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We analyze the plasmonic modes of a metal nanoparticle circular array. Closed-form solutions to the
eigenmode problem are presented. For each polarization, the plasmonic mode with the highest quality is found
to be in antiphase. The significant suppression of radiative loss can be understood as the cancellation of the
dipolar radiation term in the radiative linewidth. The remaining finite radiative linewidth decreases exponen-
tially as the number of particle increases.
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I. INTRODUCTION

The subwavelength phenomena of electromagnetic waves
have attracted considerable research attention in recent years.
Plasmonic materials are capable of supporting subwave-
length phenomena near optical frequencies, and, as such,
they have been the focus of recent research in near-field
optics.1,2 The tremendous growth of interest in plasmonic
materials in the form of metal nanoparticles �MNPs� has
been fueled by the significant improvement in fabrication
techniques3,4 as well as the emergence of many plausible
applications for MNPs, such as in biosensors5 and surface-
enhanced Raman scattering processes,6,7 as subwavelength
waveguides8,9 and in near-field imaging.10

There have been many numerical studies on MNPs with
various shapes and arrangements. In particular, it has been
shown that MNP circular arrays may serve as electric and
magnetic resonators11 and they can significantly reduce ra-
diative loss.12 In general, due to the complexity of plasmonic
modes, analytical studies on them have been few even when
dipole approximation can be applied to MNPs in many cases.
Markel13 obtained the solutions for two and four particles.
Citrin12 obtained the solution for circular MNP arrays and,
by taking into account all dipolar couplings between par-
ticles, he showed that the nearest-neighbor tight-binding
model cannot be used because it may give noncausal solu-
tions. However, concrete examples and more thorough ana-
lytical work on the complicated solutions are necessary for a
clear understanding of the plasmonic modes of MNPs. One
of the purposes of this paper is to present an accurate ana-
lytical solution to this problem by using concrete examples.
Since the derivation of a closed-form solution has not been
published and there exist typos14 in some of the solutions in
Ref. 12, we will also present a rigorous derivation of the
correct solutions here. By considering the dependence of the
actual resonant frequencies on materials and geometry, we
will show how the asymptotic forms of the solutions can
help us to understand the physical problem. The analytical
solution and discussion focus on plasmonic modes that have
low radiative loss. Such high-quality plasmonic modes might
be useful for good resonators in recently proposed
applications.15–17

This paper is organized as follows. In Sec. II, the geom-
etries and the material parameters are described. The closed-
form solutions to the plasmonic eigenmodes are derived in

Sec. III, which are followed by a comparison to existing
numerical results. The mode qualities of the high-quality
states are also analyzed in Sec. III. Discussions and conclu-
sions are presented in Sec. IV.

II. GEOMETRIES AND MATERIAL PARAMETERS

We consider a circular array of spherical MNPs of particle
radius r0 �see Fig. 1�a��. Taking the center of the circular
array as the origin, the position vectors of the particle centers
are

Rm = R0 cos
2m�

N
x̂ + R0 sin

2m�

N
ŷ , �1�

where m=0,1 ,2 , . . . ,N−1 is the particle index, R0 is the
radius of the circular array, and N is the number of particles.
The center-to-center distance between two adjacent particles
is a=2R0 sin�� /N�. The dielectric function of the MNPs fol-
lows Drude’s form,

���� = 1 −
�p

2

��� + i��
, �2�

where � is the angular frequency, �p is the plasma fre-
quency, and � is the electron scattering rate. The background
medium has a dielectric constant denoted as �h. We assume
that there is no magnetic susceptibility anywhere �i.e., �
=�h=1�. We restrict ourselves to the situations when the
MNPs are not too close together so that a�3r0, which is a
customary assumption for the validity of the dipole approxi-
mation.

