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Gravitational lensing of a light source by a black hole leads to appearance of higher-order images
produced by photons that loop around the black hole before reaching the observer. Higher-order
images were widely investigated numerically and analytically, in particular using so-called strong
deflection limit of gravitational deflection. After recent observations of the black hole image, at-
tention has been drawn to higher-order rings, which are lensed images of the accreting matter of
the black hole environment and can appear near the boundary of the black hole shadow. In this
article, we use strong deflection limit technique to investigate higher-order ring images of luminous
accretion disc around a Schwarzschild black hole. We consider thin disk given by the inner and
outer radii and an observer located far from the black hole on the axis of symmetry. For this config-
uration, it becomes possible to find the angular radii, thicknesses, and solid angles of higher-order
rings in the form of compact analytical expressions. We show that the size of the rings is mainly
determined by the position of the inner boundary of the accretion disk, which makes it possible to
use them to distinguish between different accretion models. Possible generalizations of our model to
non-symmetric images can help to make the estimation of black hole angular momentum. We also
present the analytical estimation of fluxes from higher-order images. Our method makes it easy to
investigate n = 2 and n = 3 higher-order rings, the possible observation of which in future projects
is currently being discussed.

I. INTRODUCTION

One of the most famous effects of General Relativity is
the deflection of light by massive bodies. Such a gravitat-
ing body is often called a gravitational lens. Light from
a source, deflected by a gravitational lens, can reach the
observer in several ways, which leads to an amazing phe-
nomenon – the appearance of multiple images of the same
source.
If the gravitating body is a black hole, then the light

rays can move in a close vicinity of the gravitational ra-
dius. In this case, the angles of deflection of the light
rays can be very large. In particular, the photons can
make one or more revolutions around the black hole be-
fore reaching the observer. Such photons give rise to
so-called higher-order images (also known as relativistic
images) of distant source.
Studies of higher-order images produced by photons

that orbit a black hole have a long history. Usually,
images of a source that is far from the black hole were
considered. Such images were investigated in articles by
Darwin [1] and Ohanian [2]. They are also discussed in
Misner, Thorne and Wheeler’s textbook [3].
The active study of higher-order images began about

two decades ago. Virbhadra and Ellis calculated numer-
ically the properties of higher-order images in the case
of lensing by Schwarzschild black hole [4], see also [5, 6].
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To denote higher-order images, they introduced the term
’relativistic images’ which was often used later on. An
important contribution was made in a series of works by
Bozza with co-authors [7–15] who calculated the size and
the magnification of relativistic images analytically for
spherically symmetric and Kerr black holes. They used
so called strong deflection limit of gravitational deflec-
tion: analytical logarithmic expression for the deflection
angle valid for light rays that have made one or more
loops around the black hole. Strong deflection limit was
used also in series of papers of Eiroa with co-authors [16–
19]. Different types of lens equations were proposed for
studying higher-order images in works of Frittelli et al
[20], Virbhadra and Ellis [4], Bozza et al [7, 8, 14, 21],
Perlick [22, 23], Aazami et al [24, 25].

Since then, there have been many works that have
investigated higher-order images, both numerically and
analytically, for some examples, see [26–47]. Analytical
logarithmic limit of gravitational deflection is commonly
referred to as ’strong deflection limit’ (sometimes ’strong
field limit’). More generally, for lensing research beyond
the weak deflection approximation, the terms ’strong de-
flection gravitational lensing’ and ’strong gravitational
lensing by black hole’ are used. In the latter case, these
studies should not be confused with strong lensing in con-
ventional observational gravitational lensing: when mul-
tiple images are formed (i.e. the lensing effect is ’strong’),
but the deflection angles are still small. For review of
gravitational lensing beyond the weak deflection approx-
imation, see, e.g., [22, 48, 49].

An interesting special case arises when a distant
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source, a black hole and an observer are perfectly aligned.
In this case, an infinite sequence of concentric higher-
order ring images around black hole is formed (see, e.g.,
[4, 7, 8, 50]), sometimes referred as ’Einstein relativistic
rings’ [4]. Study of such rings for the compact distant
source of given angular size can be found in [50]. Term
’Einstein-Chwolson ring’ is also used, see original paper
[51].

After recent observation of black hole shadow in M87
[52–59], the attention has been drawn to investigation of
higher-order rings which can arise around the black hole
shadow and can be probably observed in the substruc-
ture of black hole image [60–66]. These rings are lensed
images of luminous accreting matter of the black hole
environment. A detailed numerical and analytical dis-
cussion had been presented. Due to the assumed angle
of observation in the galaxy M87, of particular interest
is the case of a polar observer who sees the accretion
disk face-on. Observation of high-order rings in future
projects is now actively discussed, e.g. [62–65].

