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Abstract—Over the past two decades, Wi-Fi technology (de-
fined by the IEEE 802.11 standard) has become a prominent
wireless network access technology. In many situations, a device
may attach to several Wi-Fi access points within the radio range.
The operating system makes its choice over metrics that do
not take into account the actual available capacity. To fill this
gap, several proposals have been made to infer capacity, for
example by estimating the occupied proportion of the channel.
However, these techniques are being thwarted by the mechanisms
recently introduced in 802.11 to improve transmission speeds, in
particular frame aggregation. In this article, we focus on busy
time inference based on frame aggregation level. We propose
an analytical model based on a Markov chain which estimates
the theoretical aggregation level for different amounts of cross
traffic. We validate its accuracy against simulations carried out
on the ns-3 network simulator and an ad-hoc simulator. Results
show that the theoretical model gives an accurate estimation of
the frame aggregation level and that it can be used to infer the
network load.

Index Terms—IEEE 802.11, Frame aggregation, A-MPDU,
Markov model

I. INTRODUCTION

WLANs (Wireless Local Area Networks) have become

ubiquitous in our daily lives. IEEE 802.11, also known as Wi-

Fi, is the most popular wireless access network technology.

This technology is offered almost everywhere, in companies,

home and public areas [1].

On the one hand, companies and universities may deploy a

set of Access Points (AP) corresponding to the same logical

Wi-Fi network (Extended Service Set) and identified by a

common Service Set ID to cover properly the users. An

Extended service set is managed by a centralized server that

applies algorithms (e.g., load balancing, the optimal channel

allocation, security algorithms, etc.) to improve performance

and enable a flexible management of the network resources [2].

On the other hand, the spatial densification of Wi-Fi networks

is also related to the fact that many different Wi-Fi networks

can be deployed in the same area. Different servers manage

these APs and there is no common policy to help the devices

selecting the Wi-Fi network that offers the best performance.

This problem and the need to enhance the overall perfor-

mance of the network have led prior works to estimate the

available bandwidth which is defined as the maximum unused

bandwidth at a link or path as it directly impacts application

performance and user quality of experience. Some applications

such as iperf and speedtest (e.g., Ookla Speedtest [3]) consume

all the available bandwidth to estimate the throughput. Despite

their accuracy, it is preferable to avoid their intrusiveness. We

therefore consider only approaches that introduce a small mea-

surement overhead to infer the available bandwidth. Besides,

the available bandwidth is specific to a device, its channel and

antenna gains and many other hardware or software parameters

that condition the modulation and coding scheme it can use.

A more versatile metric is the busy time estimation, defined as

the proportion of time the wireless medium is busy. It captures

concurrent transmissions, constituting the AP load, as well as

inter-networks interference. This estimation allows a device to

identify the AP that offers the highest availability.

In the most recent evolutions of 802.11, in particular

802.11n or ac, a frame aggregation mechanism has been

introduced. In this paper, we study the possibility to infer the

channel busy time from the frame aggregation level measured

for a probe traffic. We propose two Markov chain based

analytical models to estimate the theoretical aggregation level

of a probe traffic (generated by the busy time estimation tool)

concurrent to a cross traffic (the current load). The first is

considering a cross traffic that also uses frame aggregation,

while the second captures cross traffic without aggregation.

Our model is compared to a custom-made simulator and ns-3

[18] simulations, both allowing more generic traffic patterns

and realistic scenarios. For the considered scenario, we show

that the mean aggregation level can be an accurate metric to

estimate the load of an AP.

The rest of this paper is organized as follows. Section II

summarizes related works. Section III briefly describes the

frame aggregation scheme introduced since IEEE 802.11n.

Our analytical models are presented in section IV. Numerical

results are presented in Section V. We discuss the possibility

to use the aggregation level to estimate the busy time in

Section VI. Finally, Section VII concludes this paper.

