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We derive the snap-through solution and the governing snap-

ping force equations for an arbitrarily pre-shaped beam de-

flected under a mid-length lateral point force. The exact solu-

tion is obtained based on the classical theory of elastic beams

as a superposition of the initial shape and the modes of buck-

ling. Two kinds of solution are identified depending on the

axial force level. The two solutions, bifurcation conditions,

bistability conditions, and the snapping force equations are

derived and discussed. The snap-through and snapping force

solutions are then calculated for two common beam initial

shapes, the curved (first buckling shape) and the inclined one

(V-shape). In both cases, explicit expressions are obtained

describing the snap-through behavior. The analytical model-

ing results show excellent agreement with the finite element

simulations. The comparison between the two cases shows

a similar snap-through behavior qualitatively, while several

differences and similarities are noticed quantitatively.

1 Introduction

In the transition from macro-scale to micro-scale, the

design of mechanisms and micro-structures is more con-

strained. The assembly is harder and common micro-

fabrication techniques impose a monolithic constraint. Thus,

mechanisms, which consist usually of an assembly of several

rigid elements with joints at the macro-scale, are generally

replaced by compliant mechanisms at the micro-scale.

Compliant mechanisms perform their function through

the elastic deformation of their structures. Despite their lim-

ited elastic range of deformation, compliant mechanisms are

attractive for many applications, even at the macro-scale.

This is due to their several advantages, such as energy stor-

age, reduced cost, improved accuracy and reliability, elimi-

nated wear, friction and backlash, and the fact that they do

not need assembly or lubrication.

Compliant bistable mechanisms have a range of deflec-

tion between two stable equilibrium configurations. These

mechanisms have a double well potential behavior where the

deformation energy is stored between two minima at the sta-

ble positions. Bistable beams with buckled-like shapes are

the most common types of compliant bistable mechanisms.

Bistable beams exhibit additional advantages, such as

their simplicity, passive holding, low actuation energy, small

footprint, large stroke with small restoring forces, and neg-

ative stiffness zone. These advantages make bistable beams

suitable for an increasing number of applications at different

scales, such as space applications [1], biomedical [2], energy

harvesting [3, 4], resonators [5], actuators [6] accelerome-

ters [7], shock sensors [8], gas sensors [9], pressure sensors

[10], flow sensors [11], grippers [12], mechanisms with large

displacement and small actuation stroke [13], switches [14],

relays [15], memory devices [16], logics [17], lamina emer-

gent frustrum [18], statically-balanced mechanisms [19], soft

robotics [20], constant force mechanisms [21, 22], bistable

positioning [23–26], and multistable devices [27–32].

The shape of bistable beams can be realized by ini-

tial buckling or can be deliberately pre-shaped during fab-

rication. The buckling can be obtained by axial compres-

sion [33–35], heating expansion [36–38], or residual stresses

[39–41]. A straight beam after buckling is always bistable

and the snap-through behavior is symmetric between the two

sides of buckling.

In contrast, due to the shifted initial state of pre-shaped

beams, a second stable position exists only under some con-

ditions on the initial shape. Further, whenever the pre-shaped

beams have a second stable side, the stability margin is usu-

ally more important in their first stable side. Both force and

displacement ranges are limited in the second stable side
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compared to the first one. Pre-shaped bistable beams with

both ends fixed are widely used in microsystems due to their

ease of fabrication without the need of external forces or

hinged boundaries to induce buckling.

Pre-shaped beams can be used in single or parallel con-

figurations depending on the application. A single beam con-

figuration is usually used in electrostatic actuation [42, 43]

where large dynamic deflection is required. The parallel con-

figuration is more used in quasi-static applications where the

bistability, straight guided displacement, negative stiffness,

or other snap-through properties are desirable.

In the parallel configuration, several pre-shaped beams

are connected by a shuttle in their mid-length, which con-

straints the displacement of the shuttle to a single direction.

This constraints non-symmetrical modes of buckling, which

enhances the bistability of these mechanisms [44, 45].

Pre-shaped beams in parallel configurations are gener-

ally actuated with a lateral force applied on the shuttle. This

is the case of interest for the present study. Other modes

of actuation are more used for bistable beams with induced

buckling, such as electromagnetic forces [46], moments ap-

plied in different locations [47], or lateral forces applied at

different points along the beam length [48, 49].

Pre-shaped bistable beams can be classified as uniform

or hinged beam structures. The uniform beam has a simpler

structure with uniform cross-section. However, the hinged

beam has a variable cross-section along the beam length.

The hinged shape is usually designed to promote some snap-

through properties, such as symmetric bistability [50–53] or

energy dissipation [54]. Uniform cross-section beams allow

a more distributed compliance along their length. Hinged

beams in contrast are constrained in their narrow parts where

the deformation stress is more concentrated. This makes

the use of uniform beams more efficient for miniaturiza-

tion [45]. The study in this paper focuses on the case of

uniform beams. Most reported uniform pre-shaped bistable

beams have curved or inclined initial shapes. The curved

shape is usually similar to the first mode shape of buckling

of a straight beam. The inclined shape (V-shape) is easier

to fabricate or assemble at macro-scale. Figure 1 shows the

different pre-shaped beam types and configurations.

Curved beam

Inclined beam

Uniform beam Hinged beam

Parallel configuration

(a)

(b)
(c)

(d)

(b)

(e)

Fig. 1. Examples of pre-shaped bistable beams.

Many analytical models have been reported for each

kind of bistable beams and for the different modes of ac-

tuation. The modeling of bistable beams must account for

the geometric nonlinearities associated with the simultane-

ous lateral deflection and axial compression and the scenar-

ios of bifurcation in the snap-through behavior.

For pre-shaped beams with a mid-length lateral force,

Qiu et al. [44] developed a modal superposition solution for

the initially curved shape based on energy variation calcu-

lation and the classical beam theory. This work showed a

bifurcation in the snap-through behavior of the curved beam

where the second or third mode of buckling becomes acti-

vated at a certain level of the axial stress. Using the same

derivation, Hussein et al. [55] developed explicit analytical

expressions of the snapping forces and internal stresses that

account for all modes of buckling. A generalized model for

arbitrarily initial shape and loading is developed in [56] and

solved using two different iterative algorithms. A bilateral

relationship between the first and second stable configura-

tions of bistable pre-shaped beams was formulated in [57].

