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Analytical Study and Efficient Evaluation of the Josephus
Function

Yunier Bello-Cruz and Roy Quintero-Contreras

Abstract. A new approach to analyzing intrinsic properties of the Josephus function, Jk , is presented in this paper. The
linear structure between extreme points of Jk is fully revealed, leading to the design of an efficient algorithm for evaluating
Jk (n). Algebraic expressions that describe how recursively compute extreme points, including fixed points, are derived. The
existence of consecutive extreme and also fixed points for all k ≥ 2 is proven as a consequence, which generalizes Knuth
result for k = 2. Moreover, an extensive comparative numerical experiment is conducted to illustrate the performance of
the proposed algorithm for evaluating the Josephus function compared to established algorithms. The results show that the
proposed scheme is highly effective in computing Jk (n) for large inputs.

1. INTRODUCTION The Josephus problem is a game of elimination that has been studied for nearly two
millennia. The earliest known formulation of the problem appears in the historical text [11] written by historian
Flavius Josephus. Josephus described a method of serial elimination by casting lots, which he and 40 of his
soldiers applied while trapped in a cave by the Roman army and facing imminent capture and inevitable massacre.

The general formulation of the problem is as follows: a certain number of people n is arranged in a circle,
and an execution method is established. An initial counting point and a direction of rotation are fixed, and after
k − 1 number of people are counted, the next person is executed and removed from the circle. This procedure is
repeated with the remaining people until only one person remains, who is released. The objective is to determine
the position of the survivor J

k
(n) ∈ {1, 2, . . . , n} in the initial circle.

The problem received little attention throughout the first millennium, but new formulations were proposed in
the second millennium, such as the rhyming games traced by Oring [16]. In the following centuries, more specific
versions of the problem emerged, and it was integrated into a certain category of puzzles or riddles. One notable
example is Bachet’s presentation [2], where was established a formal procedure to solve the case k = 3 and
n = 41 with total accuracy. In 1776, Euler heuristically found a recursive formula that connects the survivor’s
position for a given number of condemned with the position of the corresponding survivor when one more
condemned is added; see [6]. This was a significant development in the mathematical treatment of the problem,
as it required logical argumentation, appropriate symbolic notation, and exploration. However, the computational
aspect of the problem has received more attention in recent years, as the advancement of technology allows for
the efficient calculation of the survivor’s position J

k
(n) for large numbers of people n. In [22], Tait presents some

discussion and figures in this direction, highlighting the importance of fast computational methods for solving the
problem. Over time, the problem has attracted the attention of mathematicians from various areas, and the study
of the problem was recently extended to the field of permutations. Mathematicians such as Herstein, Kaplansky,
Ball, and others studied the problem in group theory and algorithmically; see, for instance, [1,3,5,10,20,24]. The
Josephus problem also has various modern applications such as computer algorithms, data structures, and image
encryption; see, for instance, [4, 13, 25, 26]. When the number of jumps, k − 1, is equal to one, Knuth derived
a closed-form expression for J

2
(n) as 2n− 2blog2 nc+1 + 1 and developed an efficient algorithm for evaluating

J
k

for arbitrary values of k; see, for instance, [12]. This algorithm avoids the recursive nature of the Josephus
function and is presented in [7]. We invite the reader interested in delving deeper into the historical origin of this
problem and applications to review references such as [9, 14, 15, 17–19, 21] and [8, Appendix].

This paper introduces a new approach for analyzing the intrinsic properties of the Josephus function, J
k
.

We formulate algebraic expressions that describe all extreme points of J
k
, including recurrence formulas to

compute extreme points. Additionally, we prove the existence of consecutive extreme and fixed points for all
k ≥ 3, generalizing Knuth result for k = 2; see [7]. Moreover, by revealing the piecewise linear structure of
J

k
between extreme points, we design an efficient algorithm for evaluating J

k
(n) for large n. A comparative

computational study is conducted at the last section of the paper to evaluate the performance of the proposed
algorithm against established methods, such as Euler/Woodhouse [6, 25], Knuth [7], and Uchiyama [23]. The
results of the numerical comparison indicate that the proposed scheme is highly effective for computing J

k
(n)

for large inputs k and n.
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Notation and Definitions The mathematical formulation of the classical Josephus problem can be stated as
follows: Let n people be arranged in a circle which closes up its ranks as individuals are picked out. Starting
anywhere (person 1st spot), go sequentially around clockwise, picking out each kth person (this number k is
called the reduction constant) until but one person is left (this person is called the survivor). The position of the
survivor is denoted by J

k
(n), which belongs to the natural numbers N. This procedure is called the elimination

process, and it naturally generates a discrete function J
k

: N→ N for each k ≥ 2 that we will call the Josephus
function. Given n ≥ 1 and k ≥ 2 integers, we say that the Josephus problem has been solved once we have
determined the value of J

k
at n. For any two integers ` and m such that ` < m, the set {`, `+ 1, . . . ,m} will

be denoted by [[`,m]]. Notice further that J
k
(n) ∈ [[1, n]] for every n.

Definition (Fixed and Extremal points). A fixed point of J
k

is a value np such that np = J
k
(np). Additionally,

an extremal point ne is defined as a point that satisfies either J
k
(ne) ∈ [[1, k − 1]] or J

k
(ne) ∈ [[ne − k +

2, ne ]]. If J
k
(ne) ∈ [[1, k − 1]], we refer to ne as a low extremal point. On the other hand, if J

k
(ne) ∈ [[ne −

k + 2, ne ]], we refer to ne as a high extremal point.