II. RELATED WORK AND MOTIVATION

Non-intrusive available bandwidth estimation techniques

have first been developed for wired networks. They can be



classified into two categories: Packet Rate Model (PRM) and

Probe Gap Model (PGM). PRM techniques are based on

comparing the emission and reception rates of small probe

packets. Techniques such as Train of packet pairs (TOPP) [13],

pathload [4], pathChirp [14] and DietTOPP [12], inject an

increasing probe traffic in the network. The concurrency with

other packets, also denoted cross traffic, will impact the

reception rates. These methods differ according to the probing

rate generation.

Alternatively, PGM techniques leverage the waiting times

induced by Carrier Sense Multiple Access (CSMA) to estimate

the cross traffic. Spruce [8] and Initial Gap Increase/Packet

Transmission Rate (IGI/PTR) [16] send batches of probe

packets and measure the inter-arrival time of the consecutive

packets to infer the available bandwidth.

More recent works have also taken into account the 3G/4G

networks [20] and the cloud networks [19]. However, in this

paper we focus on Wi-Fi networks.

a) Available bandwidth estimation in IEEE 802.11 net-

works: The waiting times induced by the CSMA/CA of 802.11

are different and more complex than those of Ethernet and

wired networks. To cope with it and address Wi-Fi networks,

more complex schemes have been developed. IdleGap [15]

needs to run on a real-time system and infers the idle time

from a low layer information, making it difficult to implement

in practice. WBest [5] is a PGM technique composed of two

stages. It first sends pairs of probe packets and estimates the

capacity of the network. It then transmits a train of probe pack-

ets at the consequent rate and deduces the available bandwidth.

Unfortunately, these schemes fail when the frame aggregation

mechanism implemented in the recent 802.11 amendments is

enabled. Indeed at the application layer, aggregated frames are

received simultaneously. PGM techniques cannot process null

inter-arrival times and PRM techniques may misinterpret and

overestimate the reception rate.

b) Aggregation aware available bandwidth estimation:

WBest+ [6] is an enhanced version of WBest that considers

aggregated frames as jumbo frames. The available bandwidth

estimation considers the time between aggregated frames in-

stead of the time between probe packets. AIWC [7] estimates

the frame aggregation level at the receiver to measure link

congestion and deduce the available bandwidth. To detect an

aggregation, both WBest+ and AIWC follow a threshold-based

method: if an inter-arrival time is below a given threshold, the

two packets are considered as aggregated. The parameteriza-

tion of these methods is quite empirical. A formal study of

the aggregation behavior as a function of the traffic has to be

performed to settle these kinds of techniques.

c) Frame aggregation analysis: Markovian models cap-

turing frame aggregation have been introduced under saturated

conditions [10], [11]. A Discrete Time Markov Chain (DTMC)

has been proposed to study the frame aggregation post-backoff

and evaluate the throughput performance under unsaturated

conditions [9]. The scenarios considered in this paper are

however not suitable for available bandwidth evaluation.

In this paper, we model and simulate scenarios in which a

MPDU Delimiter MPDU Padding

Sub-frame 1 Sub-frame 2 Sub-frame N

PHY Header A-MPDU

...

Fig. 1: A-MPDU frame aggregation.

device estimates the busy time on a Wi-Fi network with frame

aggregation enabled. We consider two kinds of traffic sharing

the medium: a cross traffic corresponding to the network usage

that can aggregate frames or not and a deterministic probe

traffic. We want to study the relationship between channel busy

time and frame aggregation level to determine if the latter can

characterize the channel load.

III. 802.11 FRAME AGGREGATION

IEEE 802.11n amendment made several changes to the

MAC layer to improve network efficiency and channel uti-

lization. In this section, we briefly describe one of the most

important MAC enhancement which is the frame aggregation.

Frame Aggregation scheme aims to increase Wi-Fi throughput

by sending multiple data packets in a single transmission

using a larger aggregated data frame to reduce the MAC

layer overhead. IEEE 802.11n amendment, and the most recent

IEEE 802.11 standard [17] have defined two types of frame

aggregation: Aggregate MAC Protocol Data Unit (A-MPDU)

and Aggregate MAC Service Data Unit (A-MSDU). A-MSDU

is an aggregation of several SDUs (Service Data Units) with

one common MAC header. It is rarely implemented and we

do not consider it in this article.