For initially inclined beams, Zhao et al. [58] developed

an elliptic integral model based on large deformation the-

ory where shear and axial deformation are negligible. This

model is effective for thin and flexible beams where the ef-

fects of axial elongation and shear are negligible [59]. In the

same context, Holst et al. [60] considered the axial deflec-

tion in their elliptic integral model. A curve decomposition

method is presented in [61] to simplify the large deforma-

tion analysis. Chen et al. [62] used a beam constraint model

from [63] and added a shear effect correction based on the

Timoshennko theory to predict the snapping forces. The con-

straint beam model was further extended in [64,65]. All cited

modeling studies showed very good agreement with experi-

ments and finite element method (FEM) simulations.

This work presents analytical study for the snap-through

of an arbitrarily pre-shaped beam, subjected to a mid-length

lateral point force. Explicit analytical expressions are de-

rived describing the snap-through behavior, snapping forces

and conditions for bifurcation, negative stiffness behavior,

and bistability. The modeling is based on the classical beam

theory, where the initial shape is expanded in Fourier series.

The exact solution for the snap-through equation is derived

considering all modes of buckling.

The snap-through governing expressions contain infinite

sums depending on the modes of buckling and Fourier series

coefficients. Some of these sums are already evaluated in

[55], while the other sums are dependent on the initial shape.

The infinite sums are evaluated for two initial shape cases,

curved and inclined, and explicit analytical snap-through ex-

pressions are obtained. The analytical modeling results are

compared with FEM simulations for selected cases.

The rest of the paper is organized as follows. The snap-

through solution for pre-shaped beams with arbitrarily initial

shape is developed in Section 2. The snapping force solution

for pre-shaped beams is then developed in Section 3. The

calculations for a specific initial beam shape are clarified in

Section 4 and the cases of pre-shaped curved and inclined

beams are investigated. The snap-through behavior of both

beam shapes is finally compared and discussed in Section 5.
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2 Snap-through solution of a pre-shaped beam

The snap-through solution for a pre-shaped beam with

an arbitrarily initial shape is developed in this section.

2.1 Problem definition and annotations

Figure 2 shows a schematic of a clamped-clamped pre-

shaped beam deflected under a mid-length lateral point load

f . The beam has a span l, in-plane thickness t, initial middle

height h, and out-of-plane depth b.

Original shape

Deflected shape

Fig. 2. Schematic of a clamped-clamped pre-shaped beam.

The shape of the beam is described by w(x), which rep-

resents the shape of the beam along the x axis. w(x) refers

to the original as-fabricated beam shape at zero deflection

without any residual stress. The following assumptions are

considered for the beam shape in this study:

◦ Clamped-clamped boundary conditions (l is constant,

w(x) = w(x), dw
dx
(x) = dw

dx
(x) for x = 0, l).

◦ An initial middle height h (w( l
2
) = h).

◦ Uniform beam shape (b and t are constants).

◦ Small deformation hypothesis (t, h ≪ l).

◦ Symmetry of the initial shape with respect to the beam

mid-length (w( l
2
− x) = w( l

2
+ x)). This is usually the

case for parallel configurations.

The deflection d at the beam mid-length is defined as:

d = w(
l

2
)−w(

l

2
) (1)

After deflection due to an applied point force f , the to-

tal length of the beam s becomes contracted and the internal

axial force P appears in the beam. In elastic structures, the

axial force is calculated using Hooke’s law as follows:

P = EA

(

s− s

s

)

(2)

where s is the initial beam length, E is the Young’s modulus

and A is the cross-section area.

Considering small deformation, the length s of the beam

can be approximated as follows:

s =

✂ l

0

√

1+

(

dw

dx

)2

dx ≈ l +
1

2

✂ l

0

(

dw

dx

)2

dx (3)

For convenience, we normalize the various variables as

follows:

X = x
l

W (X) = w(x)
h

S = sl
h2 Q = h

t

N =
√

Pl2

EI
∆ = d

h
F = f l3

EIh

(4)

where I is the cross-section quadratic moment.

Considering uniform cross-section and material proper-

ties, the static snap-through behavior of a pre-shaped beam

subjected to an axial force and a lateral point load is governed

by:

d4W

dX4
− d4W

dX4
+N2 d2W

dX2
= 4F ∑

j=1,5,9...

cosN jX (5)

The mathematical derivation of (5) is presented in Ap-

pendix A. N j is the jth critical buckling load. Mathemati-

cally, N j is calculated to have a non-trivial solution after in-

troducing the boundary conditions in the homogeneous prob-

lem (similar to the problem of a straight beam). For clamped-

clamped boundary conditions, N j is the jth positive solution

of the following periodic equation [44, 55]:

sin
N j

2

(

tan
N j

2
− N j

2

)

= 0 (6)

{

N j = ( j+1)π j = 1,3,5...
N j = 2.86π,4.92π,6.94π,8.95π... j = 2,4,6...

(7)

2.2 Solution of the problem

In order to solve (5), W (X) is decomposed into three

parts, the initial shape W (X), a particular solution Wp, and a

homogeneous solution Wh.

W (X) =W (X)+Wp(X)+Wh(X) (8)

The consideration of the initial shape W (X) accounts for

the inhomogeneous boundary conditions. Thereby, introduc-

ing (8) into (5), the problem can be decomposed into two

separate problems with zero boundary conditions to find a

particular and a homogeneous solution. The homogeneous

problem is independent from the initial shape and external

loads and is governed by the following equation:

d4Wh

dX4
+N2 d2Wh

dX2
= 0 (9)

Equation (9) is the same equation governing a straight

beam with an axial load. Its solution is an infinite superposi-

tion of the modes of buckling as follows [44, 55]:

Wh(X) =
∞

∑
j=1

A jWj(X) (10)
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where Wj(X) is the jth mode shape of buckling and A j is

a constant that represents the contribution of the jth mode

of buckling in the homogeneous solution. For clamped-

clamped boundary conditions, Wj(X) is expressed as fol-

lows:

{

Wj(X) = 1− cosN jX j = 1,3,5...

Wj(X) = 1− cosN jX −2X +
2sinN jX

N j
j = 2,4,6...

(11)

Further, introducing (8) into (5), the particular problem

is governed by the following equation:

d4Wp

dX4
+N2

(

d2Wp

dX2
+

d2W

dX2

)

= 4F ∑
j=1,5,9...

cosN jX (12)

The initial shape W (X) is usually symmetric between

the two sides of the beam length. In parallel configurations,

this symmetry serves for enhancing the bistability and to pro-

duce a straight deflection of the shuttle at the mid-length of

the beam. An arbitrarily initial shape, which is symmetric

with respect to the beam mid-length, can be expanded using

Fourier series over the beam length as follows:

W (X) =C0 + ∑
j=1,3,5...