FIG. 1. �Color online� Schematic diagram of the MNP circular
array. �a� Geometrical parameters. �b� Polarization vectors.
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III. EIGENMODE ANALYSIS

To understand the electromagnetic resonances of an MNP
circular array, we solve for the intrinsic normal modes of
such a system. The analysis is complicated by the fact that
there is always radiation energy loss in a finite array of par-
ticles. On top of radiation loss, absorption loss is not negli-
gible in plasmonic systems. To describe the electromagnetic
resonances of such systems, a good approach is the eigende-
composition �ED� method13,18,19 �sometimes called spectral
theory�. Bergman and Stroud18 proposed such a method to
understand the electromagnetic resonances of a finite number
of spherical objects. The theory considers all multipolar re-
sponses of a spherical object. Later, a simplified version of
this method that considers only the dipolar response of small
particles was developed by Markel.13 The dipolar ED method
was successfully applied to systems, such as fractal clusters
and periodic MNP arrays. An important advantage of this
approach is that it does not require either numerical complex
root searching20–22 or root approximation.12 Here, we will
employ the dipolar ED method to analyze the responses of
MNP circular arrays. We show that the method allows us to
obtain analytical solutions.

A. Dynamic dipole eigenvalue equation

We consider the case when the particles are well separated
�a�3r0� such that dipole approximation can already make a
good description in optical frequencies. We note that the only
approximation that we use in this paper is the dynamic di-
pole approximation.23,24 Retardation effects are included via
the dynamic Green’s function and material polarizability.

If there is an external time-periodic driving electric field,
Em

exte−i�t, acting on the mth particle, the coupled dipole equa-
tions can be written as

pm = ��Em
ext + �

n�m

WJ �Rm − Rn�pn� , �3�

where the dynamic Green’s function is13

Wuv�r� = k0
3�A�k0r�	uv + B�k0r�

rurv

r2 � , �4�

A�x� = �x−1 + ix−2 − x−3�eix, �5�

B�x� = �− x−1 − 3ix−2 + 3x−3�eix, �6�

k0=� /c, c is the speed of light in the background medium,
and u ,v=1,2 ,3 are component indices in the Cartesian co-
ordinates. Equation �3� can be written as

�
n=1

N

�
v=1

3

Mmnuvpnv = Emu
ext , �7�

or Mp=E in matrix form. Here, M can be divided into two
parts so that

M = �−1I − G , �8�

where I is the identity matrix, and

Gmnuv = �Wuv�rm − rn� , m � n

0, m = n ,
	 �9�

which is independent of the material properties. The polariz-
ability � is the dynamic dipole polarizability,23,24 which is
given by25

���� = i
3c3

2�3a1��� . �10�

Here,

a1��� =
q
1�qx�
1��x� − 
1�x�
1��qx�
q
1�qx��1��x� − �1�x�
1��qx�

�11�

is the �=1 electric term of Mie’s coefficients,26 
1 and �1 are
the Riccati–Bessel functions, x=�a /c, and q=
���� /�h. To
analyze the resonances of a cluster of dipoles, we consider
the following eigenvalue problem:

Mp = �p , �12�

where � and  are, respectively, the complex eigenvalues of
M and G. These two eigenvalues are related by �=�−1−.
The eigenpolarizability is defined as24

�eig =
1

�
. �13�

This quantity can be interpreted as the collective response
function of the whole system for an external electric field
pattern that is proportional to the corresponding eigenvector.
Both � and �eig are useful quantities for analyzing the intrin-
sic normal modes of the system. Their solutions are given in
Secs. III B to III D.

B. Analytical eigensolutions

In general, the eigenvalue problem �Eq. �12�� cannot be
analytically solved when a large number of particles is in-
volved �N�1�.27 Even if Eq. �12� can be numerically solved,
it is very difficult to choose a particular eigenmode from a
bunch of eigenmodes because the number of eigenmodes is
proportional to N. Nevertheless, the problem can be simpli-
fied if a system has a high symmetry.24 The circular array
that we consider has discrete rotational symmetry, which al-
lows us to obtain analytical results for the eigenvectors and
eigenvalues.