Note that, a fixed point np is also a high extremal point because J
k
(np) = np . However, there are high

extremal points that are not fixed points; see Figure 1 below.

2. PROPERTIES OF THE JOSEPHUS FUNCTION In this section, we first recall a well-known recursive
formula appeared first in Euler paper [6, & 8, pp. 130-131], which establishes a way of determining J

k
(n+ 1)

in terms of J
k
(n).

Theorem 1 (Euler formula). Let k ≥ 2 and denote p := J
k
(n). Then, J

k
(n + 1) = p + k − `(n + 1), if

p+ k ∈ [[`(n+ 1) + 1, (`+ 1)(n+ 1)]] for some non-negative integer `.
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(a) Graph of J3(n) for n ≤ 240
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(b) Graph of J10(n) for n ≤ 480

Figure 1. Graphs of the Josephus functions J3 and J10

Remark. For some special values of the reduction constant k, we have the following observations:

(a) If k ≤ n+ 1, the formula given in Theorem 1 can be simplified as follows:

J
k
(n+ 1) =

{
p+ k, if p+ k ≤ n+ 1

p+ k − (n+ 1), if p+ k > n+ 1.
(1)

(b) When k = 3, (1) holds for every n. In fact, we just need to check (1) for n = 1. In this case, we have
J

3
(n+ 1) = J

3
(2) = 2 = J

3
(1) + 3− (1 + 1) = J

3
(n) + k − (n+ 1).

(c) When k = 2, no recursive formula is necessary hereafter since Knuth [7] has deduced the following explicit
formula: J

2
(n) = 2n− 2blog2 nc+1 + 1, for all n.
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(d) It is possible for two consecutive values of n to have the same image under J
k
. For example, when k = 8,

J
8
(3) = J

8
(4) = 3.

(e) If n ≤ k − 1, J
k
(n) ≤ n ≤ k − 1, which implies that n is a low, and also high, extremal point. Moreover, if

n ≥ 2k − 3, then there is an alternating sequence of pure low and high extremal points for the Josephus function
J

k
for every k ≥ 2.

In Figure 1, we present the graphs of J
3

and J
10

for various values of n. The extremal points of J
k
, ne , i.e.,

J
k
(ne) ∈ [[1, k − 1]] ∪ [[ne − k + 2, ne ]], which will be fully studied in the next subsection, are indicated in

blue. Moreover, the fixed points np of J
k
, i.e., np = J

k
(np), that are also extreme points, are depicted in red.

Note that for ne to be both a low and high extremal point, J
k
(ne) ∈ [[1, k − 1]] ∩ [[ne − k + 2, ne ]], which

always happens if ne ≤ k − 1. In addition, if ne ≥ 2k − 3 is a high extremal point then ne + 1 is a low extremal
point, which reveals a sequence of alternated extreme points. The two graphs depicted in Figure 1 exhibit the
intrinsic piecewise linear structure of J

k
between its low and high extremal points. Moreover, in general the

fixed points for k ≥ 3 exhibit a chaotic behavior in contrast with the case k = 2; see Figure 1 above for the cases
k = 3 and k = 10, and also Table 1 below with k = 2, 3, . . . , 12, 15. Note that the fixed points of J

2
can be

described by the formula: n(i)
p

= 2i − 1, where i is a natural number. Note further that J
2
(2i) = 1, which makes

ne = 2i be a low extreme point, for every i; see, for instance, [12, pp. 184].
In Table 1 below, we illustrate the first fixed points of the Josephus functions J

k
(n) for some values of k.

Fixed points
Functions

J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J15

1st 1 1 1 1 1 1 1 1 1 1 1 1
2nd 3 2 21 2 20 2 3 2 4 2 10 2
3rd 7 13 38 46 51 3 13 7 475 4 11 52
4th 15 20 51 542 794 12 15 8 8177 5 19 388
5th 31 46 122 2587 953 68 26 15 11217 49 55 1899
6th 63 157 163 3234 17629 274 1276 17 28954 54 111 30003
7th 127 236 689 6317 21155 593 1905 375 126567 188 290 136887

Table 1. First seventh fixed points of Jk for k = 2, 3, . . . , 12, 15.

Now based on Theorem 1, we present a formula for the Josephus function for the value of n = np + 1, i.e.,
just after a fixed point np = J

k
(np) is attained.

Proposition 2 (Values of J
k

after reaching a fixed point). Let k ≥ 2 and np be a fixed point. Then,

J
k
(np + 1) =


k − 1, if k ≤ np + 1

np + 1, if k = s
`

+ 1 for some ` ≥ 1

k
1
− 1, if k = s

`
+ k

1
for some ` ≥ 1 and 2 ≤ k

1
≤ np

np , if k = s
`+1

for some ` ≥ 1,

where s
`

= `(np + 1). Moreover, if J
k
(np + 1) = k − 1 then np is a fixed point.

Proof. Let us consider the four cases for the values of k with respect to np as follows:
Case 1. Assume k ≤ np + 1. Note that s

1
+ 1 = np + 2 ≤ np + k ≤ 2np + 1 < s

2
. It follows from Theorem

1 that J
k
(np + 1) = np + k − s

1
= np + k − (np + 1) = k − 1.