In this paper, we apply earlier developed formalism
of strong deflection gravitational lensing in novel studies
of higher-order ring images of luminous accretion matter
around the Schwarzschild black hole. In particular, we
use strong deflection limit formulas for arbitrary source
position [15, 47, 48].

Our goal is to derive a fully analytical solution, for
a simplified case. This can help to reveal new features
of the problem that may not be visible in a numerical
calculation or in more detailed analytical studies where
more complicated account of the parameters is used.

Here we consider a thin luminous accretion disk with
inner and outer radii around the Schwarzschild black
hole, and the observer who is located on the axis of sym-
metry perpendicular to the equatorial plane. Observer
will see the primary (direct) image of disk, a secondary
image in the form of a thin ring (image of the back of
the disk), and a sequence of exponentially weak higher-
order rings (Fig.1). For this configuration, we present
fully analytical calculation of higher-order rings proper-
ties. Radii, thicknesses and solid angles of higher-order
rings are found in the form of compact analytical ex-
pressions. The resulting solution is analyzed in detail.
We also present the analytical estimation of fluxes of the
rings.

The paper is organized as follows. In the next Sec-
tion, we briefly introduce the notion of strong deflection
limit. Then, in Section III we describe and classify lensed
images of the accretion disk, with relation to nomencla-
ture of images of relativistic rings already used in the
literature. In Section IV we derive the analytical ex-
pressions which describe the higher-order rings: angular
thicknesses of rings and solid angles occupied by ring im-
ages. In Section V we investigate the properties of rings.
In particular, we explore the dependence of solution on
position of inner boundary of accretion disk. In Section
VI the analytical estimation of fluxes and magnifications
is discussed. In Section VII we provide an example of

calculation for specific values of inner and outer radii,
and also draw the picture of first three rings together,
see Fig.7. Section VIII is Conclusions.

II. STRONG DEFLECTION LIMIT: BRIEF

INTRODUCTION

Here we briefly remind what the strong deflection limit
is and how it is written analytically in the simplest situ-
ation.
We write the Schwarzschild metric as

ds2 = −
(

1−
2m

r

)

c2dt2 +
dr2

1− 2m/r
+ (1)

+ r2
(

dϑ2 + sin2 ϑ dϕ2
)

, m =
GM

c2
,

where m is a mass parameter of dimension of length, and
M is the black hole mass. In these notations, we have:

• horizon at radial coordinate 2m;

• photon sphere filled by unstable circular orbits at
radial coordinate rph = 3m;

• critical value bcr = 3
√
3m of the impact parameter

separating the captured and flyby orbits of light
rays coming from infinity; this value also deter-
mines the angular radius of black hole shadow for
the observer at large distances, αsh = 3

√
3m/Dd,

where Dd is the distance between the black hole
and the observer;

• innermost stable circular orbit for massive particles
at rISCO = 6m.

Let us consider a light ray that moves from infinity
to a black hole, reaches the minimum value of the radial
coordinate along the trajectory R (usually referred as the
distance of the closest approach) and then flies away to
infinity. Change of azimuthal angle for such light ray
equals to (e.g., [67, 68]):

∆ϕ = 2

∞
∫

R

1

r2

[

1

b2
−

1

r2

(

1−
2m

r

)]−1/2

dr. (2)

The impact parameter b, corresponding to the distance
of closest approach R, is written as

b2 =
R3

R− 2m
. (3)

The change in the angular coordinate in the case of a
straight light ray in the absence of deflection equals to π.
Therefore the deflection angle, which is the angle between
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primary ring secondary ring �rst higher-order ring

FIG. 1. Images of thin accretion disk in case of lensing by spherically symmetric black hole and an observer located on the
axis of symmetry. For every image we write the number n of half-orbits [62, 64–66] and the change of angular coordinate ∆ϕ

of the light ray, see Section III for more details. The objects on the figure are not in scale. An idea of the real dimensions of
the rings in relation to each other can be obtained from Fig.7 in Section VII.

the asymptotic incoming and outgoing directions of the
ray, is computed as:

α̂ = 2

∞
∫

R

1

r2

[

1

b2
−

1

r2

(

1−
2m

r

)]−1/2

dr − π . (4)

If the impact parameter is large, b ≫ m, then the angle
of deflection is small, α̂ ≪ 1, and can be computed by
the formula of the Einstein angle:

α̂ =
4m

R
, or α̂ =

4m

b
. (5)

There is also another limiting case when the deflec-
tion angle can be written analytically: the strong deflec-
tion limit (also sometimes referred as strong field limit).
Physically, the strong deflection limit corresponds to a
situation when a photon approaches a black hole, makes
one or several loops around it, and then flies away. In
this case, the deflection angle is large: α̂ ≫ 1.