C j cos(N jX) (13)

where C0 and C j are calculated as follows:



















C0 =
l✁

0

WdX

C j = 2
l✁

0

W cos(N jX)dX

(14)

Introducing the second derivative of (13) into (12), the

particular problem equation becomes

d4Wp

dX4
+N2 d2Wp

dX2
= ∑

j=1,5,9...

(4F +C jN
2
j N2)cosN jX

+ ∑
j=3,7,11...

C jN
2
j N2 cosN jX

(15)

For each term cos(N jX) in (15), a particular solution

Wp j(X) satisfying zero boundary has the form Wp j(X) =
B jWj(X). Thereby, the particular solution has the following

form:

Wp(X) = ∑
j=1,3,5...

B jWj(X) (16)

where B j is a constant that represents the contribution of the

jth mode of buckling in the particular solution. B j are ob-

tained by substituting (16) into (15):



















B j =
4F+C jN

2
j N2

N2
j (N

2−N2
j )

j = 1,5,9...

B j =
C jN

2

N2−N2
j

j = 3,7,11...

B j = 0 j = 2,4,6...

(17)

Thereby, combining (8), (10), and (16), the exact so-

lution of the equilibrium equation in (5) has the following

form:

W (X) =W (X)+
∞

∑
j=1

K jWj(X) (18)

where K j = A j +B j.

The terms A j can be calculated by introducing (10) into

(9), which leads to the following:

∞

∑
j=1

N2
j (N

2 −N2
j )A j cos(N jX) = 0 (19)

According to (19), there is no contribution from the ho-

mogeneous solution when N is not at any of the critical buck-

ling loads N j:

A j = 0 for N 6= N j (20)

The same conclusion can be extracted by minimizing

the variation of the total energy of the system as in [44, 55].

Let ub, uc, u f and ut are the bending, compression, actuation

and total energy and let U(·) =
u(·)l

3

EIh2 is the normalization for

each of them. The variation of Ub, Uc, U f are calculated as

follows:

∂Ub =
1

2
∂

✂ 1

0

(

d2W

dX2
− d2W

dX2

)2

dX (21a)

∂Uc =−N2∂S (21b)

∂U f =−F∂∆ (21c)

The variation of the total energy is the sum of bending,

compression, and actuation energy variations:

∂Ut = ∑
j=1,5,9...

(

(N2
j −N2)K j +

4F

N2
j

+C jN
2

)

N2
j

2
∂K j

+ ∑
j=3,7,11...

(

(N2
j −N2)K j +C jN

2
) N2

j

2
∂K j

+ ∑
j=2,4,6...

(

N2
j −N2

) N2
j

4
∂K2

j

(22)
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.

Minimizing ∂Ut , the expressions of K j are obtained. In

this case, it can be noticed that K j are equivalent to B j in (17)

for N 6= N j, which validates (20).

The energy variation calculation gives a further insight

about the limitation of N. When N starts to increase from

zero after deflection between the two sides of buckling, N

cannot exceed N2 physically since ∂Ut is always positive.

When N reaches N2 (if the geometry allows it), the sec-

ond mode of buckling becomes activated and changes the

snap-through behavior of the pre-shaped beam. Note that

N reaches higher limits for higher values of the height-to-

thickness ratio Q, as will be clarified latter.

The second mode can appear only in a single pre-shaped

beam configuration, where a second stable position exists

weakly only in some cases for high values of Q. In paral-

lel configurations, the non-symmetrical modes of buckling

are constrained, which enhances the bistability and allows a

guided straight range of motion of the shuttle at the beams

mid-length [44, 55]. In this work, only the parallel configu-

ration scenario is considered.

In parallel configurations, N is able to exceed N2 and

a bifurcation between two kinds of solution emerges at the

third critical buckling load N3. In the first kind, the homoge-

neous solution has no contribution (A j = 0 for j = 1, ...,∞)

and it applies when N is below N3 (N < N3). In the second

kind, the third mode in the homogeneous solution becomes

activated (A3 6= 0, A j = 0 for j 6= 3) and it applies when N

reaches N3 (N = N3). As can be noticed from (17), N cannot

reach N3 if C3 6= 0. Figure 3 demonstrates the variation of

N during deflection for two typical examples of pre-shaped

curved beams. In the first example, N cannot reach N3 during

deflection while N3 is reachable in the second example. One

can note from Fig. 3 that the beam, in both cases, is more

compressed in the middle zone of deflection, as evident from

the high values of N, while it is relaxed in the two sides of

buckling. When N3 is reached, the third mode of buckling

appears in the beam shape preventing any further compres-

sion of the beam length. The occurrence of the two scenarios

in Fig. 3 depends on the dimensional ratio Q; N can reach

higher levels for higher values of Q. Hence, the third mode

of buckling get involved during deflection for Q higher than

certain limit that will be determined in the next section.

In conclusion, the solution of the governing equation (5)

has the form (18) where K j are expressed as follows:

First kind

N < N3



















K j =
4F+C jN

2
j N2

N2
j (N

2−N2
j )

j = 1,5,9...

K j =
C jN

2

N2−N2
j

j = 3,7,11...

K j = 0 j = 2,4,6...

(23a)

Second kind

N = N3



























K j =
4F+C jN

2
j N2

3

N2
j (N

2
3−N2

j )
j = 1,5,9...

K j =
C jN

2
3

N2
3−N2

j

j = 7,11,15...

K j 6= 0,C j = 0 j = 3

K j = 0 j = 2,4,6...

(23b)

Fig. 3. Variation of N during deflection for two examples of pre-

shaped curved beams in parallel (constraint) configuration. The first

example is when N3 is not reachable and the second is when N3 is

reachable during deflection.

The coefficients K j are dependent on F , N, and ∆. The

relationship between F , N, and ∆ is determined from the de-

flection equation (1) and Hooke’s law (2), as clarified in the

next section.

3 Snapping force solution

The snapping force expressions are evaluated and ana-

lyzed in this section. The snapping force is the mid-length

lateral point force required to statically-balance the pre-

shaped beam along the snap-through zone of deflection.

3.1 First kind of solution

Governing equations Introducing the solution from (18)

and (23) into (1) and (2), the following equations are ob-

tained governing the relationship between F , N and ∆:

F =
1

Λe(N)
(Λd(N)−∆) (24)

Λa(N)F2 +Λb(N)F +Λc(N)+
N2

12Q2
= 0 (25)

where Λa, Λb, Λc, Λd and Λe are infinite sum functions that

are dependent on N as follows:

5



Λa(N) = ∑
j=1,5,9...