Case 2. Assume k = s
`

+ 1. So, np + k = s
`+1

. Then, by Theorem 1, J
k
(np + 1) = np + k − s

`
= np + 1.

Case 3. Assume k = s
`

+ k
1

(2 ≤ k
1
≤ np). Note that s

`+1
+ 1 ≤ np + k ≤ 2np + s

`
= s

`+1
+ np − 1 <

s
`+2

. Then, by Theorem 1, J
k
(np + 1) = np + k − s

`+1
= k

1
− 1.

Case 4. Assume k = s
`+1

. Then, s
`+1

+ 1 ≤ np + k < s
`+2

. Theorem 1 implies J
k
(np + 1) = np + k −

s
`+1

= np .
On the other hand, assume that k ≤ np + 1 and J

k
(np + 1) = k − 1. By using Euler formula backwards, we

can determine the value of p = J
k
(np). In particular, p must satisfy the equation k − 1 = p+ k − s

`
for some

non-negative integer `. This is equivalent to p = s
`
− 1. If ` = 0, then p = −1, which is not possible. If ` ≥ 2,

then p ≥ s
2
− 1 > s

1
− 1 = np , which is also not possible. Hence, ` = 1 and p = np , which implies that np is

a fixed point of J
k
.

0] ANALYTICAL STUDY OF JOSEPHUS FUNCTION 3
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Remark. If np is a fixed point, then the following interesting facts can be derived from Proposition 2:

(a) If np ≥ k − 1, then J
k
(np + 1) = k − 1. In particular, J

3
(np + 1) = 2 for any np .

(b) It is possible for two consecutive fixed points to exist for a given value of k. For example, when k = 9, 7 and
8 are both fixed points of J

9
.

(c) Note that, if a fixed point np ≤ k − 1, then np is also a low extremal point.

We will now provide a formal presentation of a partially generalized version of Euler’s formula, which was
previously stated without proof in [19, p. 47].

Lemma 3 (Generalization of the Euler formula). Let n ≥ 1 and k ≥ 2 be positive integers and denote p :=
J

k
(n) (1 ≤ p ≤ n). Then,

(a) If p+ km ≤ n+m, for any m ∈ N, then J
k
(n+m) = p+ km.

(b) If m ∈ N is the smallest value for which p+ km > n+m, then J
k
(n+m) = p+ km− (n+m).

Proof. (a) Let m be any natural number. First of all, p+ km ≤ n+m, if and only if, m ≤ (n− p)/(k − 1).
Thus, p+ km̌ ≤ n+ m̌ for every 0 ≤ m̌ ≤ m. Let us define the finite sequences: r

m̌
:= n+ m̌, and t

m̌
:=

J
k
(r

m̌
) for every integer m̌ = 0, . . . ,m. Since, p+ k ≤ n+ 1, by Theorem 1, we get t

1
= p+ k. Now, since

t
1

+ k = p+ k(2) ≤ n+ 2 = r
1

+ 1, again by Theorem 1, we get t
2

= t
1

+ k. By applying this procedure m
times, we get that t

m̌
= t

m̌−1
+ k for m̌ ∈ [[1,m]]. Then,

J
k
(n+m) = J

k
(rm) = tm = t

m−1
+ k = · · · = p+ km,

proving item (a).
(b) Let us denote p′ := p + k(m − 1) and n′ := n + (m − 1). Note that p′ ≤ n′ by hypothesis. Thus, by
part (a), J

k
(n′) = p′. Moreover p′ + k > n′ + 1. We claim that p′ + k ≤ 2(n′ + 1). Otherwise, 2(n+m) =

2(n′ + 1) < p′ + k ≤ n′ + k = (n+m) + k − 1, which implies that n+m < k − 1. Then, k < p+ k(m−
1) ≤ (n+m)− 1 < k − 2, which is a contradiction. Hence, it follows from equation (1) that J

k
(n+m) =

J
k
(n′ + 1) = p′ + k − (n′ + 1) = p+ k − (n+m), which proves item (b).

In the following subsection, we will use Lemma 3 to derive several general conclusions regarding the behavior
of the Josephus function J

k
.

Characterization of extremal points We start by characterizing some initial extreme points for the Josephus
function.

Corollary 4 (The first known high extremal point). The point 2k − 2 is always an extremal point for J
k
. In

particular,

ne :=

{
2k − 3, if J

k
(2k − 2) ≤ k − 1

2k − 2, if J
k
(2k − 2) > k − 1,

(2)

is a high extremal point and ne + 1 is a low extremal point.

Proof. When j := J
k
(2k − 2) ≤ k − 1, by the definition of low extremal point and (2), we have that ne + 1 =

2k − 2 is a low extremal point and ne = 2k − 3 a high extremal point.
On the other hand, when j > k − 1, ne = 2k − 2 must be a high extremal point. Indeed, j ∈ [[k, 2k − 2]].

Moreover, by Lemma 3(b),

J
k
(2k − 1) = J

k
(2k − 2) + k − ((2k − 2) + 1) = j − k + 1 ∈ [[1, k − 1]].

Hence, 2k − 1 = ne + 1 is a low extremal point. Therefore, by definition 2k − 2 = ne is a high extremal point,
as desired.