The deflection angle of photon in strong deflection limit
is written as [1, 7]:

α̂ = −2 ln
R− 3m

36(2−
√
3)m

− π , (6)

or, as a function of the impact parameter b [7, 8]:

α̂ = − ln

(

b

bcr
− 1

)

+ ln[216(7− 4
√
3)]− π = (7)

= − ln
b− 3

√
3m

648
√
3(7− 4

√
3)m

− π =

= − ln
(b − 3

√
3m)(7

√
3 + 12)

1944m
− π .

Strong deflection limit for deflection angle of massive
particles in Schwarzschild metric has been first derived
by Tsupko [69], see also [70, 71].
Note that the formula (7) cannot be directly applied

for our purposes, because we are interested a situation
where the source (emitting accretion disk, and especially
its inner parts) is in the immediate vicinity of a black
hole. We will use a more general formula suitable for an
arbitrary position of the source, see Section IV.

III. LENSING OF ACCRETION DISK BY A

BLACK HOLE

Luminet [72] presented a visual appearance of a thin
emitting accretion disk around Schwarzschild black hole,
for an observer located slightly above the equatorial
plane, see Fig.11 there. In that picture, there are, as
he called them, ’direct (or primary)’ and ’ghost (or se-
cundary)’ images of accretion disc found numerically.
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Higher-order images were discussed in the paper [72] but
were not presented at the picture.
In Luminet’s picture, both primary and secondary im-

ages of disk are strongly deformed. As a result, we see
only top part of secondary image which looks like thin
arc around central dark spot (shadow). The lower part of
secondary image is hidden by primary image. For good
illustration of formation of this image see Fig.3 in [73].
Due to the assumed angle of observation in M87, spe-

cial attention has been now drawn to the case where the
observer is assumed to be close to the axis of rotation
[60, 64]. For the observer located on the axis symmetry,
secondary image will have a form of non-deformed thin
ring. There will be also infinite series of weak higher-
order rings which are concentrated near the boundary of
black hole shadow. The entire system of all ring images
(including secondary image or not) is now often referred
as just ’photon ring’. Sometimes the notion ’photon ring’
is also used for each individual ring.
In this paper, we will consider thin accretion disk

around Schwarzschild black hole and the observer located
on the axis of symmetry (polar observer). For naming the
lensed images of accretion disk, we will follow the stan-
dard terminology of gravitational lensing, which is also
consistent with the works of Luminet [72] and Broderick
et al [64]. For numbering of the images, we will follow
the commonly used notation of [62, 64–66]. The number
n approximately corresponds to the number of half-turns
that the ray makes, moving from the source to the ob-
server.
We have the following images of accretion disk (Fig.1):

• Primary image (n = 0). It is direct image of ac-
cretion disc slightly increased by the gravitational
bending of light rays.

• Secondary image (n = 1) in the form of thin ring. It
is image of the back of the disk formed by photons
that have made about half a turn on their way to
the observer [60, 62, 64].

• Higher-order images (n ≥ 2). These are expo-
nentially weak rings formed by photons that have
made one full turn or more around the black hole.
Rings are concentrated very close to the boundary
of black hole shadow.

The importance of the secondary image over the follow-
ing higher-order rings has been discussed in Gralla et al.
[60] (who call it the ’lensing ring’) and Johnson et al. [62]
(who call it the ’leading subring’). As stated, secondary
ring gives the leading contribution to thin ring-like struc-
ture in black hole image, while higher-order images are
exponentially weaker. For further discussion, it is im-
portant to emphasize that the secondary image is not
exponentially weak and is poorly described by the strong
deflection limit. Exponential character of higher-order
images in the case of accretion disk lensing has been dis-
cussed in [60, 62]. Comprehensive analytical approach for

higher-order images has been developed in [61]. Higher-
order rings in spherically symmetric metrics have been
discussed by Wielgus [66] in a simple model of infinitely
thin ring of given radius. Particular attention is paid to
discussing the possibility of observing the next rings after
the secondary image [62–65].
We emphasize that in this work, we are examining

higher-order rings that are very close to the boundary of
shadow, but not the shadow itself. The size and the shape
of the shadow boundary can be described analytically,
see e.g. [74–101]. For review, see Cunha and Herdeiro
[102] and Perlick and Tsupko [103]. To obtain a realis-
tic visual appearance of shadow together with accreting
environment, it is necessary to carry out numerical sim-
ulations including ray tracing, e.g. [52, 104–112]. For
studies of 2020–2021 related to black hole shadow see,
e.g., [113–144].

