ (|Z2n(t)|
−
∣∣Z2n(t − d̄2)

∣∣) , (46)

d+v2n(t)

dt+
=

d+ |Z2n(t)|

dt+
+ sup

D

∣∣∣δ12,n−1(.)

∣∣∣ (|Zn(t)|

−
∣∣Zn(t − d̄1)

∣∣)+

n−2∑

i=1

sup
D

∣∣∣δ12,i(.)
∣∣∣ (|Zn+i(t)|

−
∣∣Zn+i(t − d̄1)

∣∣)+ sup
D

∣∣∣δ12,n(.)
∣∣∣ (|Z2n(t)|

−
∣∣Z2n(t − d̄1)

∣∣)+

n−1∑

i=1

∣∣∣δ21,i
∣∣∣ (|Zi(t)|

−
∣∣Zi(t − d̄2)

∣∣)+
∣∣∣δ21,n

∣∣∣ (|Z2n−1(t)|

−
∣∣Z2n−1(t − d̄2)

∣∣) . (47)

One sees that

d+ |Z2n−1(t)|

dt+

=

(
n−1∑

ℓ=1

γ1,ℓZℓ(t) + γ1,nZ2n−1(t)

n−1∑

ℓ=1

δ11,ℓ(.)Zℓ(t − d̄1) + δ11,n(.)Z2n−1(t − d̄1)

+δ22,n−1Zn(t − d̄2) +

n−2∑

ℓ=1

δ22,ℓZn+ℓ(t − d̄2)

+δ22,nZ2n(t − d̄2)
)
sign(Z2n−1(t)) (48)

≤

n−1∑

ℓ=1

|γ1,ℓ||Zℓ(t)| + γ1,n|Z2n−1(t)|

Ŵ(.) =




α1,1 0 · · · · · · · · · 0
∣∣β1,1

∣∣

0
. . .

...
...

... α1,n−1
. . .

...
∣∣β1,n−1

∣∣

...
. . . α2,n−1

. . .
...

∣∣β2,n−1

∣∣
... α2,1

. . .
... |β2,1|

...
. . .

. . . 0
...

. . .

0 · · · · · · · · · · · · 0 α2,n−2

∣∣β2,n−2

∣∣

γ 1,1(.) · · · γ 1,n−1(.) γ 2,n−1(.) . . . γ 2,n−2(.) γ 2,1(.) max
{
γ 1,n(.), γ 2,n(.)

}




(42)
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n−1∑

ℓ=1

|δ11,ℓ(.)||Zℓ(t − d̄1)| + |δ11,n(.)||Z2n−1(t − d̄1)|

+|δ22,n−1||Zn(t − d̄2)| +

n−2∑

ℓ=1

|δ22,ℓ||Zn+ℓ(t − d̄2)|

+|δ22,n||Z2n(t − d̄2)|, (49)

and

d+ |Z2n(t)|

dt+

=

(
γ2,n−1Zn(t) +

n−2∑

ℓ=1

γ2,ℓZℓ(t)

+γ2,nZ2n(t) + δ12,n−1(.)Zn(t − d̄1)

+

n−2∑

ℓ=1

δ12,ℓ(.)Zn+ℓ(t − d̄1) + δ12,n(.)Z2n(t − d̄1)

+

n−2∑

ℓ=1

δ21,ℓZℓ(t − d̄2)+δ
2
1,nZ2n−1(t − d̄2)

)

×sign(Z2n(t))

≤ |γ2,n−1||Zn(t)| +

n−2∑

ℓ=1

|γ2,ℓ||Zℓ(t)| + γ2,n|Z2n(t)|

|δ12,n−1(.)||Zn(t − d̄1)| +

n−2∑

ℓ=1

|δ12,ℓ(.)||Zn+ℓ(t − d̄1)|

+

n−2∑

ℓ=1

|δ21,ℓ||Zℓ(t − d̄2)| + |δ12,n(.)||Z2n(t − d̄1)|

+|δ21,n||Z2n−1(t − d̄2)|. (50)

The use of (48) in (46) yields

d+v2n−1(t)

dt+
≤

n−1∑

i=1

(
|γ1,i| + sup

D

∣∣∣δ11,i(.)
∣∣∣
)

|Zi(t)|

+

(
γ1,n + sup

D

∣∣∣δ11,n(.)
∣∣∣
)

|Z2n−1(t)|

+
∣∣∣δ22,n−1

∣∣∣ |Zn(t)| +

n−2∑

i=1

∣∣∣δ22,i
∣∣∣ |Zn+i(t)|

+
∣∣∣δ22,n

∣∣∣ |Z2n(t)|, (51)

and the use of (50) in (47) yields

d+v2n(t)

dt+
≤

n−2∑

i=1

(
|γ2,i| + sup

D

∣∣∣δ12,i(.)
∣∣∣
)

|Zn+i(t)|

+

(
|γ2,n−1| + sup

D

∣∣∣δ12,n−1(.)