In Eq. �12�, all dipole moments are written in the same
Cartesian coordinates. To solve the eigenvalue problem ana-
lytically, it is more convenient to transform the coordinates
such that the new vectors after the transformation become

pmu� = �
v=1

3

�̃muvpmv, �14�

where
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�̃m =� cos
2m�

N
sin

2m�

N
0

− sin
2m�

N
cos

2m�

N
0

0 0 1
� �15�

is the local transformation for the mth dipole. With the help
of the group theory �the details are given in Appendix A�, we
divide the problem into N sets of eigenvalue problems,

M̃��j�c�j,�� = ��j,��c�j,��, �16�

where M̃��j� is a 3�3 matrix, j=1,2 ,3 , . . . ,N, and �
=1,2 ,3. The eigenvalues � in Eq. �16� are the same as the
values given in Eq. �12�. They are given by

��j,�� = �−1 − �j,��, �17�

where

�j,1� =
k0

3

2
�� jC + 
� jB

2 − � jS
2 � , �18�

�j,2� =
k0

3

2
�� jC − 
� jB

2 − � jS
2 � , �19�

�j,3� = k0
3� jA, �20�

with the corresponding eigenvectors

c�j,1� = �� jB − 
� jB
2 − � jS

2 ,− � jS,0�T, �21�

c�j,2� = �� jB + 
� jB
2 − � jS

2 ,− � jS,0�T, �22�

c�j,3� = �0,0,1�T. �23�

These eigenvectors are related to p��j,�� through Eq. �A7�.
Here, we have the following finite sums:

� jA = �
m=1

N−1

A�k0Dm�ei2�jm/N, �24�

� jB = �
m=1

N−1

B�k0Dm�ei2�jm/N, �25�

� jC = �
m=1

N−1

�2A�k0Dm� + B�k0Dm��cos
2m�

N
ei2�jm/N, �26�

� jS = �
m=1

N−1

�2A�k0Dm� + B�k0Dm��sin
2m�

N
ei2�jm/N. �27�

Detailed derivations of the results are given in Appendix A.
We note that � jS can be zero when N is even and j
=N /2,N. In the case that � jS=0, the first and second eigen-
vectors should be replaced by c�j,1�= �0,1 ,0�T and c�j,2�

= �1,0 ,0�T. The corresponding eigenvalues are �j,1�

=k0
3�� jC+� jB� /2 and �j,2�=k0

3�� jC−� jB� /2.

From Eqs. �21�–�23�, we can classify the eigenmodes into
parallel-to-plane �PP� modes ��=1,2� and normal-to-plane
�NP� modes ��=3�. For each �, there is one nondegenerate
in-phase mode �j=N� for any N, and one additional nonde-
generate antiphase mode �j=N /2� for even N. Other modes
are twofold degenerate. The NP modes are polarized perpen-
dicular to the xy plane, while the PP modes are polarized
elliptically in the xy plane, except for j=N /2 and j=N,
which correspond to linear polarization in the xy plane. The
�=1, j=N mode is the in-phase magnetic mode, which is the
focus of Ref. 11 and the �=3, j=N mode is the in-phase pure
electric radiative mode.

C. Polarizabilities of the modes

We derived the closed-form solutions to the eigenvalue
problem above. Here, we analyze the eigenmodes using the
“eigenpolarizabilities” defined in Eq. �13�. For the first con-
crete example, we take N=12, r0=25 nm, a=75 nm, �p
=9.2 eV, �=0.1 eV, and �h=2.5921. The material param-
eters represent approximately the situation of embedding sil-
ver nanoparticles in a dielectric. This could be done by plac-
ing silver particles on top of, for example, a glass substrate
and filling the space with an index-matching fluid. The geo-
metrical parameters are chosen to match those commonly
used in the literature so that meaningful comparisons can be
made.20,22,24 The real and the imaginary parts of �eig are
calculated as a spectral function of frequency using the ana-
lytical formulae in Eq. �17�. We plot the normalized mode
polarizabilities versus the photon energy for the PP and NP
modes separately in Figs. 2 and 3, respectively. In each fig-
ure, we also include the numerical data calculated by nu-
merical diagonalizations of M �the matrices are diagonalized
using routines in LAPACK �Ref. 28��. The insets of Figs. 2 and
3 show the enlarged part of the same plot for a higher clarity
of the region where there is a high density of data points. The
analytical and numerical results are essentially in perfect
agreement. There are 14 curves in both Figs. 2�a� and 2�b�,
while the number of curves in each of Figs. 3�a� and 3�b� are
seven. From the analysis in Sec. III B, there should be five
twofold-degenerate eigenspaces and two nondegenerate
eigenvectors for each �. For that reason, the total number of
curves �21� is smaller than the matrix dimension, 3N�=36�.
In spite of the degeneracy, the number of curves linearly
grows with the number of particles �i.e., the complexity is
O�N3� if we diagonalize the matrix with standard numerical
packages�. For a large number of particles, it is a difficult
task to trace the curves from the mixed data. For example, it
would be difficult to connect the points in Figs. 2 and 3 if we
did not know the analytical results. The analytical formulas
are thus essential for analyzing such systems.