IV. ANALYTICAL CALCULATION OF

HIGHER-ORDER RING IMAGES OF

ACCRETION DISK

In this Section we calculate analytically the properties
of higher-order ring images of thin accretion disk. The
disk is given by the inner and outer radii. The observer is
located on the axis of symmetry at a large distance from
the black hole (much larger than its gravitational radius),
see Fig.1. We remind that number n of half-orbits nu-
merate all images starting from the primary (n = 0) and
secondary (n = 1), whereas the results of this Section are
applicable only for higher-order images (n ≥ 2).
For calculation of the higher-order images, we use the

strong deflection limit technique. We would like to note
two features of the problem under consideration:
(i) Most of the previous work dealing with the strong

deflection approximation has considered sources that are
far from the black hole. In our paper, the radiation
sources are located in immediate vicinity of black hole
where its gravitational field cannot be neglected. Strong
deflection limit of black hole gravitational lensing was
generalized to the case of arbitrary source positions by
Bozza and Scarpetta [15], see also [47, 48]. Instead of the
deflection angle α̂, a change in the angular coordinate of
the ray (or azimuthal shift) ∆ϕ is used.
(ii) Previous work was mainly focused on the compact

distant source. In our article, considering the accretion
disk, we are dealing with an extended distribution of
light sources. Therefore, to compute the parameters
of images, it is necessary to integrate over the image
surface. However, thanks to our choice of a simplified
symmetric configuration, we can find the solid angle of
the higher-order ring by calculating its outer and inner
angular radii.

Before handling with a luminous disk, let us first con-
sider a point source with an arbitrary position outside
the photon sphere. Radial coordinate of the source is
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FIG. 2. Graph of the function f(rS) given by eq.(10).

rS . We are interested in rays that move from the source,
approach the black hole, make one or several revolutions
around the black hole while reaching the distance of the
closest approach R, and then fly away to infinity. These
rays are responsible for formation of higher-order images
of source for an observer at a great distance. The change
of the angular coordinate ∆ϕ of such ray in strong de-
flection limit is written as [15, 47, 48]:

∆ϕ = − ln ǫ+ ln f(rS) , (8)

where

ǫ =
b− bcr
bcr

≪ 1 , bcr = 3
√
3m, (9)

f(rS) =
65

(

1− 3m
rS

)

(

3 +
√
3
)2

(

3 +

√

3 +
18m

rS

)−2

. (10)

Graph of the function f(rS) is plotted on Fig.2. In the
limit rS ≫ m,

f(rS) → f0 ≡
7776

(3 +
√
3)4

= 216 (7− 4
√
3) ≃ 15.5 , (11)

the deflection angle can be introduced in a usual way
α̂ = ∆ϕ− π, obtaining the formula (7) for the deflection
angle α̂.

We start from eq.(8) and find

b = bcr
[

1 + f(rS) e
−∆ϕ

]

. (12)

Since the observer is in an asymptotically flat region,
the angular position of image for observer and the impact
parameter are related by a simple relationship [15]: θ =
b/Dd. We obtain than

θ =
bcr
Dd

[

1 + f(rS) e
−∆ϕ

]

. (13)

FIG. 3. Formation of n = 2 higher-order ring in the case of
gravitational lensing of the accretion disk by Schwarzschild
black hole. This is the next ring after the secondary image
(n = 1), which is also ring-shaped. The observer is located
on the axis of symmetry at a great distance Dd ≫ m from
the black hole. The accretion disk is geometrically thin and
is defined by two radii: inner rinS and outer routS . Two rays
are shown in different colors, coming from the inner and outer
edges of the disk. Such rays make approximately one revolu-
tion around the black hole and form an annular image with
the inner angular radius θin and the outer angular radius θout.
The solid angle occupied by this ring can be found fully ana-
lytically with our eq.(20) by substitution n = 2. The objects
on the figure are not in scale. In particular, n = 2 ring is
much thinner. For an illustration of the actual dimensions,
see Fig.7.

This formula describes the observed angular position θ of
higher-order image formed by the light ray that has ex-
perienced the change in the angular coordinate ∆ϕ when
moving from the point source with coordinate rS to the
observer located at distanceDd ≫ m from the black hole.

To apply eq.(13) to consideration of thin luminous disk
viewed face-on, we have to know the corresponding values
of ∆ϕ for every image. From the Fig.1 we can write the
general rule as

∆ϕ = π

(

n+
1

2

)

, n ≥ 0. (14)

Note that the formula (13) can be applied only for higher-
order images (n ≥ 2).