∣∣∣
)

|Zn(t)|

+

n−2∑

i=1

∣∣∣δ21,i
∣∣∣ |Zi(t)| +

∣∣∣δ21,n
∣∣∣ |Z2n−1(t)|

+

(
γ2,n + sup

D

∣∣∣δ12,n(.)
∣∣∣
)

|Z2n(t)|. (52)

Let Z =
[
|Z1|, . . . , |Z2n−2|, (|Z2n−1| + |Z2n|)

]T
. It then

follows from (44), (45), (51) and (52) that

D+V (t) ≤ Z
T
(t)Ŵ(.)ρ < Z

T
(t)η <

2n−1∑

i=1

Z iηi < 0.

The proof is completed. �

When no delay exists in the feedback in Fig. 1, that is,

dj = 0, j = 1, 2, Theorem 2 can be much simplified.

Corollary 3: The closed-loop system defined by (37) is

asymptotically stable if there exist distinct αj,i < 0, j = 1, 2,

i = 1, . . . , n− 1, such that there holds the following,

max
1≤j≤2

{
γ̄j,n(.)

}
−

2∑

j=1

n−1∑

i=1

∣∣γ̄j,i(εj)
∣∣ ∣∣βj,i

∣∣
αj,i

< 0. (53)

Proof: From Fig.1, when there is no delay in the feed-

back of each subsystem, the system (35) changes to

ẋj(t) = Ãj(εj)xj(t) + B̃j−(−1)jxj−(−1)j (t − τj−(−1)j ) (54)

where

Ãj(.) =
[
Aj − Bjϕ̃j(.)C

T
j

]

=




0 1 0 0

...
. . .

. . . 0

0 · · · 0 1

−ã
j
0(.) · · · −ã

j
n−2(.) −ã

j
n−1(.)



, (55)

B̃j = Bjrj−(−1)j,jC
T
j−(−1)j

=




0 · · · 0 0

...
...

...

0 · · · 0 0

−b̃
j
0 · · · −b̃

j
n−2 −b̃

j
n−1



, (56)

with ã
j
i(.) =

a
j
i

a
j
n

+ bjc
j
iϕ̃j(.) and b̃

j
i = rj,j−(−1)jbj−(−1)jc

j
i.

Apply the same state transformation as in (38), the whole

system becomes

Ż (t) =

[
F1(.) 0

0 F2(.)

]
Z (t)

+

[
0 B̌1
B̆2 0

]
Z (t − τ ), (57)

where

Z (t − τ ) =
[
zT1 (t − τ1), z

T
2 (t − τ2)

]T
,

Fj(.) = P−1
j Ãj(.)Pj
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=




αj,1 0 . . . 0 β
j
1

0 αj,2
. . .

... β
j
2

...
. . .

. . . 0
...

0 · · · 0 αj,n−1 β
j
n−1

γj,1(.) · · · · · · γj,n−1(.) γj,n(.)




,

B̌j = P−1
j B̃jPj−(−1)j

=




0 · · · 0 0
...

...
...

0 · · · 0 0

δj,1 · · · δj,n−1 δj,n


 ,

with, j = 1, 2,

γj,i(.) = −pAj(.)(αi),

δj,i = −pBj (αi),

i = 1, . . . , n− 1;

γj,n(.) = −ã
j
n−1(.) −

n−1∑

i=1

αj,i,

δj,n = −b̃
j
n−1,

pAj(.)(s) = sn +

n−1∑

i=0

ã
j
i(εj)s

i,

pBj (s) =

n−1∑

i=0

b̃
j
is
i.

The new state space representation is given by

Ż (t) = ϒ(ε1, ε2)Z (t) +4Z (t − τ ), (58)

where

ϒ(.) =




ϒ1,1 0 ϒ1,3

0 ϒ2,2 ϒ2,3

ϒ3,1(ε1) ϒ3,2(ε2) ϒ3,3(ε1, ε2)


 ,

4 =




0 0 0

0 0 0

43,1 43,2 43,3


 ,

with

ϒ1,1 = diag
(
α1,1 α1,2 . . . α1,n−1

)
,

ϒ2,2 = diag
(
α2,n−1 α2,1 . . . α2,n−2

)

