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Abstract— This paper introduces an innovative thermal 

modelling technique which accurately predicts the 
winding temperature of electrical machines, both at 
transient and steady state conditions, for applications 
where the stator Joule losses are the dominant heat 
source. The model is an advanced variation of the 
classical Lumped Parameter Thermal Network approach, 
with the expected degree of accuracy but at a much lower 
computational cost. A 7-node Thermal Network is first 
implemented and an empirical procedure to fine-tuning the 
critical parameters is proposed. The derivation of the low 
computational cost model from the Thermal Network is 
thoroughly explained. A simplification of the 7-node 
Thermal Network with an equivalent 3-node Thermal 
Network is then implemented, and the same procedure is 
applied to the new network for deriving an even faster low 
computational cost model. The proposed model is then 
validated against experimental results carried on a 
Permanent Magnet Synchronous Machine which is part of 
an electro-mechanical actuator designed for an aerospace 
application. A comparison between the performance of the 
classical Lumped Parameter Thermal Network and the 
proposed model is carried out, both in terms of accuracy 
of the stator temperature prediction and of the 
computational time required. 

 
Index Terms—Thermal analysis, electric motors, 

permanent magnet machines, thermal management, 
nonlinear dynamical systems, approximation methods, 
analytical models, polynomials. 

I. INTRODUCTION 

N recent years, the More Electric Aircraft (MEA) initiative 

has seen significant progress. One of the main areas of 

interest of the MEA is that of actuation, where electro-

mechanical actuators (EMAs) are being proposed as a viable 

alternative to the traditional hydraulic and electro-hydraulic 

ones [1]. However, the high requirements in terms of torque 

density and reliability of these actuating systems still represent 

a challenge for the system and electrical machine designers.  

High performance permanent magnet synchronous machines 

(PMSMs) coupled to a gearbox and/or a ballscrew is the most 
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common EMA solution, thanks to the high force density of 

this configuration [2, 3, 4].  

PMSMs for EMA applications are often short time or 

intermittent duty machines (e.g. EMAs for landing gear 

deployment or for flight control surfaces, respectively). In 

general this indicates that the machine design is usually more 

constrained by the magnetic limitations as opposed to the 

thermal limits [2, 5]. This feature can thus be exploited by 

increasing the current density in the stator windings so as to 

improve the overall torque density of the machine [6]. 

Nevertheless, higher current densities result in large copper 

losses and higher temperatures, which might shorten the motor 

life as the windings’ electrical insulation would be subject to 

higher thermal stresses [7]. 

In order to mitigate this risk, an accurate thermal model is an 

essential tool for predicting the temperature distribution in the 

motor. While finite element (FE) and computational fluid 

dynamics (CFD) thermal models can achieve high resolution, 

Lumped Parameter Thermal Network (LPTN) models are 

often preferred thanks to their lower computational effort 

along with good accuracy [8, 9, 10]. However, the accuracy of 

any thermal model for electrical machines relies upon a fine 

tuning of its parameters, due to uncertainties in materials 

properties, manufacturing tolerances, assembly process, 

interaction with other drive system components [11, 12].  

Thermal models can be used not only at the design stage, but 

also for the online prediction of the motor temperature 

distribution [13]. Although LPTNs can provide good 

temperature estimation [14], their computational cost could 

still be excessive for online implementation and a trade-off 

between accuracy and computational speed is necessary [15].  

First order LPTNs require less computational effort but are 

shown to be accurate only for short transients [16]. Methods 

based on the monitoring of the winding electrical resistance 

can estimate only the average temperature in the slot [17]. 

Transfer function approaches as the ones presented for 

induction machines in [18, 19], allow for computational cost 

reduction with respect to the LPTNs.    

In this paper, a low computational cost (LCC) thermal model 

for the online prediction of the winding temperature for 

PMSMs is presented. The model is obtained from a 

polynomial approximation of the solution of a LPTN. Its 

computational cost reduction with respect to the original 

model mainly derives from the fact that the LCC model does 

not require computation of inverse matrices. Comparing to the 
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original LPTN, the model still shows similar accuracy for 

different current loads, both during transient and steady state 

conditions. The proposed model takes into account only the 

Joule losses, hence it is very well suited for applications where 

these losses are the main heat source. Indeed, the PMSM 

investigated herein has high slot current density and relatively 

low operational speed.  