On the contrary, A-MDPU aggregation is enabled by default

in recent Wi-Fi cards. It consists in sending multiple MPDU

sub-frames to the same receiver with a common PHY header.

Each sub-frame keeps its own 802.11 MAC header and a

frame check sequence (FCS), starts with a MPDU delimiter

and ends with padding bytes. Therefore, the corruption of a

single MPDU sub-frame does not require the retransmission

of the whole A-MPDU frame. The structure of an aggregated

frame is shown in Fig. 1.

The frame aggregation level is thus dependent on the buffer

state and the network load, in particular the time to access the

medium.

IV. MODEL DESCRIPTION

In order to infer the behavior of frame aggregation in con-

gested and non-congested networks, we propose an analytical

model. It estimates the aggregation distribution defined as the

probability for a frame to aggregate n sub-frames using the A-

MPDU mechanism for a given busy time fraction. The model

is based on a Markov chain.



a) First model: Cross traffic does aggregate: Our system

is a wireless network using the IEEE 802.11 Distributed

Coordination Function (DCF) to access the radio channel. Two

traffics share the capacity: a cross traffic and a probe traffic.

• Probe traffic is sent by the busy time estimation tool

from a client to a server via the wireless link with a

specified data rate. The destination uses the aggregation

level of this probe traffic to estimate the network load.

The proposed Markov chain estimates the aggregation

distribution of this probe traffic. It is a constant bit rate

(CBR) traffic where packets are generated at regular

interval dp by the application. We assume that the buffer

has a maximum size Kmax. It is also the maximum

size of the aggregated frames. Consequently, the buffer

becomes empty each time a probe traffic frame is sent.

The random process describing the number of aggregated

sub-frames contained in the nth transmitted frame for this

probe traffic is denoted Xn. It takes its values in the set

{0, ...,Kmax}.

• Cross traffic represents the concurrent traffic between

other devices and the AP in the radio range of the node

that uses the busy time estimation tool. In our Markov

chain, this cross traffic is modeled through a unique traffic

sent over the channel and managed by a unique queue. It

is also a CBR traffic generated at regular interval dc. Yn is

the random process that describes the number of packets

in the cross traffic buffer at the moment of the nth probe

frame transmission (that contains Xn sub-frames). The

frame aggregation mechanism is the same as the probe

traffic. The buffer has a maximum size of Kmax. It is

emptied when an aggregated frame is sent. The possible

states are in {0, ...,Kmax}.

There is a strong dependency between the processes Xn

and Yn. When an aggregated frame is sent, its length impacts

the transmission duration and consequently the number of

packets received in the probe and cross traffic buffers. The

two processes have to be considered conjointly. The Markov

chain is thus defined as the couple (Xn, Yn)n≥0. It is assumed

homogeneous.

We consider the transition probability P(i,j)(l,m) from state

(l,m) to state (i, j) defined as:

P(i,j)(l,m) = P ((Xn+1, Yn+1) = (i, j)|(Xn, Yn) = (l,m))
(1)

The transition probabilities are fully determined by the time

between two consecutive probe traffic transmissions. As both

probe and cross traffics are deterministic, this time sets the

number of packets that arrived in the two buffers between two

transmissions and thus the number of frames that will be sent

in the aggregated frame.

Consequently, we analyze the events that may occur be-

tween two probe traffic transmissions. Fig. 2 shows an exam-

ple of the possible events between two probe transmissions.

Let assume that the current state of the Markov chain at

step n is (l,m), i.e. (Xn = l, Yn = m). First, the probe

traffic frame is sent. The transmission duration is denoted

Time

Time between two successive transmissions 

Probe buffer

Cross buffer

Probe traffic

Cross traffic

Fig. 2: Possible events between two successive probe trans-

missions. At the step n, the nth probe frame is transmitted. It

contains Xn sub-frames. Its duration is f(Xn). The competing

station accesses to the medium to transmit the previous data at

its buffer (Yn) plus the packets that arrived during the period

f(Xn). the amount of time to send those packets is given by

g
⇣j

Yn + f(Xn)
dc

k⌘

. In this case, between the transmission of

the Xn and the Xn+1 frames, the cross traffic succeeds to

access the medium two successive times.