We can see a typical Lorentzian resonant feature for each
of the eigenpolarizabilities in Figs. 2 and 3. The real part,
Re��eig�, in general exhibits a peak followed by a dip and it
changes from positive to negative, while the imaginary part,
Im��eig�, is positive definite. The peaks shown in Figs. 2�b�
and 3�b� are the resonant �normal mode� frequencies. The
corresponding widths of the peaks, which are to be discussed
in greater detail in Sec. III D, are inversely proportional to
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the quality of the system. At first glance, we see a high den-
sity of high-quality states from 2.9 to 3.5 eV, especially near
2.9 eV. These correspond to the higher order modes of the
circular array. The two highest peaks near 2.9 and 3.4 eV in
Fig. 2 and the highest peak near 2.9 eV in Fig. 3 are the
antiphase �j=N /2� modes of three different polarizations. If
the interparticle distances are much smaller than the optical
wavelength, these modes can have very narrow linewidths.
These are analyzed in Sec. III D. With the analytical solu-
tions, we can now identify all the curves shown in Figs. 2
and 3.

We next consider the NP modes and plot the analytical
solutions in Fig. 4�a�. It is clear that the antiphase �j=6�
mode has the smallest linewidth and the linewidths become
larger for other modes of j other than j=6. In the following,
we consider the effect of the interparticle distance and the
particle size. Let us increase the interparticle distance to a
=150 nm, which is twice the first example, but keep the
other parameters fixed. The results for the NP modes are
shown in Fig. 4�b�. In this case, the narrow-linewidth modes
disappear. All the eigenmodes have similar spectral features.
This is expected since a larger interparticle distance should
reduce the interparticle coupling, and the response of each
and every eigenmode should go back to that of the single

particle. Once we increase the particle size by twice to r0
=50 nm so that the interparticle couplings become strong
again, the narrow-linewidth modes appear again �see Fig.
4�c��. The situation in Fig. 4�c� is the same as that of Fig.
4�a�, except that there is global geometrical scaling by a
factor of 2. We see that the overall features are the same in
Figs. 4�a� and 4�c�, except that the resonant frequencies for
larger particles are typically lower, and that is tied to the fact
that the resonance of a single sphere is shifted to a lower
frequency when the size increases. We also observe extra
resonances in the higher frequency regime, and these higher
harmonics appear because of the large array size.

D. Mode qualities

The imaginary part of the eigenpolarizability, Im��eig�, is
proportional to the energy extinction. A particular peak fre-
quency of the spectral function, Im��eig�, indicates a resonant
frequency �0 and the corresponding peak width 	 equals the
inverse of the relaxation time, 1 /�. The quality factor Q of a
particular mode is then given by �0 /	. To analytically find
Q, it is more convenient to find the form of Im���, which is
related to Im��eig� by

FIG. 2. �Color online� Eigenpolarizability spectra of PP modes.
�a� Real part. �b� Imaginary part. In �a�, the insets show the enlarged
parts of the same figure corresponding to the domain inside the red
rectangular box. In �b�, the inset shows the same data in the loga-
rithmic scale. The structural and material parameters are N=12,
r0=25 nm, a=75 nm, �p=9.2 eV, �=0.1 eV, and �h=2.5921.