4

N2
j (N

2 −N2
j )

2
(26a)

Λb(N) = ∑
j=1,5,9..

2C jN
2
j

(N2 −N2
j )

2
(26b)

Λc(N) = ∑
j=1,3,5...

−C2
j N

2
j N2

4

N2 −2N2
j

(N2 −N2
j )

2
(26c)

Λd(N) = ∑
j=1,5,9..

−2C jN
2

N2 −N2
j

(26d)

Λe(N) = ∑
j=1,5,9...

8

N2
j (N

2 −N2
j )

(26e)

The infinite sums Λa and Λe are independent from the

initial shape. These sums were calculated in [55] for the case

of a pre-shaped curved beam:

Λa(N) =
3

16N4

(

1− tan N
4

N
4

+
tan2 N

4

3

)

(27a)

Λe(N) =
1

N3

(

N

4
− tan

N

4

)

(27b)

Equation (25) is a second order polynomial equation of

F where the polynomial constants are dependent on N. Sim-

ilarly, substituting (24) into (25), the resulting equation is a

second order polynomial equation of ∆ where the polyno-

mial constants are dependent on N. This implies that for

each value of N in the first kind of solution, there are two

corresponding values of F and ∆; as clarified for the latter in

Figure 3.

Maximum limit of axial compression The axial force N

reaches a maximum level Nc in the middle zone of deflection

as can be seen from Figure 3. The value of Nc increases with

increasing the dimensional ratio Q. The specific ratio Qc,

which allows N to reach a maximum limit Nc during deflec-

tion, is the minimum of Q that allows obtaining real solutions

for F at N = Nc in (25). Qc is then expressed as follows:

Qc = Nc

√

Λa(Nc)

3Λ2
b(Nc)−12Λa(Nc)Λc(Nc)

(28)

Calling Fc and ∆c the corresponding values for F and ∆
for N = Nc respectively; they can be determined from (24)

and (25) as follows:

Fc =− Λb(Nc)

2Λa(Nc)
(29a)

∆c = Λd(Nc)+
Λe(Nc)Λb(Nc)

2Λa(Nc)
(29b)

Note that the determination of Qc from (28) is limited to

the range Nc ∈ [0,N3]. Equation (28) helps to determine the

geometrical conditions to reach the different levels of axial

compression, to have negative stiffness snap-through behav-

ior, and to have a second kind of solution zone. In the sequel,

Q1, Q2 and Q3 refer to the values of Qc for Nc = N1, N2 and

N3, respectively.

Lateral stiffness The lateral stiffness S of the beam in the

snap-through zone is defined as (∂ f/∂d), which is propor-

tional to (∂F/∂∆). The stiffness expression can be deduced

from (24) as follows:

S =
EI

l3

∂F

∂∆
=

EI

l3

1

Λe

(

∂N

∂∆

(

∂Λd

∂N
−F

∂Λe

∂N

)

−1

)

(30)

The lateral stiffness S (which is proportional to the natu-

ral frequency) decreases as the beam is compressed. This can

be seen from the natural frequency as reported in [66]. Thus,

in order to determine at which level the beam starts to show

a negative stiffness behavior zone, we choose to calculate

S at the maximum axial stress point of deflection (N = Nc,

∆ = ∆c, F = Fc). At this point, (∂N/∂∆) is equal to zero by

definition, which gives the following expression of the stiff-

ness:

SN=Nc =
EI

l3

−1

Λe(Nc)
(31)

From the expression of Λe in (27b), we can deduce that

the stiffness SN=Nc is positive for Nc ∈ [0,N1[, equal to zero

for Nc = N1 and is negative for Nc ∈]N1,N3]. This means

that a pre-shaped beam starts to show a negative stiffness

behavior for a Q value around Q1. Figure 4 shows the typical

snapping force curves for a pre-shaped curved beam in the

three cases: Q < Q1, Q = Q1 and Q1 < Q < Q3.

Q<Q1

Q=Q1

Q1<Q<Q3

Fig. 4. Typical snapping force curves for a shallow pre-shaped

curved beam with Q < Q1, Q = Q1 and Q1 < Q < Q3. Q1 and

Q3 refer to the values of Qc for Nc = N1 and N3, respectively.

As can be seen in Figure 4, Q1 is the boundary between

different behaviors in terms of the lateral stiffness. For lower

values of Q, only positive stiffness behavior can be noticed.
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For Q values close to Q1, the beam acts as a constant force

mechanism in the middle zone of deflection. However, this

zero stiffness property is limited in terms of the range of

displacement due to the small value of Q1 in practice. For

higher values of Q, the pre-shaped beam starts to show a neg-

ative stiffness behavior around the middle zone of deflection.

This negative stiffness zone is a necessary but insufficient

condition to have bistability. The condition for bistability is

that the snapping force reaches negative values during deflec-

tion. In that case, the beam pushes itself to the second stable

side instead of pushing back to the initial position. Note that

the negative stiffness zone cannot be measured using a force-

controlled experiment; a deflection control is required.

Calling FN1
and ∆N1

the values of F and ∆, respectively,

for Q = Q1 and N = N1; we can notice from Figure 4 that

the snapping force curves for the different values of Q for

shallow beams (Q < Q3) pass in close vicinity of that point.

FN1
and ∆N1

can be calculated from (29) by setting Nc = N1.

Note that FN1
is only dependent on C1 as follows:

FN1
=−4π4C1 (32)

Note also that the value of F for N = N1 remains equal to

FN1
, even for Q > Q1.

End of compression The limit of the snap-through deflec-

tion zone where the solution developed in this paper remains

applicable is the limit at which N reaches zero after deflec-

tion. After this limit, the beam becomes in tension (N < 0),

not in compression. Calling ∆ f inal and Ff inal the values of ∆
and F at this limit, respectively; they can be deduced from

(24) and (25) as follows:

∆ f inal =−160 ∑
j=1,5,9..

(

C j

N2
j

)

Ff inal =−30720 ∑
j=1,5,9..

(

C j

N2
j

) (33)

Note that Ff inal is positive since it is proportional to

∆ f inal , which is in the ∆ positive zone (Ff inal = 192∆ f inal).

3.2 Second kind of solution

For the second kind of solution, N remains constant at

N3 for a certain range of deflection. We call F3 the snapping

force in the second kind of solution. The relation between F3

and ∆ in this range can be obtained from (24):

F3 = 64π2 (Λd3 −∆) (34)

where Λb3, Λc3 and Λd3 are used instead of Λb(N3), Λc(N3)
and Λd(N3) in the sequel, respectively.