ϒ1,3 =

[
β11 β12 · · · β1n−1

0 0 · · · 0

]T
,

ϒ2,3 =

[
0 0 · · · 0

β2n−1 β21 · · · β2n−2

]T
,

ϒ3,1(.) =

[
γ1,1(ε1) γ1,2(ε1) · · · γ1,n−1(ε1)

0 0 · · · 0

]
,

ϒ3,2(.) =

[
0 0 · · · 0

γ2,n−1(ε2) γ2,1(ε2) · · · γ2,n−2(ε2)

]
,

ϒ3,3(.) =

[
γ1,n(ε1) 0

0 γ2,n(ε2)

]
,

43,1 =




0 0 · · · 0

δ1,1 δ1,2 · · · δ1,n−1


 ,

43,2 =



δ2,n−1 δ2,1 · · · δ2,n−2

0 0 · · · 0


 ,

43,3 =




0 δ2,n

δ1,n 0


 .

In this case, we get

γ̄j,i(.) =
∣∣γj,i(εj)

∣∣ +
∣∣δj,i

∣∣ , ∀i = 1, . . . , n− 1,

γ̄j,n(.) = γj,n(εj) +
∣∣δj−(−1)j,n

∣∣ , j = 1, 2.

We choose αk,i < 0 with αk,i 6= αℓ,j, ∀k, ℓ = 1, 2,

∀i, k = 1, . . . , n − 1, such that (53) holds true. Then Ŵ(.)

is a3-matrix, and Lemma 2 is invoked. The rest of the proof

follows the similar arguments to the proof of Theorem 2 and

is omitted. The proof is completed. �

IV. EXAMPLES

We illustrate, in this section, some numerical examples

together with their simulations in order to show the validity

and enumerate the benefits of the developed approaches.

Example 1: Consider the example in [64] (page 69) with

added complexity: the system have time variable delay τ (t)

ẋ(t) =

[
−2 + g(t) g(t)

g(t) −0.9 + g(t)

]
x(t)

+β

[
−1 + g(t) 0

−1 −1 − g(t)

]
x(t − τ (t)), (59)

where x(t) ∈ R2, β ∈ R and |g(t)| ≤ 0.1.

The condition (7) of Theorem 1 becomes

τ̇ (t) ≤ 1 − max

{
|1|

1.1
,

|1 + g(t)|

1.1

}
.

In this case, the matrix Ŵ(.) is evaluated as

Ŵ(.) =

[
α(.) |g(t)| + |β|

|g(t)| −0.9 + g(t) + 1.1|β|

]

where α(.) = −2+g(t)+1.1|β|. By Theorem 1, the stability

condition is given by

−0.9 + g(t) + 1.1|β| −
|g(t)|2 + |g(t)||β|

−2 + g(t) + 1.1|β|
< 0. (60)

Knowing that |g(t)| ≤ 0.1 then (60) holds true if |β| < 1.9
1.1

.

In fact, we can verify that α(.) = −2 + g(t) + 1.1|β| < 0,

and (60) becomes

|β| ≤ 0.667.

However, the authors, in [64], obtained by solving LMIs a

more restrictive result: the system is asymptotically stable and

independent of delays for |β| ≤ 0.644.
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Example 2:Consider the system in Fig.1 with second-order

dynamics for each plant,

Aj =




0 1

− 1
µj,1µj,2

−
µj,1 + µj,2

µj,1µj,2


 ,

Bj =




0
kj

µj,1µj,2


 =

[
0

bj

]
,

CT
j =

[
λj 1

]
, λj > 0,

CT
j (sI2 − Aj)

−1Bj =
kj(s+ λj)

(µj,1s+ 1)(µj,2s+ 1)
,

B̃1j (.) = −ϕ̃j(.)bj

[
0 0

λj 1

]
,

B̃2j = −rj−(−1)j,jbj

[
0 0

λj−(−1)j 1

]
.

The choice of α1,1 = −λ1 and α2,1 = −λ2, leads to

Fj =




−λj 1

−pAj (−λj) λj −
µj,1 + µj,2

µj,1µj,2


 ,

B̌1j (.) =

[
0 0

0 −bjϕ̃j(εj)

]
,

B̌2j =

[
0 0

0 −rj−(−1)j,jbj

]
,

Ŵ(.) =




−λ1 0 1

0 −λ2 1

|pA1 (−λ1)| |pA2 (−λ2)| max
1≤j≤2

{
γ j,2(.)

}


 ,

where

γ j,2(.) = λj −
µj,1 + µj,2

µj,1µj,2
+ sup

D

∣∣bjϕ̃j(εj)
∣∣

+| − rj−(−1)j,jbj|.