We set the size of accretion disk with an inner radius
rinS and an outer radius routS (Fig.3). Corresponding inner
and outer angular radii of higher-order ring image with
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given n are then:

θinn =
3
√
3m

Dd

[

1 + f(rinS ) e−π(n+ 1
2 )
]

, (15)

θoutn =
3
√
3m

Dd

[

1 + f(routS ) e−π(n+ 1
2 )
]

. (16)

The angular thickness ∆θn ≡ θoutn − θinn of the n-ring
equals to:

∆θn =
3
√
3m

Dd

[

f(routS )− f(rinS )
]

e−π(n+ 1
2 ) . (17)

In the same manner as we did for calculation of higher-
order rings of distant compact source [50], we write the
angular size of higher-order ring (n ≥ 2) as the difference
of solid angles occupied by cone with angular size θoutn

and cone with angular size θinn :

∆Ωn = π
[

(θoutn )2 − (θinn )2
]

= (18)

= π
(

θoutn − θinn
) (

θoutn + θinn
)

.

From (9) and (12), we see that f(rS) exp(−∆ϕ) ≪ 1,
therefore

θoutn + θinn ≃
2 · 3

√
3m

Dd
. (19)

Finally we obtain the solid angle of higher-order images
as

∆Ωn = 2π
27m2

D2
d

[

f(routS )− f(rinS )
]

e−π(n+ 1
2 ) , n ≥ 2.

(20)
We emphasize that the method works well only if con-
dition ǫ ≪ 1 holds, see eq.(9). It means that it should
be f(rS) exp(−π (n+ 1/2)) ≪ 1. It is easy to check that
this condition is satisfied already for n = 2.

V. PROPERTIES OF SOLUTION FOUND

In previous Section we have found the compact expres-
sions (15), (16), (17), (20) which allows one to calculate
easily the properties of higher-order rings in the case of
lensing of accretion disk by black hole. Since all relation-
ships are written in an analytical form, this allows us to
analyze their properties and explore various dependen-
cies. We will do this in this Section.
(i) Very important property is that the thickness of the

rings decreases exponentially:

∆θn+1 = e−π∆θn , n ≥ 2 . (21)

The angular radius of all rings remains approximately
the same (slightly larger than the size of the shadow

3
√
3m/Dd). The solid angle occupied by the ring also

decreases exponentially, see eq.(20):

∆Ωn+1 = e−π∆Ωn , n ≥ 2 . (22)

This connection between two subsequent higher-order
rings has already been highlighted in the literature [60–
62]. However, in our work we not only reproduce this
property, but also find analytically the size of each of the
rings.
(ii) The solid angle of the sum of all higher-order im-

ages is calculated as

Ωn≥2 =
∞
∑

n=2

∆Ωn = (23)

= 2π
27m2

D2
d

[

f(routS )− f(rinS )
] e−5π/2

1− e−π
.

(iii) Consider the dependence of solution on position
of inner boundary of accretion disk.
Formulas for angular thickness (17) and for solid angle

(20) contain dependence on the inner rinS and outer routS

radii of the disk only as a combination of functions f(rS)
inside square brackets.
Let us now assume that routS ≫ m, whereas rinS is of the

order of several m. Then the solid angle of the unlensed
disk ∆ΩS is determined by the outer radius mainly:

∆ΩS =
π

D2
d

[

(routS )2 − (rinn )2
]

≃
π

D2
d

(routS )2 . (24)

In contrast, a size of higher-order images depends
mainly on the inner radius rinS of the accretion disk. In-
deed, for the function f(routS ) used for higher-order im-
ages we can write (see eq.(11))

f(routS ) ≃ f0 ≡
7776

(3 +
√
3)4

= 216 (7− 4
√
3) , (25)

Then the expression in square brackets in (17) and (20)
can be simplified, and we write the angular thickness
and the solid angle of image with given a number n as
the function of the inner radius of accretion disk only:

∆θn(r
in
S ) ≃

3
√
3m

Dd

[

f0 − f(rinS )
]

e−π(n+ 1
2 ) , (26)

∆Ωn(r
in
S ) ≃ 2π

27m2

D2
d

[

f0 − f(rinS )
]

e−π(n+ 1
2 ) , n ≥ 2.