f(l). Note that if l > 1, it is an A-MPDU frame that

contains l aggregated packets. f(l) counts the time to access

the medium (composed of the Distributed Inter-Frame Space

(DIFS), and the mean backoff estimated as CWmin
2 ·SlotT ime

where CWmin denotes the minimum contention window size),

the physical header (PHY Overhead), the MAC header, the

payload and the Frame Check Sequence (FCS), the shortest

Inter-frame Space (SIFS), and the Ack or BlockAck. We get:

f(l) = DIFS +
CWmin

2
· SlotT ime

+ PHY Overhead+ SIFS +BlockACK

+
(MacHeader + PacketSize+ FCS)⇥ 8⇥ l

Physical transmission rate

(2)

During this transmission, the number of received packets

that arrived in the two buffers can be approximated by b f(l)
dp

c

and b f(l)
dc

c for probe and cross traffic respectively. At the end

of this transmission, the probe traffic buffer contains b f(l)
dp

c

packets, and the cross traffic buffer contains N (1) = m+b f(l)
dc

c
packets.

Before the next probe transmission, several successive trans-

missions of cross traffic may occur. Let N (k) be the number

of packets in the cross traffic buffer at the time when the

cross traffic tries to access the medium for the kth time. N (1)

has already been computed and corresponds to the buffer size

at the end of the probe traffic transmission. If it succeeds to

access the medium (assuming that N (1) > 0), a frame or

aggregated frame composed of N (1) packets is sent. During

this transmission, N (2) packets arrived in the cross traffic

buffer with:



N (2) =
jg(N (1))

dc

k

(3)

The function g(x) is the duration of the transmission of

a frame (x = 1) or an aggregated frame (with x > 1
sub-frames). The only difference with f(.) is the physical

transmission rate and the packet size that can be different from

the probe traffic.

More generally, for k > 1, we get:

N (k) =
jg(N (k−1))

dc

k

(4)

Now, we compute the probability that k cross traffic frames

are sent successively. It is denoted P

⇣

Q(l,m) = k
⌘

where m

and l denote the buffer states as in the previous equations and

Q(l,m) is the number of successive times that the cross traffic

accesses to the medium. k = 0 means that the cross traffic does

not access to the medium between two successive probe traffic

transmissions. It can be due to an empty buffer or because

the probe traffic wins access to the medium. We denote p(k)
the probability for the cross traffic to access the medium k

successively times given that probe and cross traffics have

non-empty buffers. This probability depends on the contention

window and k. We get:

(5)P

⇣

Q(l,m) = 0
⌘

= 1
m+

f(l)
dc

<1
+ (1� p(1)) · 1

m+
f(l)
dc

≥1

For k > 0, we get,

(6)
P

⇣

Q(l,m) = k
⌘

= p(k) ·

k
Y

q=1

1N(q)≥1 ·
⇣

1N(k+1)=0

+ (1� p(k + 1))1N(k+1)>0

⌘

In this equation, the product corresponds to the probability that

the cross traffic has a non-empty buffer during each of the k

successive transmissions. The last term is the probability that

the cross traffic does not access to the medium after its kth

transmission either because it loses when competing with the

probe traffic or because of an empty buffer.

To obtain the transition probabilities we condition by the

number of cross traffic accesses and their transmission times.

As the probe traffic is CBR, the number of frames in the

probe traffic buffer is directly deduced from this time. For

i � 2 we obtain:

P(i,j)(l,m) =

∞
X

k=0

P

⇣

Q(l,m) = k
⌘

· 1dp·i≤f(l)+
P

k
q=1 g(N(q))<dp·(i+1) · 1N(k+1)=j

(7)

For i = 1 we get:

(8)
P(i,j)(l,m) =

∞
X

k=0

P

⇣

Q(l,m) = k
⌘

· 10≤f(l)+
P

k
q=1 g(N(q))<2dp

· 1N(k+1)=j

As the Markov chain is irreducible and has a finite number

of states, it exists a unique stationary distribution. We solve

this Markov chain through a numerical method. Let us denote

µ the matrix corresponding to this stationary distribution: µ =

(µi,j)0≤(i,j)≤Kmax
. The stationary distribution π of the sub-

chain (Xn) is given by (0  i  Kmax): πi =
PKmax

j=0 µi,j .