By Theorem 2, the stability condition in this particular case

is given by

max
1≤j≤2

{
γ j,2(.)

}
−

|pA1 (−λ1)|

−λ1
−

|pA2 (−λ2)|

−λ2
< 0. (61)

For simulation, we consider a numerical case with

CT
1 (sI2 − A1)

−1B1 =
0.2(s+ 0.75)

(1 + 1.2s)(1 + 0.2s)
,

CT
2 (sI2 − A2)

−1B2 =
0.5(s+ 1)

(1 + 1.5s)(1 + 0.3s)
,

r1,2 = 0.5, r2,1 = −1.

Then, (61) becomes

max

{
−4.25 + 0.83 sup

D

|ϕ̃1(.)|,−2.44 + 1.11 sup
D

|ϕ̃2(.)|

}

−
| − 0.3542|

−0.75
−

|0.7778|

−1
< 0,

that is,

max

{
−4.25 + 0.83 sup

D

|ϕ̃1(.)|,−2.44 + 1.11 sup
D

|ϕ̃2(.)|

}

+1.25 < 0.

Let

−4.25 + 0.83 sup
D

|ϕ̃1(.)| < −2.44 + 1.11 sup
D

|ϕ̃2(.)| < 0.

This yields the stability region determined by
{
2.1667 < supD |ϕ̃1(.)| < 3.60,

−1.6250 + 0.75 supD |ϕ̃1(.)| < supD |ϕ̃2(.)| < 2.2.

These inequalities define the stability region (supD |ϕ̃1(.)|,D |

ϕ̃2(.)|) which are illustrated in Fig.2.

FIGURE 2. Stability region of the nonlinearities
(

supD |ϕ̃1(.)| ,
supD |ϕ̃2(.)|

)

for particular values of α1,1 = −0.75 and α2,1 = −1.

Example 3:Consider the system in Fig.1 with second-order

dynamics for each plant,

Aj =




0 1

−
1

µj,1µj,2
−
µj,1 + µj,2

µj,1µj,2


 ,

Bj =




0
kj

µj,1µj,2


 =

[
0

bj

]
,

CT
j =

[
λj 1

]
, λj > 0,

CT
j (sI2 − Aj)

−1Bj =
kj(s+ λj)

(µj,1s+ 1)(µj,2s+ 1)
,

Ãj(.) = Aj − Bjϕ̃j(.)C
T
j ,

B̃j = −rj−(−1)j,jbj

[
0 0

λj−(−1)j 1

]
.

The choice of α1,1 = −λ1 and α2,1 = −λ2, leads to

Aj(.) =

[
−λj 1

−pAj (−λj) λj −
(µj,1+µj,2)+kjϕ̃j(εj)

µj,1µj,2

]
,

B̌j =

[
0 0

0 −rj−(−1)j,jbj

]
,

Ŵ(.) =




−λ1 0 1

0 −λ2 1

|pA1 (−λ1)| |pA2 (−λ2)| max
1≤j≤2

{
γ j,2(.)

}


 ,

20988 VOLUME 9, 2021



S. Elmadssia, Q.-G. Wang: Analytical Stability Conditions on Interconnected Nonlinear Systems With Delays

where

γ j,2(.) = | − rj−(−1)j,jbj| + λj −
(µj,1 + µj,2) + kjϕ̃j(εj)

µj,1µj,2
.

By Corollary 3, the stability condition in this particular case

is given by

max
1≤j≤2

{
γ j,2(.)

}
−

|pA1 (−λ1)|

−λ1
−

|pA2 (−λ2)|

−λ2
< 0. (62)

For simulation, we consider two numerical cases.

Case 1. Suppose two stable subsystems,

CT
1 (sI2 − A1)

−1B1 =
s+ 1.5

(1 + s)(1 + 0.5s)
,

CT
2 ((sI2 − A2)

−1B2 =
0.5(s+ 3)

(1 + 1.25s)(1 + 0.25s)
,

r1,2 = 5, r2,1 = −1.

Then, (62) becomes

max {0.5 − 2ϕ̃1(.), 6.2 − 1.6ϕ̃2(.)}−
| − 0.25|

−1.5
−

| − 2.2|

−3
<0,

that is,

max {0.5 − 2ϕ̃1(.), 6.2 − 1.6ϕ̃2(.)} + 0.9 < 0.

Let

0.5 − 2ϕ̃1(.) < 6.2 − 1.6ϕ̃2(.) < 0.{
ϕ̃1(.) > 0.7,

4.4375 < ϕ̃2(.) < 3.5625 + 1.25ϕ̃1(.),

This yields the stability region (ϕ̃1(.), ϕ̃2(.)) which are illus-

trated in Fig.3.