(27)
In Fig.4 we plot the expression in the square brackets as
the function of rinS . We see that the dependence of the
size of the rings on the position of the inner boundary of
the disk is quite strong.
It could be noticed in Fig.5. If we change the position

of the inner boundary of disk rinS from 6m (position of
ISCO) to 3.1m (slightly bigger than the position of the
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FIG. 4. Expression in square brackets [f0 − f(rinS )] in (26)
and (27) as the function of inner border of the disc rinS .

photon sphere), then the angular size of the disk itself
increases little, since its outer boundary is large routS ≫
m. At the same time, the thickness and the solid angle
of each higher-order ring will increase significantly. This
allows us to relate the assumed accretion disk model to
the higher-order ring size in a simple way.
(iv) The importance of the inner layers of the disc in

comparison with the outer ones can also be shown by the
following reasoning. Let us consider a source as a thin
ring with radius rS and with thickness ∆rS ≪ m. We
write:

f(routS )− f(rinS ) ≃ f1(rS)
∆rS
m

, (28)

where

f1(rS) ≡ m
df(r)

dr

∣

∣

∣

∣

r=rS

. (29)

Differentiating eq.(10), we find:

f1(rS) =
23328

√
3m2

r2
(

3 +
√
3
)2

√

1 + 6m
r

(

3 +

√

3 +
18m

rS

)−2

.

(30)
Graph of f1(rS) is plotted on Fig.6. We see that a

thin luminous ring of a given radius rS and thickness
∆rS will lead to bigger thickness of the higher-order ring
in the case of smaller rS .

VI. ANALYTICAL ESTIMATION OF FLUXES

In this paper, we are dealing with a situation where
the light source is in a strong gravitational field, and only
the observer is in an asymptotically flat region. Due to
the gravitational redshift, the frequency of the emitted
photons does not equal to the frequency of the photons

unlensed disk thickness of n=2 ring

FIG. 5. Strong dependence of the observed angular thickness
∆θn of higher-order ring on position of the inner boundary
rinS of accretion disk. Top: In the left column we show the
unlensed size of accretion disk with rinS = 6m and routS = 30m.
Images n = 0 and n = 1 are not presented here; compare with
Fig.7. In the right column we show the thickness of n = 2
higher-order ring. Gray area is the part of black hole shadow.
Inner and outer angular radii of the higher-order image are
calculated with Eqs. (15) and (16) correspondingly. Bottom:
The same picture but with another inner boundary of the
disk, rinS = 3.1m. The solid angle of the non-lensed disk
changes very little in comparison with the previous case. At
the same time, the thickness of the higher-order ring grows
quite significantly.

caught by the observer. As a result, the surface bright-
ness of the source and the surface brightness of the image
are different, see also [15, 145, 146]. We will consider the
disk with radial distribution of brightness IS(rS) and will
take into account the disk rotation.
We assume that the disk is rotating, and the matter

is moving in circular orbits. Then, an emitting particle
at radius rS has the angular velocity Ω = (GM/r3)1/2

[72, 147]. For the rotating disk viewed face-on, the grav-
itational redshift and Doppler shift together lead to the
following ratio of the frequencies [72, 147]:

ω0

ω(rS)
=

(

1−
3m

rS

)1/2

. (31)

Here ω0 is the photon frequency measured by an observer
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FIG. 6. Graph of the function f1(rS) given by eq.(30).

in an asymptotically flat region, and ω(rS) is a photon
frequency emitted by the disk near the black hole at po-
sition rS .
Surface brightness I of image measured by observer in

the asymptotically flat region is related to the surface
brightness IS of emitting source at rS as [145, 146]:

I

IS
=

(

ω0

ω(rS)

)4

=

(

1−
3m

rS

)2

. (32)

Therefore, for the flux Fn from n-th image with surface
brightness In we write:

Fn =

∫

∆Ωn

In(rS) dΩ =

∫

∆Ωn

(

1−
3m

rS

)2

IS(rS) dΩ .

(33)
To perform this integration, the solid angle dΩ can be
written as dΩ = 2πθdθ, and connection between the lo-
cation rS of emitting point of the disk and its observed
position θ within n-th image should be taken into ac-
count.
Flux ratio of two successive rings equals to:

Fn+1

Fn
=

∫

∆Ωn+1

(1− 3m/rS)
2
IS(rS) dΩ

∫

∆Ωn

(1− 3m/rS)
2
IS(rS) dΩ

. (34)

For higher-order images (n ≥ 2), this ratio can be found
analytically. From (13) and (14), we get that emitting
point at location rS produces the point of the n-th higher-
order image at the observed angular position θn:

θn =
3
√
3m

Dd

[

1 + f(rS) e
−π(n+ 1

2 )
]

, (35)

f(rS) e
−π(n+ 1

2 ) ≪ 1 .