FIG. 3. �Color online� Eigenpolarizability spectra of NP modes.
�a� Real part. �b� Imaginary part. In �a�, the insets show the enlarged
parts of the same figure corresponding to the domain inside the red
rectangular box. In �b�, the inset shows the same data in the loga-
rithmic scale. The structural and material parameters are the same
as Fig. 2.
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Im��eig� = −
Im���

Re���2 + Im���2 . �28�

Near the resonant frequency, we can approximate Re��� by

Re������  �� − �0����0� , �29�

where

���� =
d Re������

d�

since Re������ will cross zero at resonance.29 With Eqs. �28�
and �29�, we thus have

	  −
Im����0��

����0��
. �30�

The function, ����, depends very much on the choice of
material. In this section, we do not analyze the effect of
energy absorption by a particular material and will focus
mainly on the suppression of radiation loss. For simplicity,
we do not include absorption in the following derivations.

Since ���0� is approximately the same for all modes,
Im����0�� is usually used to analyze the linewidth.13 It can
be divided into two parts,

Im��� = −
2

3
k0

3 − Im�� . �31�

Here, we have used the fact that Im�1 /��=−2k0
3 /3 for non-

absorbing particles.
For large N, there is no loss of generality to take N to be

even. For each polarization �, the antiphase mode �j=N /2�,
with each pair of nearest dipoles having opposite dipole mo-
ments, will have the smallest linewidth in general. We thus
focus on the j=N /2 modes. The dipole moments of these
modes are linearly polarized along the tangential �T�, radial
�R�, and normal �N� direction for �=1, 2, and 3, respectively
�see Fig. 1�b��. The corresponding eigenvalues, which are
given by Eq. �17�, can be written as

T = k0
3��long + �cross� , �32�

R = k0
3��trans + �cross� , �33�

N = k0
3�trans, �34�

where �trans, �long, and �cross comes from transverse, longi-
tudinal, and crossed interactions. Using the Laurent series
expansions of �trans, �long, and �cross given in Appendix B,
we get

Im�T�
k0

3 = −
2

3
+

N2�N + 2�

2N−2�N + 1� ! sinN−2�

N

�k0a�N−2 + ¯ ,

�35�

Im�R�
k0

3 = −
2

3
+

N2�N + 2�

2N−2�N + 1� ! sinN−2�

N

�k0a�N−2 + ¯ ,

�36�

Im�N�
k0

3 = −
2

3
+

N�N + 2�2

2N−1�N + 3� ! sinN�

N

�k0a�N + ¯ . �37�

�We note that Eqs. �35� and �36� are the same only up to the
term associated with �k0a�N−2.� These formulas are general-
ized versions �for N particles� of the expression derived by
Markel for two and four particles.13 We see that all of the
above expressions have the first term, −2 /3, that can exactly
cancel the single dipole radiation term in Eq. �31�, i.e., the
collective dipolar radiation is suppressed. The remaining
higher-order terms contribute to the linewidth. For a fixed
N�1, as long as k0a is small enough such that the first
nonzero higher-order term dominates, the linewidths are 	
��k0a /��N+1 for both tangential and radial modes and 	
��k0a /��N+3 for the normal-to-plane mode. Compared to
the linewidth of single dipole resonance, 	d��k0a�3, the
linewidths of these antiphase modes are significantly reduced
when N is large. The above approximate forms of the line-

FIG. 4. �Color online� Eigenpolarizability spectra of NP modes.
�a� r0=25 nm and a=75 nm. �b� r0=25 nm and a=150 nm. �c�
r0=50 nm and a=150 nm. Other parameters are the same as in
Fig. 2.
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widths are accurate when k0a��. For an example, we take
the same parameters as in Sec. III C except for �=0. Figure
5 shows a plot of the exact analytical value of −lm��r0