II. OVERVIEW OF THE PROPOSED LCC MODEL 

The LCC model derives from a simplification of the LPTN. 

The main feature of the model is that it does not require 

computation of inverse matrices or of the products between 

matrices, which is the bottleneck of the LPTN in terms of 

computational cost.  

The procedure for the simplification of the LPTN is reported 

in detail. In the first instance, the temperature is estimated by 

means of a 7-node LPTN, which is built by exploiting the 

motor symmetries. The LPTN is used to estimate the 

temperature distribution inside a 12-slot/10-pole PMSM. The 

motor, along with a drawing of its cross-section, is shown in 

Fig. 1. It is designed for the extension and retraction of a 

helicopter’s landing gear, which can be classified as a short 

time duty cycle application. The main characteristics of the 

motor are reported in TABLE I. More details regarding the 

motor and its overall design procedure can be found in [20].  

  

          
Fig. 1. Picture of the PMSM motor of the EMA for extension/retraction 
of a helicopter landing gear and its cross-section with no housing. 
 

TABLE I 
PMSM MOTOR MAIN PARAMETERS 

Parameter Value Unit Nominal current  1  A 

Nominal speed 2500  rpm 

Power rating 0.3 kW 

Stack length 83 Mm 

Stator ext. diameter 

Rotor ext. diameter 

Airgap thickness 

50 

25.5 

1 

Mm 

mm 

mm 

 

Although most of the parameters of the LPTN can be precisely 

calculated according to the geometry and the physical 

properties of the materials adopted, there are a number of 

uncertain parameters, which need to be tuned [21], as the 

uncertainty of these parameters might compromise the 

performance of the LPTN. In order to address this, a tuning 

procedure, based on a Sequential Quadratic Programming 

(SQP) iterative method for the uncertain parameters of the 

thermal network has been implemented. 

Once the LPTN is properly tuned, a state-space representation 

of the system is derived for the calculation of an analytical 

solution for the temperature distribution. The computational 

cost at this stage of the process is quite high, mainly because 

the system is time-variant as its state matrix is a function of 

the current. However, the complexity of the solution can be 

reduced through a polynomial approximation of the 

dependency of the system on the phase current. 

Following this approximation, the LCC thermal model is then 

obtained. The model is shown to have very similar accuracy as 

the original LPTN. Nevertheless, its computational cost is 

sensibly lower as the model does not require computation of 

inverse matrices or multiplications between matrices. 

A further simplification of the model can be obtained, based 

on the observation that some of the system dynamics do not 

contribute significantly to the winding temperature profile. 

This suggests that the LPTN’s number of nodes can be 
reduced. In this work, a 3-node network was thus derived and 

validated. Following the same procedure, a lower dimension 

LCC thermal model was found. Also this model is shown to 

have similar accuracy compared to the original LPTN. 

III. LUMPED PARAMETER THERMAL NETWORK 

A LPTN models the heat flow and the temperature distribution 

inside the motor by means of an equivalent thermal circuit, 

which is composed of heat sources, thermal resistances and 

thermal capacitances.  

In this work, a LPTN is implemented for modelling the heat 

flow within the PMSM motor, and its schematic is shown in 

Fig. 2. For symmetry reason only one 12th of the motor is 

modelled. Due to the low rated speed of the motor, both 

mechanical and iron losses are neglected. In particular, it was 

experimentally verified that, respect to the temperature 

reached when applying an equivalent DC current with a static 

motor, the increase of temperature due to iron losses is less 

than 5 °C at the rated speed and rated AC current. Hence, the 

Joule losses of the windings are the only heat source included 

in the model. The rotor is simplified as a single element 

because of the similar thermal properties of the permanent 

magnets and the back iron which are its main components.  

A preliminary selection of the resistances and capacitances 

can be determined according to the geometry of the motor and 

from the physical properties of the materials used [22].  

The resistances 𝑅𝑐𝑜𝑛𝑣,𝑖 represent the heat dissipation by 

natural convection between the housing external surface and 

ambient which are calculated as described in (1), where 𝐴𝑐𝑜𝑛𝑣,𝑖 represents the contact surface and ℎ𝑒𝑥𝑡  is the heat 

transfer coefficient. 