The mean aggregation level for the probe traffic is then

computed as: MeanAgg =
PKmax

n=1 n · πn.

b) Second model: Cross traffic does not aggregate: By

lack of place, we do not present the computation details for

the second model where frame aggregation is disabled for the

cross traffic. The principle is however the same. We condition

by the number of successive cross traffic transmissions except

that each transmission consists only in a single frame.

We now conclude by discussing our main approximations

involved in our Markov model. First, for the sake of simplicity,

we neglect the collisions between probe and cross traffic.

Second, we do not take into account what remains at the probe

traffic buffer if the number of packets exceeds Kmax. How-

ever, despite these simplifying approximations, our approach

provides accurate results as discussed in the next section.

V. NUMERICAL RESULTS

Numerical results aim to study the behavior of the probe

traffic aggregation level as a function of the network load and

to validate the proposed models with regard to simulations.

A. Simulation setup

In order to assess the effectiveness of the proposed ap-

proach, we use two simulators:

• A custom-made simulator that follows the same principle

as the Markov chain. It allows us to simulate more general

patterns of cross traffic.

• ns-3 (version 3.30) that allows us to compare our simpli-

fied model to realistic scenarios capturing the complexity

of the whole network stack.

The parameters used in the simulations and models are

summarized in Table I. The network topology is composed

of an AP, a station sending the probe traffic and a second

one for the cross traffic. Under ns-3, we also consider a more

generic scenario composed of an AP and five nodes. A node

for the probe traffic and four nodes for the cross traffic. All

the nodes operate on the 2.4 GHz ISM frequency band.

B. Evaluation

Fig. 3 shows the mean aggregation level for the probe

traffic when the aggregation is enabled for the cross traffic.

Simulations are thus compared to model 1 of the Markov

chain (Model 1). The probe packet interval varies from 50 µs
to 250 µs and the cross traffic is set in order to have a busy

time equals to 0, 0.375 and 0.625 corresponding to three load

levels. Two types of cross traffic distributions are emulated in

the ad-hoc simulator: exponential and deterministic.

According to these results, it appears that the model and

the ad-hoc simulator follow closely the pattern of the ns-3

simulations for all the levels of cross traffic.



(a) 0 busy time (b) 0.375 busy time (c) 0.625 busy time

Fig. 3: Mean aggregation level versus busy time

TABLE I: 802.11n PHY and MAC Parameters.

Parameter Value

CWmin Minimum contention window size=15

SlotTime Slot time=20 µs

DIFS Distributed inter-frame space = 50 µs

SIFS Shortest inter-frame space=10 µs

FCS Frame Check Sequence=4 bytes

MCS 15 Physical transmission rate=144.4 Mbps

MacHeader MAC Header size=34 bytes

PHY Overhead PHY preamble and header time=40 µs

Block ACK 32 µs

Packet Size 1024 bytes

Channel width 20MHz

Guard Interval (GI) 400 ns

The obtained curves can be divided into two zones. We

observe a first zone where the aggregation level is at its

maximum. It corresponds to a very congested state where the

probe traffic buffer is always full and exceeds the maximum

number of frames that can be aggregated. When the probe

packet interval increases, the aggregation decreases and fol-

lows a curve close to a hyperbola explained by the fact that

the number of generated packets per second is the inverse of

the probe packet interval. It can be observed in Fig. 3 that the

ad-hoc simulator gives similar results for the deterministic and

exponential cross traffic.