3�
�given by Eq. �17�� against resonant frequency. At low fre-
quency �k0a�0.4��, the graph �in log-log scale� shows
straight lines with slopes that are consistent with the approxi-
mated power factor, N+1, for tangential and radial modes
and N+3 for the normal-to-plane mode. The overlapping be-
tween the tangential and radial modes also agrees with the
expressions in Eqs. �35� and �36�. The lines bend slightly
downward at higher frequencies �k0a�0.4��, indicating that
the linewidths are smaller than the approximated power laws.
In this range, the tangential and radial modes also start to
separate from each other. In general, the linewidth of a reso-
nant state rapidly decreases as the resonant frequency de-
creases. The actual resonant frequencies fall in the range of
0.4��k0a�0.7� for our material parameters. By inspecting
the interaction of surface charges30 on the MNPs, we know
that the normal-to-plane and radial modes have similar reso-
nant frequencies that are lower than the single sphere reso-
nant frequency, while the tangential mode is higher. There-
fore, this suggests that the linewidth of the tangential mode is
much larger than that of the radial mode although their line-
widths have the same form �	��k0a /��N+1�. Furthermore,
the linewidth of the normal-to-plane mode is smaller than
that of the tangential mode by a factor of �k0a /��2 approxi-
mately. Figure 6 shows the exact analytical values of
Im��eig� for these three modes. Figure 6 shows sharp peaks
that agree with our estimation in terms of both peak fre-
quency and peak width. Here, we conclude that the best
quality mode is the antiphase NP mode with a linewidth that
takes the form of 	��k0a /��N+3.

Although N is assumed to be even in the above analysis,
the general properties of the linewidths are almost the same
for odd N. However, the linewidth of the highest quality state
for odd N is 	��k0a /��N+2 instead. Another difference is
that the highest quality state�s� for even N, i.e., the j=N /2
state, is nondegenerate, while that for odd N, i.e., the j
= �N�1� /2 states, are twofold degenerate. Figure 7 shows

the linewidths �given by Eq. �17�� of the highest quality
modes against resonant frequency for different numbers of
particles. We see that the linewidths increase with the reso-
nant frequency in the form very close to our predicted power
laws. For a given even number N0, the linewidths of the N
=N0 case and the N=N0−1 case nearly overlap. In addition,
it is shown in Fig. 8 that the linewidths decay exponentially
as N increases �separately for even and odd numbers�.

IV. DISCUSSION AND CONCLUSION

In summary, we have rigorously derived the analytical
eigensolutions to the plasmonic modes of MNP circular ar-
rays within the dynamic dipole approximation. Significant
suppression of radiation loss was found in some of the eigen-
modes. The high-quality plasmonic modes were understood
via the analytical solutions. We found that the antiphase
mode could almost cancel the radiative linewidth of a single
dipole. The normal-to-plane antiphase mode was found to be
the highest-quality mode among all modes. If the resonant

FIG. 5. �Color online� Linewidths of the highest-quality plas-
monic modes for each polarization vs resonant frequency. Radial
mode �R�. Tangential mode �T�. Normal-to-plane mode �N�. The
inset shows an enlarged part in the linear scale. �=0.

FIG. 6. �Color online� Im��eig� of the highest-quality plasmonic
modes for each polarization vs photon energy. Radial mode �R�.
Tangential mode �T�. Normal-to-plane mode �N�. �=0.

FIG. 7. �Color online� Linewidths of the anti-phase normal-to-
plane mode vs resonant frequency. �=0.
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frequency is low �k0a���, the remaining radiative linewidth
was found to be dominated by a term proportional to
�k0a /��N+3 for even numbers of particles N. Our solutions
could be useful in understanding the complicated response
properties of MNP circular arrays and wave propagation in
MNP plasmonic waveguides with bending. Our results here
are based on local theory, but one could easily rederive the
results using nonlocal theory, provided that a valid nonlocal
dielectric function is given.
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APPENDIX A: DERIVATION OF THE ANALYTICAL
SOLUTION