4 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121
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In the following, we present our main results. From now on, let us assume that k ≥ 2 and n ≥ k − 1, which
allows an alternating sequence of low and high extremal points for the Josephus function J

k
where k ≥ 2. We

next reveal a recurrence procedure to find successive extreme points of the function J
k
. In particular, we prove

that there is an infinite number of fixed points for J
k
.

First, we introduce the following sequences:

{δ
k
(r, j)}k−2,k−1r=0,j=1 with δ

k
(r, j) :=

{
1, if r < j − 1

0, if r ≥ j − 1,
(3)

{a
k
(n, r)}∞,k−2

n=k−1,r=0 with a
k
(n, r) :=

k(n+ 1)− (r + 1)

k − 1
, (4)

{M
k
(n, r, j)}∞,k−2,k−1

n=k−1,r=0,j=1 with M
k
(n, r, j) :=

n− r
k − 1

− δ
k
(r, j). (5)

The meaning of each sequence term can be summarized as follows: δ
k
(r, j) serves as a variation of Kronecker’s

delta, while a
k
(n, r) is associated with the extremal points of the Josephus function. Lastly, M

k
(n, r, j) defines

the upper bound of an interval where the Josephus function exhibits linear behavior. We outline some important
properties of these sequences in the following lemma.

Lemma 5 (Properties of the Josephus function). Denote j := J
k
(n+ 1). Then,

(a) If j ∈ [[1, k − 1]], m
0

:=

⌊
n− (j − 1)

k − 1

⌋
is the largest nonnegative integer m that satisfies the inequality

j + km ≤ n+ 1 +m. (6)

and [[0,m
0
]] is the solution set of (6). Moreover, m0 ≥ 1 if n ≥ k − 2 + j.

(b) If j ∈ [[1, k − 1]] and n ≡ r mod (k − 1), then m
0

= M
k
(n, r, j) and n + 1 + m

0
= a

k
(n, r) −

δ
k
(r, j).

(c) a
k
(n, r) is an integer, if and only if, n ≡ r mod (k − 1).

Proof. (a) First note that (6) is equivalent to m ≤ (n − (j − 1))/(k − 1). Then, since n ≥ k − 1, we have
m0 = b(n− (j − 1))(k − 1)c as the largest non-negative integer satisfying (6). Therefore, any non-negative
integer m satisfying 0 ≤ m ≤ m0 clearly satisfies the inequality (6), since 0 is a trivial solution. Now, note that
n ≥ k − 2 + j happens automatically when n ≥ 2k − 3 since j ≤ k − 1. Moreover, since (n− (j − 1))/(k −
1) ≥ (2k − 3− (k − 2))/(k − 1) = 1, we have m0 ≥ 1.

On the other hand, if n ∈ [[k − 1, 2k − 4]] then, from a direct inspection to the value of (n− (j − 1))/(k −
1), we get that

m
0

=

{
0, if n < k − 2 + j

1, if n ≥ k − 2 + j.
(7)

So, in this case, it follows from (7) that m0 = 1 is the largest integer satisfying (6) if n ≥ k − 2 + j, proving
this item.
(b) Suppose that n ≡ r mod (k − 1). Note that (j−1)−r

k−1 ∈ [ 1
k−1 ,

j−1
k−1 ] ⊂ (0, 1) when r < j − 1, and

r−(j−1)
k−1 ∈ [ 1

k−1 , 1 −
j

k−1 ] ⊂ (0, 1) when r > j − 1. Thus, using the definition of M
k
(n, r, j) given in (5),

we get

m
0

=



⌊
n− r
k − 1

− (j − 1)− r
k − 1

⌋
=
n− r
k − 1

− 1, if r < j − 1

n− r
k − 1

, if r = j − 1⌊
n− r
k − 1

+
r − (j − 1)

k − 1

⌋
=
n− r
k − 1

, if r > j − 1


= M

k
(n, r, j).

0] ANALYTICAL STUDY OF JOSEPHUS FUNCTION 5
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The equality n+ 1 +m
0

= a
k
(n, r)− δ

k
(r, j) follows directly from previous equation and by the definition

of a
k
(n, r) and δ

k
(r, j) in (3) and (4), respectively.

(c) If a
k
(n, r) =

k(n+ 1)− (r + 1)

k − 1
is an integer, clearly k(n+ 1) ≡ r + 1 mod (k − 1). In this case,

n ≡ kn− (k − 1)n ≡ kn ≡ k(n+ 1)− k ≡ r + 1− k ≡ r − (k − 1) ≡ r mod (k − 1).

Now if n ≡ r mod (k − 1) then k(n + 1) ≡ n + 1 + (k − 1)(n + 1) ≡ n + 1 ≡ r + 1 mod (k − 1),
which implies that a

k
(n, r) is an integer.

We now present formulas characterizing extremal points and their images in the Josephus function J
k
. These

expressions will be useful in determining recurrence formulas between extremal points and a formula for the
image of J

k
at any arbitrary n in terms of the high and low extremal points.

Theorem 6 (Extremal points formulas). Let ne ≥ 2k − 3 be a high extremal point and denote j := J
k
(ne +

1). Then,
(a) J

k
(ne + 1 +m) = j + km, for all m ∈ [[0, b(ne − (j − 1))/(k − 1)c]].