FIGURE 3. Stability region of the nonlinearities (ϕ̃1(.), ϕ̃2(.)) for
particular values of α1,1 = −1.5 and α2,1 = −3.

Case 2. Suppose one of the subsystems is unstable,

CT
1 (sI2 − A1)

−1B1 =
10(s+ 2.5)

(1 − s)(1 + s)
,

CT
2 (sI2 − A2)

−1B2 =
1.5(s+ 1.25)

(1 + 2s)(1 + 1.5s)
,

r1,2 = 5, r2,1 = −2.

FIGURE 4. Stability region of the nonlinearities (ϕ̃1(.), ϕ̃2(.)) for
particular values of α1,1 = −2.5 and α2,1 = −1.25.

Then, (62) becomes

max {−47 − 10ϕ̃1(.), 1.0883 + 0.5ϕ̃2(.)} + 2.45 < 0.

Let

−47 − 10ϕ̃1(.) < 1.0883 + 0.5ϕ̃2(.) < 0.

This yields the stability region determined by
{
ϕ̃1(.) > −4.455,

−96.1766 − 20ϕ̃1(.) < ϕ̃2(.) < −7.0766,

which are illustrated in Fig.4. Example 4. Consider the exam-

ple in [2] with added complexities: two plants, 61 and 62,

have time delay τ and some plant parameters, w1 and w2, are

nonlinear:

61 : ẋ1 =
−x1 + x2

1 + x21
+ w1(.)x1(t − τ ),

62 : ẋ2 = −2x2 +
x21

1 + x21
+ w2(.)x2(t − τ )).

In this case, the matrix Ŵ(.) is evaluated as

Ŵ(.) =



α(.)

1

1 + x21
|x1|

1 + x21
supD |w2(.)| − 2


 , (63)

where α(.) = sup
D

|w1(.)| −
1

1 + x21
. By Theorem 2, the sta-

bility condition is given by

sup
D

|w2(.)| − 2 −
|x1|

(1 + x21 )
2α(.)

< 0. (64)

Note that (64) holds true if supD |w1(.)| <
(1 − |x1|)

2

(1 + x21 )
2

and supD |w2(.)| <
3

2
. In fact, we can verify that
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FIGURE 5. State response under conditions w1(.) =
(1 − |x1|)2

(2 + x2
1

)2
, w2 = 1

and τ = 0.8 seconds.

FIGURE 6. State response under conditions w1(.) =
(1 − |x1|)2

(2 + x2
1

)2
,

w2(.) = 1.3
1+t2

and τ = 5 seconds.

α(.) = supD |w1(.)| −
1

1 + x21
<

−2|x1|

(1 + x21 )
2
< 0, and (64)

becomes supD |w2(.)| − 2 −
|x1|

(1 + x21 )
2α(.)

< sup
D

|w2(.)| −

2 +
1

2
< 0. which yields supD |w2(.)| <

3

2
. The state

variable responses are shown in Fig.5 and Fig.6. Example 5.

Consider the example in [5] with added complexities: the

interconnections between two plants,61 and62, have a time

delay τ and nonlinearities with γ1 and γ2:

61 : ẋ1 = −x1 − x31 + γ1(.)x2(t − τ ),

62 : ẋ2 = −x2 − x32 + γ2(.)x1(t − τ ).

In this case, the matrix Ŵ(.) is evaluated as

Ŵ(.) =

(
−1 − x21 supD |γ2(.)|

supD |γ1(.)| −1 − x22

)
. (65)

FIGURE 7. State response under conditions γ1 = 10, γ2 = 0.02 and
τ = 10 seconds.

FIGURE 8. State response under conditions γ1 = 10, γ2 = 0.02 and
τ = 2 seconds.

By Theorem 2, the stability condition is given by

−1 − x22 +
supD |γ1(.)| supD |γ2|(.)

1 + x21
< 0. (66)

It can be verified that (66) holds true if

sup
D

|γ1(.)| sup
D

|γ2(.)| < 1.

The state variable responses are shown in Fig.7 and Fig.8.

V. CONCLUSION

In this work, we have presented the new stability conditions

for interconnected nonlinear systems with delay. The condi-

tions are explicit, scalar and easy to check. Indeed, the appli-

cation of the proposed method to delayed interconnection

between two Lur’e Postnikov system shows simplicity and

effectiveness. Moreover, our approach is self-contained, and

systematic, and it does not go through the M-matrix and

the arrow form. Our theorems can deal with time delays,
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non-linearity and interconnections, and thus have more gen-

eral applicability than those in the related literature.
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