Fig. 5. Typical snapping force curve for a pre-shaped curved beam

with Q > Q3. Initially, the snapping force increases with increasing

the beam mid-point deflection, maintaining a shape defined by the

1st , 5th, 9th ... modes of buckling (1st mode is dominating), until

reaching ∆top. In between ∆top and ∆bot , the third mode of buckling

involves in addition in the shape of the beam, resulting in a constant

negative stiffness behavior. After ∆bot , the third mode of buckling

is no more involved and the snapping force increases with the de-

flection. The negative stiffness in-between ∆top and ∆bot leads to

bistability (two zero-force positions with positive stiffness behavior at

∆=0 and at ∆end ).

The second kind of solution zone is reachable during

deflection for Q ≥ Q3. The typical snapping force curve for

a pre-shaped curved beam in this case is shown in Figure 5.

From (34) and Figure 5, one can notice that when-

ever the initial shape of a pre-shaped beam allows reaching

N = N3, the lateral stiffness of the beam in the range of de-

flection of the second kind of solution (S3) is negative, con-

stant and is only dependent on the material strength and the

beam dimensions (except for the initial height h). However,

S3 is independent from the specific initial shape of the beam,

as given below:

S3 =−64π2 EI

l3
(35)

The third mode constant K3 in the second kind of solu-

tion can be calculated from the Hooke’s law. Mathematically,

K3 is added in (25) in a way that N remains equal to N3. Re-

call that C3 = 0 is a condition for N to reach N3. Thereby, K3

is equivalent to:

K3 =± 1

2π

√

− 3

4096π4
F2

3 −Λb3F3 −Λc3 −
4π2

3Q2
(36)

Considering (34), K3 can be expressed as a function of

∆:

K3 =± 1

2π

√

√

√

√

−3∆2 +(6Λd3 +64π2Λb3)∆− 4π2

3Q2

−3Λ2
d3 −64π2Λb3Λd3 −Λc3

(37)
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The limits of the second kind of solution zone in terms of

∆ and F can be obtained from the expression of K3. We label

(∆top, Ftop) at the first limit (closer to ∆ = 0) and (∆bot , Fbot )

at the second limit. ∆top, Ftop, ∆bot and Fbot are calculated

at the limits where K3 in (36) and (37) has a real solution

(K3 = 0).

∆top = Λd3 +
32π2Λb3

3
−

√

(

32π2Λb3

3

)2

− Λc3

3
− 4π2

9Q2

(38a)

Ftop = 64π2





−32π2Λb3

3
+

√

(

32π2Λb3

3

)2

− Λc3

3
− 4π2

9Q2





(38b)

∆bot = Λd3 +
32π2Λb3

3
+

√

(

32π2Λb3

3

)2

− Λc3

3
− 4π2

9Q2

(38c)

Fbot = 64π2





−32π2Λb3

3
−

√

(

32π2Λb3

3

)2

− Λc3

3
− 4π2

9Q2





(38d)

The snapping forces at Ftop and Fbot are practically the

maximum positive and minimum negative reachable force

levels between the stable sides in case of bistability, respec-

tively.

3.3 Bistability of pre-shaped beams

A bistable pre-shaped beam have a negative snapping

force in some range of the snap-through deflection. The neg-

ative snapping force indicates that the beam is pushing itself

to the other side of buckling. The bistability here refers to

the ability of the beam to retain the static position without

the application of external forces. In this case, the stable po-

sition has a zero snapping force value (F = 0).

An essential property for a stable position is the posi-

tive stiffness, which means that the beam pushes back to the

stable position after a slight deflection. In these conditions,

the two stable positions are ∆ = 0 and ∆end , which satisfy

zero snapping force and positive stiffness as shown in Figure

5. The second zero-force position ∆m is an unstable position

since the beam has a negative lateral stiffness around it. The

values of ∆m and ∆end are calculated from (24) as follows:

∆m = Λd(Nm) (39a)

∆end = Λd(Nend) (39b)

The existence of the unstable position ∆m indicates the

existence of a negative force zone and thereby the bistability

(Figure 5). ∆m can be located in both kinds of solution zone.

However, the stable positions are always in the applicable

zone of the first kind of solution since the stiffness in the

second kind of solution is negative (35). The second stable

position ∆end has a positive value of N (Figure 5, N f inal =
0 < Nend < Nbot = N3). Hence, it is sufficient to prove the

existence of at least one zero force solution F = 0 of the

first kind of solution governing expression (25) in the range

N ∈ (0,N3) to prove the bistability of a pre-shaped beam:

Bistability ⇐⇒ ∃N ∈ (0,N3),Λc(N)+
N2

12Q2
= 0 (40)

Note that the existence of the second kind of solution is

not necessary for bistability. Note also that in a single beam

configuration (second kind of solution applies for N = N2),

the bistability condition is that a solution of (40) exists for

N ∈ (0,N2).

The minimum of Q allowing a pre-shaped beam to have

bistability is the minimum of Q that satisfies (40). Inde-

pendently from Q, we can extract from (40) that Λc(N) for

a bistable pre-shaped beam must have a negative value for

some portion of N ∈ (0,N3) in case of bistability.

The expression of Λc(N) (26c) is an infinite sum of pos-

itive components for N ∈ (0,
√

2N1], while only the com-

ponent multiplied by C2
1 has a negative value in the range

N ∈ (
√

2N1,N3). Thereby, the condition of bistability in (40)

can be reformulated as follows:

Bistability ⇐⇒ ∃N ∈ (
√

2N1,N3),Λc(N)< 0 (41)

In conclusion, the first mode of buckling in the initial

shape of a pre-shaped beam (proportional to C1) must be

sufficiently dominant over the other modes of buckling to

have bistability (since only C1 makes a negative contribution

to satisfy (41)).This justifies the consideration of the curved

shape as a common shape for a pre-shaped bistable beam.

Further, in case (41) is satisfied, the minimum value of Q for

reaching bistability is the real minimum of
√

−N2/12Λc(N)

in the range N ∈ (
√

2N1,N3).

Furthermore, as the jth modes of buckling ( j =
3,7,11, ...) are only involved in Λc(N) and add only positive

contribution to Λc(N), which degrades the bistability (41),

an initial shape without these modes of buckling will have

a better bistability. In other words, if a pre-shaped beam

is bistable and the Fourier series expansion for the initial

shape includes components C j for ( j = 3,7,11, ...), neglect-

ing these components while keeping the same components

C j for ( j = 1,5,9, ...) will result in a better bistability behav-

ior. Considering the boundary conditions, only C0 will be

changed after neglecting C j for ( j = 3,7,11, ...). C0 in this

case is equivalent to 1/2. The simplest shape that satisfies

this property is the inclined shape, which justifies its con-

sideration as another common shape for a pre-shaped beam

bistable mechanism.
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4 Calculations for specific beam shapes

In the previous sections, derivations are developed for

a general case with an arbitrarily initial shape. Calculations

for specific initial shapes are presented in this section.