(b) If ne ≡ r mod (k − 1), then the next high extremal point of J
k

is n+
e

:= a
k
(ne , r)− δk(r, j). Moreover,

J
k
(n+

e
) = n+

e
− δ

k
(r, j)(k − 1)− r + (j − 1), (8)

J
k
(n+

e
+ 1) = (1− δ

k
(r, j))(k − 1)− r + (j − 1), (9)

and

J
k
(n+

e
+ 1) = (k − 1)− [n+

e
− J

k
(n+

e
)]. (10)

(c) n+
e

is a fixed point of J
k
, if and only if, r − (j − 1) = 0 and n+

e
=
k(ne + 1)− j

k − 1
.

(d) J
k

is a linear function on [[ne + 1, n+
e

]].

Proof. (a) By Lemma 5(a), j + km ≤ ne + 1 +m for everym ∈ [[0,m
0
]] wherem

0
:= b(ne − (j − 1))/(k − 1)c.

Additionally, Lemma 3(a) implies that J
k
(ne + 1 +m) = j + km for everym ∈ [[0, b(ne − (j − 1))/(k − 1)c]]

as desired.
(b) It follows from the previous item, and Lemma 5(b) that m0 ≥ 1 and

J
k
(n+

e
) = J

k
(ne + 1 +m

0
) = j + km

0

=


j + k

(
ne − r
k − 1

− 1

)
, if r < j − 1

j + k

(
ne − r
k − 1

)
, if r ≥ j − 1

=

{
a
k
(ne , r)− 1− (k − 1)− (r − (j − 1)), if r < j − 1

a
k
(ne , r)− (r − (j − 1)), if r ≥ j − 1

= n+
e
− δ

k
(r, j)(k − 1)− r + j − 1,

where m
0

= b(ne − (j − 1))/(k − 1)c, which proves (8). Now using Lemma 3(b) and Lemma 5(b), we have

J
k
(n+

e
+ 1) = J

k
(ne + 1 + (m

0
+ 1)) = j + k(m

0
+ 1)− (ne + 1 + (m

0
+ 1))

=


j + k

(
ne − r
k − 1

)
− ne − 1− ne − r

k − 1
, if r < j − 1

j + k

(
ne − r
k − 1

+ 1

)
− ne − 2− ne − r

k − 1
, if r ≥ j − 1

6 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121
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=

{
−(r − (j − 1)), if r < j − 1

(k − 1)− (r − (j − 1)), if r ≥ j − 1

= (1− δ
k
(r, j))(k − 1)− r + j − 1,

establishing (9). On the other hand, since (1− δ
k
(r, j))(k − 1)− r + j − 1 ∈ [[1, k − 1]], n+

e
is certainly the

next high extremal point of J
k
. Additionally,

(k − 1)− [n+
e
− J

k
(n+

e
)] = (k − 1)− [n+

e
− (n+

e
− δ

k
(r, j)(k − 1)− r + j − 1)]

= (k − 1)− [δ
k
(r, j)(k − 1) + r − j + 1]

= (1− δ
k
(r, j))(k − 1)− r + j − 1

= J
k
(n+

e
+ 1),

proving (10).
(c) If n+

e
is a fixed point of J

k
, then (8) implies that δ

k
(r, j)(k − 1) + r − j + 1 = 0. Therefore, r − j + 1 = 0

and n+
e

= a
k
(ne , j − 1) = (k(ne + 1)− j)/(k − 1). Conversely, if r − j + 1 = 0 and n+

e
= (k(ne + 1)−

j)/(k − 1), then (8) implies J
k
(n+

e
) = n+

e
− δ

k
(r, j)(k − 1)− r + j − 1 = n+

e
− 0(k − 1)− 0 = n+

e
. Thus,

n+
e

is a fixed point of J
k
.

(d) It follows from (a).

The following results present a recurrence formula that allows us to compute successive high extremal points
for the Josephus function J

k
. We also provide algebraic expressions for the images of J

k
at extremal points and

at an arbitrary n. This recurrence relation is of great importance in establishing the existence of fixed points and
developing an effective extremal algorithm for evaluating the Josephus function.

Corollary 7 (Recurrence formula for computing high extremal points). Let n(i)
e
≥ 2k− 3 be a high extremal

point of the Josephus function J
k
, with corresponding functional value J

k
(n(i)

e
). Given

r
i

:= mod (n(i)
e
, k − 1), (11)

and

c
i

:=

{
1, if r

i
< k − 2− n(i)

e
+ J

k
(n(i)

e
)

0, if r
i
≥ k − 2− n(i)

e
+ J

k
(n(i)

e
),

(12)

Then, we can compute the next high extremal point

n(i+1)
e

=
k(n(i)

e
+ 1)− (r

i
+ 1)

k − 1
− c

i
, (13)

and its functional value

J
k
(n(i+1)

e
) = (k − 1)− n(i)

e
+ J

k
(n(i)

e
) + k

⌊
2n(i)

e
− J

k
(n(i)

e
)− (k − 2)

k − 1

⌋
. (14)

Moreover, for any n ∈ [[n(i)
e

+ 1, n(i+1)
e

]], we have

J
k
(n) = k(n− n(i+1)

e
) + J

k
(n(i+1)

e
). (15)

Proof. Assume that n(i)
e

is a given high extremal point and its corresponding value through J
k

is known. Then,
by Theorem 6(c), J

k
(n(i)

e
+ 1) = (k − 1)− [n(i)

e
− J

k
(n(i)

e
)].