The transformation given by Eq. �14� can be written, glo-
bally, as

p� = �p , �A1�

where

� =�
�̃1 O O O O

O �̃2 O O O

O O �̃3 O O

O O O � ]

O O O ¯ �̃N

� . �A2�

The transformed eigenvalue problem becomes

M�p� = �p�, �A3�

where M�=�M�−1. Due to the discrete rotational symme-
try of the system, M� is invariant under a cyclic index trans-

lation, m→Mod�m+n ,N�, i.e., T�n�M�T�n�−1=M�, for n
=1,2 ,3 , . . . ,N, where

T�n� =�
O Ĩ O O O

O O Ĩ � ]

O O O � O

O O O � Ĩ

Ĩ O O ¯ O
�

n

, �A4�

and Ĩ is a 3�3 identity matrix. In other words, T�n� and M�
commute. We note that the set, �T�1� ,T�2� ,T�3� , . . . ,T�N��,
form a cyclic group CN. The simultaneous eigenvectors of
the group and the corresponding eigenvalues of T�n� are
denoted by v�j� and tn

�j�, respectively, with

tn
�j� = ei2�jn/N �A5�

and

vmu
�j� = cu

�j�ei2�jm/N, �A6�

where c1
�j�, c2

�j�, and c3
�j� are arbitrary constants and j

=1,2 ,3 . . . ,N. The eigenvectors v�j� of T�n� are also the
eigenvectors of M�. Therefore, we can write the eigenvectors
p��j,�� of M� in the form of

pmu��j,�� = cu
�j,��ei2�jm/N, �A7�

where � is an index allowing further reduced eigenspaces.
After substituting Eq. �A7� into Eq. �A3�, the eigenvalue
problem becomes

�
v=1

3

M̃uv�
�j�cv

�j,�� = ��j,��cu
�j,��, �A8�

where

M̃uv�
�j� = �

m=1

N

MNmuv� ei2�jm/N. �A9�

If we write Eq. �A8� explicitly in a matrix form, we will
finally get the 3�3 matrix equation,

M̃��j�c�j,�� = ��j,��c�j,��, �A10�

where

M̃��j� = �−1I − G̃�j�,

G̃�j� = k0
3�

m=1

N−1

�A�k0Dm��̃m
−1 + B�k0Dm���̃m

−1 + K�/2�ei2�jm/N,

�A11�

Dm=2R sin�m� /N�, and

K = �− 1 0 0

0 1 0

0 0 − 1
� . �A12�

The eigenvalue problem can now be solved in closed form
and the results are given by Eqs. �17�–�23�.

FIG. 8. �Color online� Linewidths of the anti-phase normal-to-
plane mode vs number of particles in the ring. 	d is the linewidth of
a single particle. �=0.
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APPENDIX B: SERIES EXPANSIONS OF EIGENVALUES

For the antiphase modes �j=N /2�, the eigenvalues of G
can be divided into the transverse ��trans�, longitudinal
��long�, and cross-interaction ��cross� terms, as shown in Eqs.
�32�–�34�. Using Laurent series expansion, we get

�trans = �
n=−3

�
�n + 2�2

�n + 3�!
in+1SN,n

sinn�

N

�k0a�n, �B1�

�long = �
n=−3

�
2�n + 2�
�n + 3�!

in+1SN,n

sinn�

N

�k0a�n, �B2�

�cross = �
n=−3

�
�n + 2��n + 4�

2�n + 3�!
in+3SN,n+2

sinn�

N

�k0a�n, �B3�

where

SN,n = �
m=1

N−1

�− 1�m sinnm�

N
. �B4�

If we take the imaginary part of the eigenvalues, we only
leave the terms with n=0,2 ,4 , . . .. Furthermore, for these
even terms, we have

SN,n = � − 1 for n = 0

0 for n = 2,4,6, . . . ,N − 2

N�− 1�N/221−nC�n−N�/2
n for n = N,N + 2,N + 4, . . . ,3N − 2

� . �B5�

The imaginary parts of the eigenvalues can now be simplified as in Eqs. �35�–�37�.
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