For a specific initial beam shape W , the first step is to de-

termine the corresponding Fourier series coefficients C j (14).

Coefficients Λb, Λc and Λd (26), are calculated for a specific

initial shape. Then, the buckling mode constants K j ((23)

and (37)) are obtained. Introducing the different coefficients

and constants, the snap-through solution (18) and snapping

force expressions ((24), (25), (34)) are obtained. Afterwards,

the different snapping points ((29), (32), (33), (38), (39)) and

the conditions for reaching different levels of axial compres-

sion (28) and for bistability (41) are determined. These steps

are summarized in Table 1.

Table 1. Computational steps for the initial shape of beams.

Steps of calculation Equations

1 Fourier coefficients C0 and C j (14)

2 Coefficients Λb, Λc and Λd (14) in (26)

3 Buckling mode constants K j

(14) in (23),

(26) in (37)

4 Snap-through solution (23), (37) in (18)

5 Snapping force expressions
(26), (27) in

(24), (25), (34)

6 Snapping points

(14), (26), (27) in

(29), (32), (33),

(38), (39)

7
Conditions for reaching

levels of compression
(26), (27) in (28)

8 Bistability condition (26) in (41)

The analytical development in this paper considers all

modes of buckling and Fourier series coefficients. The

snapping force expressions ((24), (25)) governing the snap-

through behavior contain infinite sums (26), where some of

them are independent from the initial shape. The correspond-

ing analytical expressions for these sums were calculated

in [55] and are shown in (27). The other infinite sums need

to be evaluated depending on the initial shape.

Two case studies are investigated in this section: curved

and inclined initial beam shapes. Explicit analytical expres-

sions corresponding to the infinite sums, depending on the

initial shape, in both case studies are calculated consider-

ing all Fourier series coefficients. However, for other initial

shapes, where the calculation of the infinite sums is complex,

finite number of Fourier series coefficients can be considered

and convergence needs to be checked.

4.1 Pre-shaped curved beam

The curved shape (Figure 1.d) is similar to that of the

first buckling mode; hence:

W =
1

2
W1 (42)

The Fourier series coefficients C0 and C j for an initially

curved beam are calculated from (14) as follows:







C0 =
1
2

C j =− 1
2

j = 1

C j = 0 j = else

(43)

The snap-through solution for a pre-shaped curved beam

has the form in (18) where K j are calculated by introducing

C j from (43) into (23):

First kind

N < N3























K j =
4F− 1

2 N2
j N2

N2
j (N

2−N2
j )

j = 1

K j =
4F

N2
j (N

2−N2
j )

j = 5,9,13...

K j = 0 j = 3,7,11...
K j = 0 j = 2,4,6...

(44a)

Second kind

N = N3































K j =
4F− 1

2 N2
j N2

N2
j (N

2−N2
j )

j = 1

K j =
4F

N2
j (N

2−N2
j )

j = 5,9,13...

K j = 0 j = 7,11,15...
K j 6= 0,C j = 0 j = 3

K j = 0 j = 2,4,6...

(44b)

The snapping force expressions for a pre-shaped curved

beam for the first kind of solution are given in (24) and (25),

where Λb, Λc, and Λd are calculated as follows:

Λb(N) =
−4π2

(N2 −4π2)2
(45a)

Λc(N) =−π2N2

4

N2 −8π2

(N2 −4π2)2
(45b)

Λd(N) =
N2

N2 −4π2
(45c)

Also, the snapping force expression in the second kind

of solution is obtained from (34) as below:

F3 = 64π2

(

4

3
−∆

)

(46)

The third mode constant K3 in the second kind of solu-

tion is obtained from (37):

K3 =± 1

2π

√

−3∆2 +
56

9
∆+

2π2

9
− 80

27
− 4π2

3Q2
(47)

9



The minimum values of Q that allow N to reach N1, N2

and N3 are obtained from (28):

∃N ≥ N1 ⇐⇒ Q ≥ 8√
117−7π2

≈ 1.156 (48a)

∃N ≥ N2 ⇐⇒ Q & 1.654 (48b)

∃N = N3 ⇐⇒ Q ≥

√

162π2

27π2 +32
≈ 2.314 (48c)

The condition on Q for the bistability of a pre-shaped

curved beam is obtained from (40):

Q ≥ 4√
3
≈ 2.309 (49)

The different snapping points coordinates are obtained

from the modeling and are expressed as follows:

Ftop,Fbot = 64π2

(

8

27
± 2π

3

√

1

6
+

16

81π2
− 1

Q2

)

(50a)

∆top,∆bot =
28

27
∓ 2π

3

√

1

6
+

16

81π2
− 1

Q2
(50b)

∆m =
4

3
∆end =

3

2
+

√

1

4
− 4

3Q2
(50c)

∆ f inal =
20

π2
Ff inal =

3840

π2
(50d)

∆N1 =
9

4
− π2

8
FN1 = 2π4 (50e)

The axial force and snapping force curves for a pre-

shaped curved beam (Figures 3, 4, and 5) have been pre-

sented in the previous section.

Figure 6 shows a comparison of the snapping force

curves for a pair of pre-shaped curved beams in parallel con-

figuration obtained analytically and with a nonlinear FEM

model using the ANSYS software. The element ”PLANE82”

was used in the FEM simulation with static analysis and con-

sidering large deformation nonlinearity.

The mesh has been verified to be fine enough for con-

vergence. The beam dimensions considered are b = 25µm,

t = 10µm, h = 50µm, and l = 2mm, while the material

Young’s modulus is E = 169GPa. The comparison shows

excellent agreement between the two models.

It can be noticed that the solution and expressions de-

rived in this section are similar to those obtained in [55]. This

is due to the fact that the solution in [44,55] is approximated

as an infinite sum of the modes of buckling of a straight beam

(same as for the homogeneous problem (11)) and the initial

shape is similar to one of these modes of buckling.

20 40 60 80 100

-1

0

1

2

3
Analytic

FEM simulation

Fig. 6. Snapping force comparison between the analytical and FEM

models for a pair of pre-shaped curved beams in parallel configura-

tion.