Set j := (k − 1)− [n(i)
e
− J

k
(n(i)

e
)]. Notice that j − 1 = k − 2− n(i)

e
+ J

k
(n(i)

e
). Find r

i
and c

i
by em-

ploying equations (11) and (12), respectively.
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Then, on the one hand, by Theorem 6(b), the next high extremal point of J
k
, n(i+1)

e
, is

n(i+1)
e

= a
k
(n(i)

e
, r

i
)− δ

k
(r

i
, j) =

k(n(i)
e

+ 1)− (r
i

+ 1)

k − 1
− c

i
,

which tell us that (13) holds. Also, it follows from Theorem 6(b) that:

J
k
(n(i+1)

e
) = j + k

⌊
n(i)

e
− (j − 1)

k − 1

⌋

= (k − 1)− n(i)
e

+ J
k
(n(i)

e
) + k

⌊
2n(i)

e
− J

k
(n(i)

e
)− (k − 2)

k − 1

⌋
,

which verifies the validity of (14). Now, if n ∈ [[n(i)
e

+ 1, n(i+1)
e

]], the point (n, J
k
(n)) can be determined by

finding the intersection of the vertical line at (n, n) and the line with slope k that passes through (n(i+1)
e

, J
k
(n(i+1)

e
)),

which gives us (15).

We now include a similar recurrence formula for the low extremal points.

Corollary 8 (Recurrence formula for computing low extremal points). Let ň(i)
e
≥ 2k − 3 be a low extremal

point of the Josephus function J
k
, with functional value J

k
(ň(i)

e
). Given ř

i
:= mod (ň(i)

e
, k − 1) and

č
i

:=

{
1, if ř

i
< J

k
(ň(i)

e
)

0, if ř
i
≥ J

k
(ň(i)

e
).

Then, we can compute the next low extremal point as follows:

ň(i+1)
e

=
kň(i)

e
− ř

i

k − 1
− č

i
+ 1, (16)

and its functional value as:

J
k
(ň(i+1)

e
) = k − ň(i+1)

e
+ J

k
(ň(i)

e
) + k

⌊
ň(i)

e
− J

k
(ň(i)

e
)

k − 1

⌋
. (17)

Moreover, for any n ∈ [[ň(i)
e

+ 1, ň(i+1)
e

]], we have

J
k
(n) = kn+ J

k
(ň(i+1)

e
)− (k − 1)ň(i+1)

e
. (18)

Proof. The proof of the formulas for ň(i+1)
e

and J
k
(ň(i+1)

e
) are similar to Corollary 7. J

k
(n) follows directly

from (15) and (10).

Remark (Knuth formula is recovered). When k = 2, the above corollary can be used to derive the Knuth
formulas for the low and high extremal (fixed) points, as well as the explicit formula for J

2
(n) for every n ≥ 1.

To do this, we substitute k = 2 into equations (16) and (17), which yields ř
i

= 0 and č
i

= 1 for all i ≥ 1. More
than that, Corollary 4 can be used to start a straightforward induction argument, to show that the low extremal
point ň(i)

e
= 2i and the high extremal point, which in this case coincides with a fixed point, n(i)

p
= ň(i)

e
− 1 =

2i − 1 for all i ≥ 1. Moreover, the explicit formula for J
2
(n) can be obtained directly from (18) by observing

that J
2
(ň(i)

e
) = 1 and i = blog2 nc whenever n(i)

e
is a low extremal point and n ≥ n(i)

e
. Specifically, we have

J
2
(n) = 2n− 2blog2 nc+1 + 1.

We are now ready to prove the existence of infinitely many fixed points for J
k

when k ≥ 3, which has already
been established by Knuth for k = 2. The approach we take to prove the existence of fixed points will involve
applying the recurrence form of Corollary 7 successively. We state this formally in the following theorem.

8 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121
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Theorem 9 (Existence of infinitely many fixed points). The Josephus function J
k

will eventually reach a fixed
point.

Proof. When k = 2 the result was proved by Knuth [12, pp. 162 & 184]. So, let us assume that k ≥ 3. Then, if
n ≥ 2k − 3 and J

k
(n) is known, and if n is either a low extremal point or a point that is not a high extremal

point, then we can reach a high extremal point by using Lemma 3. Without loss of generality, we can assume
that n is a high extremal point that is not a fixed point of J

k
, and we seek to find a fixed point.

The proof will proceed by contradiction. Assume that the repeated application of Corollary 7 generates only
high extremal points, which are no fixed points of J

k
. Let us denote n as n(0)

e
. So, n(0)

e
+ 1 is a low extremal point

of J
k
, and by Proposition 2, j

0
:= J

k
(n(0)

e
+ 1) < k − 1. Let r

0
≤ k − 2 such that n(0)

e
≡ r

0
mod (k − 1).