Here the angular variable θn changes from inner bound-
ary θinn of n-th ring image to its outer boundary θoutn .
Correspondingly, the variable rS changes from inner ra-
dius rinS of emitting disk to its outer radius routS .
For integration over the solid angle of n-th ring, we can

write:

dΩ = 2πθndθn ≃ 2π
27m2

D2
d

f ′(rS) e
−π(n+ 1

2 )drS , (36)

After this transformation, we have the integration over
the source surface with variable rS instead of integration
over the solid angles of images with variable θn. As a
result, the integral expressions for the fluxes of rings in
eq.(34) will differ only by the number n used in the ex-
ponential factor exp[−π(n+ 1/2)] that can be taken out
of the integral sign. Therefore we obtain:

Fn+1

Fn
= e−π . (37)

We conclude that independently of the source brightness
profile IS(rS), the ratio of higher-order ring fluxes will
be equal to the ratio of their solid angles.

Another way to estimate fluxes can be carried out
through the use of the solid angle of unlensed disk ∆ΩS .
This value is not directly observable but the estimations
still can be useful because the value of ∆ΩS is close to
the observed angular size of direct image ∆Ω0. Let us
now assume that IS(rS) = const.
Since rS ≥ rinS , then

1−
3m

rS
≥ 1−

3m

rinS
. (38)

We write:

Fn ≥ IS

(

1−
3m

rinS

)2 ∫

∆Ωn

dΩ = IS

(

1−
3m

rinS

)2

∆Ωn .

(39)
Let us introduce the value:

FS =

∫

∆ΩS

IS dΩ = IS∆ΩS , (40)

and define the magnification µn of n-th image as:

µn =
Fn

FS
. (41)

Substituting (39) and (40) into (41), we find:

µn ≥
(

1−
3m

rinS

)2
∆Ωn

∆ΩS
. (42)

Inequality (42) represents the lower limit for µn. Anal-
ogously, we can calculate the upper limit of µn using that
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rS ≤ routS . Finally, we find the following double inequal-
ity which can serves as an estimation of flux magnifica-
tion:

(

1−
3m

rinS

)2
∆Ωn

∆ΩS
≤ µn ≤

(

1−
3m

routS

)2
∆Ωn

∆ΩS
. (43)

To use this inequality for the estimation of flux magni-
fication, one need to know the ratio of solid angles of
corresponding n-image and unlensed disk.
For rings with n ≥ 2, the ratio ∆Ωn/∆ΩS can be writ-

ten down fully analytically. Indeed, for the solid angle of
unlensed accretion disc we have

∆ΩS =
π

D2
d

[

(routS )2 − (rinn )2
]

. (44)

Combining it with eq.(20) we find:

∆Ωn

∆ΩS
= 54m2 f(routS )− f(rinS )

(routS )2 − (rinS )2
e−π(n+ 1

2 ) , n ≥ 2. (45)

VII. EXAMPLE OF CALCULATION

In this Section we present the example of calculation
of angular sizes and flux magnifications of lensed images
of the accretion disk. We consider the disk with inner
radius rinS = 6m and outer radius routS = 15m.
Solid angle of unlensed acrretion disk can be calculated

analytically by (44):

∆ΩS ≃ 594
m2

D2
d

. (46)

By substitution n = 2 into (20) we find analytically
the solid angle of the n = 2 higher-order ring:

∆Ω2 ≃ 0.333
m2

D2
d

. (47)

We can compare the size of n = 2 higher-order ring with
size of unlensed disk by (45):

∆Ω2 ≃ 0.000560∆ΩS . (48)

For all following higher-order rings we have the expo-
nential decrease of the corresponding solid angles:

∆Ωn+1 = e−π∆Ωn ≃ 0.0432∆Ωn for n ≥ 2. (49)

For completeness, we consider also the solid angles oc-
cupied by the primary ∆Ω0 and secondary ∆Ω1 images.
We have found these values by numerically integrating
the ray trajectories. We have:

∆Ω0 ≃ 1.10∆ΩS , (50)

∆Ω1 ≃ 0.017∆Ω0 , or ∆Ω1 ≃ 0.019∆ΩS , (51)

∆Ω2 ≃ 0.030∆Ω1 , or ∆Ω2 ≃ 0.00051∆Ω0 . (52)

From this example, we see that each next image is
a few percent of the previous one, for all higher-order
images this ratio equals to e−π ≃ 0.043. This conclusion
agrees with numerical and analytical results of Johnson
et al [62]. For rotating black hole, the numbers will be
different.
On Fig.7, we plot the calculated images of accretion

disk.