4.2 Pre-shaped inclined beam

The snapping behavior between the curved beam and

the inclined beam is very similar qualitatively. However, the

conditions, ranges, and levels are changed due to the differ-

ent initial shape. The initial shape of a pre-shaped inclined

beam (Figure 1.c) is described as follows:

W (X) =

{

2X X ∈ [0, 1
2
]

2−2X X ∈ [ 1
2
,1]

(51)

The Fourier series coefficients C0 and C j for an initially

inclined beam are calculated from (14) as follows:











C0 =
1
2

C j =− 16

N2
j

j = 1,5,9...

C j = 0 j = else

(52)

The snap-through solution for a pre-shaped inclined

beam has the form in (18) where K j are calculated by in-

troducing C j from (52) into (23):

First kind

N < N3











K j =
4(F−4N2)

N2
j (N

2−N2
j )

j = 1,5,9...

K j = 0 j = 3,7,11...
K j = 0 j = 2,4,6...

(53a)

Second kind

N = N3



















K j =
4(F−4N2)

N2
j (N

2−N2
j )

j = 1,5,9...

K j = 0 j = 7,11,15...
K j 6= 0,C j = 0 j = 3

K j = 0 j = 2,4,6...

(53b)

The snapping force equations for a pre-shaped curved

beam for the first kind of solution are given in (24) and (25)

where Λb, Λc and Λd are infinite sums. However, considering

C j in (52), these infinite sums can be expressed in terms of Λa
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and Λe, which have their explicit expressions in (27), thus:

Λb(N) =−8N2Λa(N)+4Λe(N) (54a)

Λc(N) = 16N4Λa(N)−16N2Λe(N) (54b)

Λd(N) = 4N2Λe(N) (54c)

Subsequently, the snapping force relation in the second

kind of solution is obtained from (34):

F3 = 64π2 (1−∆) (55)

The third mode constant K3 in the second kind of solu-

tion is obtained from (37):

K3 =± 1

2π

√

−3∆2 +4∆− 4π2

3Q2
(56)

The minimum values of Q, which allow N to reach N1,

N2 and N3, can be obtained from (28):

∃N ≥ N1 ⇐⇒ Q ≥ π2

4
√

3
≈ 1.425 (57a)

∃N ≥ N2 ⇐⇒ Q & 2.080 (57b)

∃N = N3 ⇐⇒ Q ≥ π ≈ 3.142 (57c)

The condition on Q for the bistability of a pre-shaped

inclined beam is obtained from (40):

Q & 3.196 (58)

The snapping force curves for a shallow pre-shaped in-

clined beam (Q < Q3) are very similar to those presented in

Figure (4). However, the snapping force curve for (Q > Q3)

shows some differences, Figure 7.

The different snapping points coordinates are expressed

as follows:

Ftop,Fbot = 64π2





1

3
± 2

3

√

1− π2

Q2



 (59a)

∆top,∆bot =
2

3
∓ 2

3

√

1− π2

Q2
(59b)

∆m = 1 ∆end :
N2

12Q2
= 1− tan N

4
N
4

− tan2 N

4
(59c)

∆ f inal =
5

3
Ff inal = 320 (59d)

∆N1 =
8

π2
FN1 = 16π2 (59e)

Fig. 7. Snapping force curve for a shallow pre-shaped inclined

beam.

The comparison between the analytical and FEM mod-

eling results, for the same beam dimensions and material as

in Figure 6, is shown in Figure 8 indicating excellent agree-

ment.

10 20 30 40 50 60 70 80

-0.5

0

0.5

1

1.5

2

Analytic

FEM simulation

Fig. 8. Snapping force comparison between the analytical and FEM

models for a pair of pre-shaped inclined beams in parallel configura-

tion.

In order to further demonstrate the accordance between

the analytical modeling and FEM simulations, we choose to

verify the accuracy of the bistability condition in (58). Figure

9 shows the snapping force curves obtained from FEM sim-

ulations for a pair of inclined beams in parallel configuration

with different values of h and the same other dimensions and

material as in Figure 8. The values of h are chosen as Q = 3,

3.2 and 3.5.

As explained in Section 3.3, the beam with negative

snapping force pushes itself to the other side of buckling

which leads to bistability. One can notice from Figure 9 that

the snapping force curve starts to reach the negative force

zone for Q close to 3.2 and higher, in agreement with (58).

5 Comparison and discussion

The snap-through behavior and the snapping force

curves show some similarities and differences between pre-

shaped curved and inclined beams in terms of forces, po-

sitions and Q limits. These difference and similarities are
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Fig. 9. Snapping force curves for a pair of pre-shaped inclined

beams in parallel configuration with different values of Q.

investigated and discussed in this section.

5.1 Conditions on Q

Table 2 shows the Q ratios, for both curved and inclined

beams, after which N can reach N1, N2 and N3 and the mini-

mum Q ratios for bistability in both single and parallel con-

figuration. One can note that the axial force N reaches higher

levels and the bistability occurs at lower values of Q for the

pre-shaped curved beam. This is more desirable for the de-

sign of bistable mechanisms.

Table 2. Minimum Q ratios for reaching N1, N2 and N3 and for

bistability.

Curved beam Inclined beam

N1
8√

117−7π2
≈ 1.156 π2

4
√

3
≈ 1.425

N2 ≈ 1.654 ≈ 2.080

N3

√

162π2

27π2+32
≈ 2.314 π ≈ 3.142

Bistability single ≈ 5.646 Never

Bistability parallel 4√
3
≈ 2.309 ≈ 3.196

5.2 Shallow beams

For shallow beams with low values of Q, a second stable

position does not exist but an interesting behavior is noticed.

Increasing the value of Q, the snapping force curves show

a transition between only positive stiffness behavior during

deflection to the existence of zero stiffness and negative stiff-

ness zones (Figure 4). This transition in the behavior occurs

at the limit of Q = Q1 where N starts to reach N1. Figure 10

shows a comparison of the snapping force curves during de-

flection for Q = Q1 for both pre-shaped curved and inclined

beams.

0.5 1 1.5 2

0

100

200

300
Inclined beam

Curved beam

Fig. 10. Comparison of snapping force curves for pre-shaped

curved and inclined beams for Q = Q1. Q1c and Q1i correspond

to Q1 values for the curved and inclined beams, respectively. Q(.)

refers to Q1c or Q1i depending on the corresponding curve.