Then, by applying Corollary 7, the integer n(1)
e

is a high extremal point. Based on our general assumption
r

0
6= j

0
− 1. Notice that n(1)

e
can be written as follows:

n(1)
e

= α(n(0)
e

+ 1)− r
0

+ 1

k − 1
− c

0
= α(n+ 1) + d

0
− 1,

where α := k/(k − 1) and d
0

:= (1− c
0
)− (r

0
+ 1)/(k − 1). Based on our assumption and on Corollary 7,

an infinite sequence {n(m)
e
}m∈N of high extremal points can generated, where none of its terms is a fixed point

such that jm := J
k
(n(m)

e
+ 1) < k − 1 (a low extremal point), n(m)

e
≡ rm mod (k − 1) (rm 6= jm − 1), and

for m ≥ 1:

n(m)
e

= αm(n(0)
e

+ 1) + (αm−1d
0

+ · · ·+ d
m−1

)− 1

= αm(n+ 1) +

(
m−1∑
i=0

αm−1−idi

)
− 1, (19)

where d
i

:= (1 − c
i
) − (r

i
+ 1)/(k − 1). Therefore, (19) holds for all m ≥ 1. Now, observe that it can be

rewritten as follows:

n(m)
e

= αm−1

(
α(n+ 1) +

m−1∑
i=0

d
i

αi
− 1

αm−1

)

=
km−1

(k − 1)m−1

(
k

k − 1
(n+ 1) +

1

k − 1

m−1∑
i=0

(k − 1)d
i

αi
− (k − 1)m−1

km−1

)

=
km−1

(k − 1)m

(
k(n+ 1) +

m−1∑
i=0

(k − 1)d
i

(
k − 1

k

)i

− (k − 1)m

km−1

)
. (20)

Note further that (k − 1)d
i

= (k − 1)(1− c
i
)− r

i
− 1, where r

i
∈ [[0, k − 2]] and c

i
∈ {0, 1}. Hence, if we

define

βm := k(n+ 1) +
m−1∑
i=0

(k − 1)d
i

(
k − 1

k

)i

− (k − 1)m

km−1
,

then, for all m ≥ 1, βm satisfies:

1 ≤ k(n− k + 2)− 1 ≤ βm ≤ k(n+ k − 1), (21)

where we have used that −(k − 1) ≤ (k − 1)d
i
≤ k − 2, the fact that n ≥ 2k − 3 implies that n ≥ k − 1

because k ≥ 3, and

m−1∑
i=0

(
k − 1

k

)i

=

1−
(
k − 1

k

)m

1−
(
k − 1

k

) ≤ k.

0] ANALYTICAL STUDY OF JOSEPHUS FUNCTION 9
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Using now (20), we get

n(m)
e

=
km−1

(k − 1)m
· βm,

and hence, n(m)
e

is a positive integer number for all m, if βm grows as (k − 1)m for m large, or it approaches to

0 as km−1

(k−1)m . These two possibilities clearly do not happen because (21) guarantees that βm is uniformly far from
0 and bounded. Thus, for some m

0
≥ 1, rm0

coincides with jm0
− 1 and n(m0 )

e
is a fixed point by Theorem

6(c), proving the result.

3. NUMERICAL EXPERIMENTS In this section, we present a numerical comparison of four algorithms to
evaluate the Josephus function. The computational experiments were carried out on an iMac 3.6 GHz 10-Core
Intel Core i9 with 32GB of RAM. The algorithms were implemented in the Julia programming language v1.8
and the code of Extremal algorithm is provided below for reference.

The algorithms First, let’s describe three well-known methods for solving the Josephus problem (Euler, Knuth
and Uchiyama algorithms); see, for instance, [7,23,25]. Moreover, we propose a novel scheme for evaluating the
Josephus function called the Extremal algorithm.

Euler algorithm: The Euler algorithm is a natural interpretation of the recurrence relation proposed first in [6, &
8, pp. 130-131]. In [25, p. 57], Woodhouse gave the following modern algorithmic description:

J
k
(n) = ((· · · ((1 + k)(2) + k)(3) + · · ·+ k)(n−1) + k)(n)

where for any positive integers r and s the symbol (r)(s) denotes the integer satisfying: (r)(s) ≡ r mod s
and 1 ≤ (r)(s) ≤ s. This scheme clearly has an intrinsic recursive behavior and complexity O(n), i.e., there is
necessary about n function evaluations to reach the solution.

To compute the Josephus function J
k

at n, the Euler algorithm requires evaluating J
k

for all preceding values,
that is, n− 1 evaluations of J

k
.

Knuth algorithm: In equation (3.19) from [7, Chapter 3, Section 3, p. 81] Knuth presents the following algo-
rithm:

D := 1;

While D ≤ (k − 1)n do D :=

⌈
k

k − 1
D

⌉
;

J
k
(n) = kn+ 1−D.

Knuth algorithm significantly reduces the number of evaluations required to compute J
k
(n) compared to the

Euler algorithm. Instead of the recursive computation of the Euler algorithm, the Knuth algorithm only requires a
O(ln(n)) evaluations before computing J

k
(n). This results in a more efficient computation process than Euler’s.

Uchiyama algorithm: In equation (11) from [23, Section 4, p. 329], Uchiyama presents the following algorithm:
Let n

1
= 1,

c?
1

= c
1

:= J
k
(2) =

{
1, if k is even
2, if k is odd .

10 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121
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For i ≥ 1 compute:

n
i+1

=

⌊
k(n

i
+ 1)− c

i

k − 1

⌋
;

c?
i+1

:= c
i

+ (k − 1)(n
i+1

+ 1)− k(n
i

+ 1);

c
i+1
≡
{
c?
i+1

mod (n
i+1

+ 1), if 1 ≤ c
i+1
≤ n

i+1
+ 1

c?
i+1
, otherwise .