Fig. 4 provides the probe mean aggregation when frame

aggregation is enabled or disabled for the cross traffic (models

1 and 2 respectively). We compare the results of the Markov

chains (Model 1 and 2) to ns-3 simulations (with or without

aggregation). The aggregation level is lower when cross traffic

aggregation is disabled. Indeed, each cross traffic frame is sent

independently, with shorter transmission times. Consequently,

the probe traffic receives less packets to aggregate between

two consecutive medium accesses. Also, cross traffic reaches

saturation faster (as it sends less frames on average). As soon

as it has always a frame to send, its buffer state does not impact

the probe aggregation level. On the contrary, when cross traffic

aggregates, the state of its buffer has a deeper impact on

probe traffic aggregation since the cross traffic buffer state

determines the transmission duration.

In the Markov chain models, the cross traffic is sent by

a single queue. Fig. 5 and 6 compare ns-3 scenarios where

the cross traffic is generated by one concurrent node or 4

concurrent nodes, with or without frame aggregation. The

results show that the number of concurrent nodes has a neg-

ligible impact on the probe traffic aggregation level. Despite

the complexity brought by the network stack layers (beacon

frames, congestion, random backoff, MAC layer retries, etc.)

and the different number of stations deployed in the topology,

our approach is not affected in the considered scenarios.

VI. DISCUSSION

a) Frame aggregation for load estimation: Inspired by

the observation of the previous section, we discuss the feasi-

bility to consider the mean aggregation level to estimate the

channel load/busy time.

A method could consist of sending probe packet sequences

with decreasing interval time from a client to a server via

the wireless link with a specified data rate. Then the server

estimates the mean aggregation level for the different se-

quences. The computation of the error between the measured

aggregation levels and the theoretical ones derived from our

model can then be used to infer the network load. The inferred

busy time would be the one that minimizes the error between

the measured and the theoretical aggregated level for a set of

probe traffic intervals. Our simulation results indicate that this

method should work perfectly, at least for ns-3 simulations:

there are very small differences between the simulations and

the models. Besides, the results with or without aggregation

are significantly separated, which makes it possible to identify

if the cross traffic is aggregated or not.

b) Experiments and limitations: While we shed light on

the benefit of our approach based on simulations, there remains

the validation of the model against testbed measurements.

A part of the experiments has been already conducted. To

compute the mean aggregation level, we used a sniffer that

captures the frames sent through the network. The aggregation

level is then computed according to the frame A-MPDU

identifier and is consequently exact. This method gives results

that match well with our simulations and models. However,

it may be difficult to deploy it because it requires special

features and configurations of the Wi-Fi card: it has to be

in monitor mode, runs in privileged mode, a capture software

must be installed, Wi-Fi security options must be disabled,



Fig. 4: Mean aggregation level for model

1 and model 2, 0.625 busy time

Fig. 5: Mean aggregation level for model

1 with 5 nodes, 0.625 busy time

Fig. 6: Mean aggregation level for model

2 with 5 nodes, 0.375 busy time

etc. A computation method implemented at the application

level is thus preferable. We have tested the threshold-based

method introduced in [6], [7] to estimate the aggregation level.

It consists of measuring the time between the different packet

reception times at the application level. If this time is below

a given threshold (set as 300µs in [6] and 400µs in [7]),

the two packets are considered as aggregated. Our test on

Linux Ubuntu shows that this technique is inefficient due to

the different times introduced by the operating system. Being

able to detect frame aggregation at the application level on

the server side is a technical challenge that still need to be

tackled.

VII. CONCLUSION

In this paper, we study the possibility to consider the frame

aggregation level to infer the channel busy time of Wi-Fi

networks. We propose two Markov chains to estimate the

theoretical aggregation level for a specific scenario where a

probe traffic concurrent to a cross traffic is sent to estimate

the network load. It exists available bandwidth estimation tools

that use the aggregation level but they are based on empirical

observation and to our knowledge, there was no theoretical

analysis of the aggregation level for this particular context.

We have shown through a large set of simulations performed

with ns-3 and a custom-made simulator that the model allows

an accurate estimation of the aggregation level. For the con-

sidered scenarios, the results show that the aggregation level

could be an accurate metric to infer the network load. We are

currently implementing our approach in a testbed. However,

we face problems to capture the aggregation level at the

application layer. An open issue is thus to propose techniques

that estimate precisely the aggregation level at this layer.
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