As Q1 is different between the curved and inclined

beams, the curve of the inclined beam in Figure 10 is mul-

tiplied by a correction factor in force and displacement to

enable a suitable frame for comparison. Considering the cor-

rection factor and the normalized parameters, the compari-

son in Figure 10 is between two beam types, which have the

same material properties and dimensions, except for h which

is different due to the difference in Q1. Figure 10 shows an

interesting accordance in the snapping force curves between

both cases.

5.3 Bistable beams

The third mode of buckling get involved during deflec-

tion when the critical buckling load is reached and the lateral

stiffness becomes negative and constant. Practically, both

beam initial shapes under comparison show bistability with

the involvement of the third mode of buckling.

Figure 11 shows a comparison in the snapping force

curves of the curved and inclined beams when the third mode

of buckling is reachable. Considering normalized parameters

in the comparison means that both beams have the same ma-

terial and dimensions. As seen, the inclined beam has lower

range of force and displacement.

0.5 1

1.5

2

-200

0

200

400

600 Inclined beam

Curved beam

Fig. 11. Comparison of snapping force curves for bistable pre-

shaped beams.
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At the start of deflection, the stiffness of the inclined

beam is higher. However, the third mode gets involved ear-

lier, which limits the force level that can be reached.

Further, both beams show exactly the same constant and

negative stiffness during the involvement of the third mode

of buckling. This is the general case for the stiffness of pre-

shaped beams S3 in the second kind of solution (35). Note

that the stiffness S3 is independent of the initial height h.

The normalized force and range of displacement for

both pre-shaped beams is highly dependent on Q. Figures

12, 13 and 14 show the variation with respect to Q of Ftop,

as a measure of the maximum snapping force level, ∆end , as

the distance between the two stable positions, and Fbot over

Ftop as a measure of the symmetry between the two stable

sides. The snap-through behavior is more symmetric when

|Fbot/Ftop| is closer to 1.

2 4 6 8 10
0

200

400

600

Inclined beam

Curved beam

Fig. 12. Variation of Ftop with Q for curved and inclined beams.

0.5

1

1.5

2

2 4 6 8 10
0

Inclined beam

Curved beam

Fig. 13. Variation of ∆end with Q for curved and inclined beams.

6 Conclusions

In this paper, we derived the snap-through solution and

the analytical expressions governing the snapping force of

an arbitrarily pre-shaped elastic beam deflected under a mid-

length lateral point force. The exact solution was calculated

based on the classical beam theory and considering all modes

of buckling. The snap-through behavior was analyzed based

on the analytical expressions. The different snapping points

and conditions for negative stiffness, bifurcation of solutions

and bistability were clarified. The elements presented in this

study constitute design tools for pre-shaped beams.

0.1

0.2

0.3

0.4

2 4 6 8 10
0

Inclined beam

Curved beam

Fig. 14. Variation of | Fbot
Ftop

| with Q for curved and inclined beams.

The calculation procedure for a specific initial shape

was demonstrated. The derivations for two initial shapes,

curved and inclined, were then investigated. The analyti-

cal expressions in both cases were elaborated in explicit for-

mulations considering all modes of buckling.The analytical

modeling showed very good agreement with the FEM sim-

ulations. Several similarities and differences were noticed

in their snap-through behavior. The curved beam shows a

wider margin of stability in the second stable side with more

symmetric snap-through behavior, while the inclined beam

requires larger height-to-thickness ratio to have bistability.
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A Equilibrium equation

The static equilibrium equation (5) for a pre-shaped

beam with a mid-length lateral point force is developed here-

inafter based on the classic theory of elastic beams.

Figure 15.a shows a pre-shaped beam with an arbitrarily

initial shape before and after deflection due to a mid-length

lateral force. Even if the initial shape (w(x)) is symmetric

with respect to the middle of the beam length, the beam shape

(w(x)) is not necessarily symmetric after deflection.

Figure 15.b shows the forces and moments applied on

the beam. The force equilibrium in both directions and the

moment equilibrium at A and B give the following:

PA = PB = P (60a)

FA = FB =
f

2
(60b)

Considering small deformation hypothesis, the bending

moment Mx at the cross section of the beam is expressed as

follows:

Mx = EI

(

d2w

dx2
− d2w

dx2

)

(61)

From the static equilibrium, the expression of Mx is dif-

ferent before and after beam mid-span where f is applied.

13



Fig. 15. A pre-shaped beam in deflection (a), forces and moments

on the boundaries (b), on a section in the zone x ∈ [0, l
2
] (c) and on

a section in the zone x ∈ [ l
2
, l] (d).

Considering a section in the zone x ∈ [0, l
2
] (Figure 15.c), the

static equilibrium gives the following expression of Mx:

Mx = MA −Pw+
f

2
x (62)

For a section in the zone x ∈ [ l
2
, l] (Figure 15.d), Mx is

expressed as follows:

Mx = MA −Pw+
f

2
(l − x) (63)

Combining (61), (62) and (63), the equilibrium equation

becomes as follows:

EI

(

d2w

dx2
− d2w

dx2

)

+ pw = MA +
f

2

{

x x ∈ [0, l
2
]

l − x x ∈ [ l
2
, l]

(64)

Considering a uniform cross-section and material prop-

erties, deriving one time with respect to x to get rid of MA,

and considering the normalized parameters from (4), the

equilibrium equation (64) becomes:

d3W

dX3
− d3W

dX3
+N2 dW

dX
=

F

2
Ψ(X) (65)

where ψ(x) is a discontinuous step function:

Ψ(X) =

{

1 X ∈ [0, 1
2
]

−1 X ∈ [ 1
2
,1]

(66)

As the problem has four boundary conditions, the equi-

librium equation is represented in the fourth order form:

d4W

dX4
− d4W

dX4
+N2 d2W

dX2
=

F

2

dΨ

dX
(X) (67)

The discontinuous step function ψ(X) can be expanded

in Fourier series over the beam length as follows:

Ψ(X) = ∑
j=1,5,9...

8
N j

sinN jX X ∈ [0,1] (68)

where N j = ( j+1)π is the critical buckling load for symmet-

ric modes of buckling as shown in (7).

The Fourier series expansion helps to determine the

derivatives of ψ(X) and to quantify the effect of the lateral

force f on each mode of buckling. From the derivative of

(68), we can notice that:

dΨ

dX
(X) = δ(X)+δ(X −1)−2δ(X − 1

2
) (69)

where δ(X) is an impulse function over [0,1] domain δ(X) =
{

1 X = 0

0 X ∈ (0,1]
.

Introducing the derivative of (68) into (67), equation (5)

is obtained.

d4W

dX4
− d4W

dX4
+N2 d2W

dX2
= 4F ∑

j=1,5,9...

cosN jX (70)
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