Using (43), we find the estimation for magnification of
n-ring:

1

4

∆Ωn

∆ΩS
≤ µn ≤

16

25

∆Ωn

∆ΩS
. (53)

In particular, using (50) in (53), we have:

0.27 ≤ µ0 ≤ 0.70 . (54)

Using (51) in (53), we have:

0.0047 ≤ µ1 ≤ 0.012 . (55)

Using (48) in (53), we obtain analytically:

0.00014 ≤ µ2 ≤ 0.00036 . (56)

VIII. CONCLUSIONS

(i) Active research of higher-order images had started
about twenty years ago and was mainly focused on
sources far from the black hole. The main method of
analytical study is using of the gravitational lensing for-
malism in the strong deflection limit. Here we show that
the same techniques can be applied to novel studies of
higher-order ring images of luminous accretion matter
around the black hole.
(ii) We consider the lensing of thin accretion disk with

known inner and outer radii by the Schwarzschild black
hole. The observer far from the black hole on the axis of
symmetry will see the primary image of the disk (the rays
go directly to the observer, number of half-orbit n = 0),
the secondary image in the form of a thin ring (the rays
pass along the other side of the black hole and form an
image of the back of the disk, n = 1) and exponentially
faint higher-order rings (one full revolution or more, n ≥
2), see Fig.1.
(iii) Our goal was to derive a completely analytical

solution in closed form, for this simplified case. Using
strong deflection limit technique of gravitational lens-
ing, we find the angular radii, angular thicknesses, and
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FIG. 7. Appearance of thin accretion disk around
Schwarzschild black hole viewed face-on: primary image (n =
0), secondary image (n = 1) and n = 2 higher-order ring.
Top panel: Primary and secondary images found numerically.
The disk has given inner and outer boundaries at 6m and
15m correspondingly. Inner radius equals to ISCO position,
the choice of the outer radius was determined by the goals of
better visualization. The primary image has form of big ring
which is slightly bigger than the actual (unlensed) size of disc
due to gravitational bending. Secondary image has a form of
thin ring close to the edge of black hole shadow (shown by
gray color). Higher-order rings are too thin to be seen in this
picture, their position is shown conventionally as a red solid
circle on the border of the shadow. Bottom panel: Zoomed-in
image of the part of the top image, highlighted with a small
blue rectangle. Part of the secondary image and part of the
n = 2 ring are visible here. The higher-order ring radii are
calculated analytically by (15) and (16) with n = 2.

solid angles of higher-order rings (n ≥ 2) in the form
of compact analytical expressions. Main results are pre-
sented by formulas for inner and outer angular radii (15)
and (16), angular thickness (17) and solid angle (20) of
higher-order images. Our results not only reproduce the
property of exponential decrease of higher-order images,

but allow one to find analytically the size of each of the
rings.
(iv) The simple form of the solution allowed us to an-

alyze it effectively and find features that might not be
visible in a numerical calculation or in more detailed an-
alytical studies that use a richer accounting of parame-
ters. We find that the size of the higher-order rings is
mainly determined by the position of the inner bound-
ary of the accretion disk, which makes it possible to use
them to distinguish between different accretion models,
see Section V.
(v) Figure with first three rings (n = 0, 1, 2) together

is presented, see Fig.7.
(vi) Our analytical approach provide simple calculation

and comparison of the solid angles occupied by higher-
order rings. Calculating of fluxes is more complicated;
however, our model allows to estimate the fluxes ana-
lytically, see Section VI. Rotation of the disk is taken
into account. Interestingly, the flux magnification of the
primary image compared to the non-lensed disk is less
than unity, see eq.(54), although the angular size of the
primary image is slightly larger than the angular size
of the unlensed disk, see eq.(50). This differs from the
well-known statement in gravitational lensing of distant
sources, where the magnification factor for the primary
image is always greater than unity. The difference is due
to the fact that in case of accretion disk, the emitting
sources are located near the black hole, and it becomes
necessary to take into account the change in frequency
and change in brightness.
(vii) Our method makes it easier to discriminate be-

tween n = 2 and n = 3 higher-order rings, the possible
observation of which in future projects is currently being
discussed.
(viii) A possible generalization of our results is the cal-

culation of higher-order rings for the Reissner-Nördstrom
black hole, which may allow one to constraint the charge
of the black hole.
(ix) In our work [113], we proposed using the shadow of

black holes at cosmological distances as a standard ruler
in cosmology. The higher-order rings are exponentially
close to the edge of the shadow. Therefore, if the phys-
ical conditions around a black hole make it possible to
see higher-order rings (’photon ring’), then the method
of standard ruler can be implemented on the basis of ob-
serving these rings.
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