If n
i
< n ≤ n

i+1
, J

k
(n) = c

i
+ k(n− n

i
− 1).

Uchiyama algorithm like Knuth algorithm improves to O(ln(n)) the number of evaluations required to com-
pute J

k
(n) compared to the Euler algorithm.

Extremal algorithm: To evaluate the Josephus function J
k
, we proposed the Extremal algorithm, which employs

a strategy of computing recursively high extremal points n(i)
e

(i = 1, 2, . . . ,m) until n(m)
e

is greater than or
equal to n; see Corollary 7. This approach capitalizes on the linear piecewise structure of the Josephus function,
enabling the Extremal algorithm to efficiently compute J

k
(n) compared to other methods.

The Extremal algorithm for evaluating J
k

at n ≥ 2k − 3 can be described as follows. We start by defining
j := J

k
(2k − 2) and our first high extremal point n(1)

e
and J

k
(n(1)

e
) as follows:

(
n(1)

e
, J

k
(n(1)

e
)
)

:=

{
(2k − 3, j + k − 2), if j ≤ k − 1

(2k − 2, j), if j > k − 1.

We iterate from i = 1, 2, . . . until n(i)
e < n as follows:

r
i

:= mod (n(i)
e
, k − 1);

c
i

:=

{
1, if r

i
< k − 2− n(i)

e
+ J

k
(n(i)

e
)

0, if r
i
≥ k − 2− n(i)

e
+ J

k
(n(i)

e
);

J
k
(n(i+1)

e
) = (k − 1)− n(i)

e
+ J

k
(n(i)

e
) + k

⌊
2n(i)

e
− J

k
(n(i)

e
)− (k − 2)

k − 1

⌋
;

n(i+1)
e

=
k(n(i)

e
+ 1)− (r

i
+ 1)

k − 1
− c

i
.


If n(i)

e
< n ≤ n(i+1)

e
, then J

k
(n) = J

k
(n(i+1)

e
) + k(n− n(i+1)

e
).

The Extremal algorithm has the following JULIA code:

� �
function josephus_Extremal(n::Int, k::Int)

j = josephus_Knuth(2*k - 2, k)
(ne, j_ne)= ifelse(j <= k - 1, (2*k - 3, j + k - 2), (2*k - 2, j)
while ne < n

r = mod(ne, k-1)
c = ifelse(r < k - 2 - ne + j_ne, 1, 0)
j_ne = k - 1 - ne + j_ne + k*floor(Int, (2*ne - j_ne - (k - 2))/(k - 1))
ne = (k*(ne + 1) - (r + 1))/(k - 1) - c

end
return j_ne + k*(n-ne)

end� �
The Extremal algorithm is also more efficient than Euler algorithm. Like the Knuth and Uchiyama algorithms,

it requires O(ln(n)) evaluations before computing J
k
(n).

0] ANALYTICAL STUDY OF JOSEPHUS FUNCTION 11
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A Comparative Computational Study To compare the performance of all algorithms, we conducted exten-
sive numerical experiments by measuring their CPU time. We employed a Performance Profile testing a total of
452500 problems, uniformly distributed for n ∈ [50000 : 100 : 100000] and k ∈ [50 : 10 : 1000]. We com-
pared the Extremal algorithm with three other algorithms, namely Euler, Knuth, and Uchiyama, and our results
indicate that the Extremal algorithm outperformed the other three in almost all problem instances (see Figure 2),
making it an excellent choice for solving the Josephus problem for large inputs.

(a) PP: All Methods (b) PP: Extremal vs Uchiyama

Figure 2. Performance Profiles (PP) for n ∈ [50000 : 100 : 100000], k ∈ [50 : 10 : 1000]

To provide a more detailed analysis of our results, we present Table 2, which summarizes descriptive statistics
of the benchmark of problems, including the minimum (min), mean, maximum (max), and standard deviation
(std) of total CPU time. The Extremal algorithm consistently performed better than Euler, Knuth, and Uchiyama
algorithms, indicating its superiority for solving the Josephus problem.

Table 2. Statistics of the experiments

Algorithms min mean max std
Euler 0.000813209 0.00120984 0.00161632 0.000231202
Knuth 0.000659197 0.00101147 0.00137245 0.00019701
Uchiyama 7.234e-5 0.000518487 0.0010305 0.000246989
Extremal 7.6873e-5 0.000367613 0.000633953 0.000144699

4. CONCLUDING REMARKS In this paper, we presented a novel study characterizing the Josephus function
structure. We use the function’s piecewise linear structure to identify extreme points (including fixed points) of
the Josephus function, J

k
, via a recurrence formula. We have developed an efficient algorithm for evaluating J

k

for large values of n based on the successive computation of the high extreme points of J
k
. The effectiveness

of the proposed scheme was validated through its comparison to established algorithms. The results of the com-
parative study demonstrate the remarkable performance of the proposed approach in computing the Josephus
function for large inputs. It is noteworthy that we can employ the recurrence formula to calculate low extremal
points, and a similar approach can be designed to address the Josephus problem. The analytical study presented
in this paper can have substantial practical implications for applications such as scheduling, network optimiza-
tion, and distributed algorithms. However, finding a recurrence formula for computing fixed points, analogous to
the one we obtained for extremal points, remains an open problem. Addressing this problem could lead to further
insights and improvements in solving the Josephus problem.
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