                                 𝑅𝑐𝑜𝑛𝑣,𝑖 = 1𝐴𝑐𝑜𝑛𝑣,𝑖ℎ𝑒𝑥𝑡                        (1) 

 

Since the heat exchange between stator and rotor through the 

airgap is assumed to be only by convection, (1) is also used for 

the calculation of the resistances 𝑅𝑎𝑔,𝑖 with the airgap heat 

transfer coefficient ℎ𝑎𝑔 in place of ℎ𝑒𝑥𝑡 and 𝐴𝑐𝑜𝑛𝑣,𝑖 a portion 

of surface of the cylinder whose radius is equal to the median 

airgap radius. The other resistances represent the heat flows in 

the motor by conduction. The resistances representing the heat 
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flow in the radial and in tangential directions are modelled as 

in (2) and (3), respectively [23]. In (2), 𝑟0 and 𝑟𝑖 are the outer 

and inner radius of the portion of annulus considered, 𝐿 the 

stack length of the motor and 𝑘 the thermal conductivity of the 

material. In (3), 𝑙 is the path length of the portion considered 

and 𝐴𝑐𝑜𝑛𝑑 is the conductive surface.   

 

                              𝑅𝑟𝑎𝑑𝑖𝑎𝑙 = ln(𝑟0/𝑟𝑖)2𝜋𝑘𝐿                                   (2) 

 

                        𝑅𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 = 𝑙𝑘𝐴𝑐𝑜𝑛𝑑                             (3) 

 

The resistance 𝑅𝑠ℎ𝑎𝑓𝑡 represents the heat flow through the 

rotor shaft in the axial direction and it is modelled substituting 

in (3) half the stack length in place of 𝑙 and the shaft cross-

section area in place of 𝐴𝑐𝑜𝑛𝑑 . The capacitances, which model 

the thermal mass of the respective portion of motor 

represented, are calculated as the product of mass and specific 

heat of the material in the considered portion of motor.  

 
Fig. 2. LPTN representing the heat flow within the motor. 
 

There are some parameters which are not easily determined. 

Since the motor considered has a random wound winding 

configuration, the thermal parameters in the slot are uncertain.  

For this reason, equivalent, aggregate slot thermal 

conductivity 𝑘𝑒𝑞  and specific heat capacity 𝑐𝑒𝑞  values are 

considered for representing the heat flow through the copper, 

the electrical insulation and the impregnation of the slot. In 

particular, the capacitance 𝐶𝑠,1, which represent the thermal 

mass of the winding and the impregnation of the slot, is 

modelled by considering as mass the total mass of the 

elements in the slot and an equivalent coefficient 𝑐𝑒𝑞  for the 

slot specific heat coefficient, which is tuned as explained in 

the next section. 

As shown in [21], the external surface and the airgap 

convection coefficients are significant parameters, which are 

not easy to be determined, mainly because of turbulent air 

flows and orientation of the electrical machine. Further 

parameters uncertainties are due to the contact resistances 

which are significantly dependent on the manufacturing 

tolerances and operating temperatures [24]. Finally, it has to 

be pointed out that the Joule losses in the slot are temperature 

dependent, as the electrical resistance of the winding 

conductor varies with temperature. Therefore, since the 

winding temperature is not evenly distributed, a correction 

factor multiplying the Joule losses is introduced in order to 

account for this. 

It can be noticed that some nodes of the circuit of Fig. 2 are 

equipotential (the ones labelled with the same number) due to 

circuit symmetries. Thus, the LPTN can be represented by a 7-

node equivalent LPTN as the one of Fig. 3. The nodes of the 

circuit in Fig. 3 are at the same potential of the ones of the 

circuit in Fig. 2 labelled with the same number. The 

resistances 𝑅𝑖 and the capacitances 𝐶𝑖 of the 7-node LPTN can 

be easily calculated from the computation of the equivalent 

series and parallel resistances, as well as of the equivalent 

parallel capacitances of the circuit in Fig. 2. 

 
Fig. 3. LPTN equivalent circuit. 

A. Critical Parameters tuning procedure 

In this section, the LPTN’s tuning procedure is presented. The 

uncertainties on the LPTN’s parameters are taken into account 

by introducing a multiplicative correction factor for each 

critical parameter. In order to have an accurate estimation of 

the winding temperature, it is thus sufficient to tune the 

LPTN’s correction factors. This can be achieved by means of 
a tuning procedure based on experimental results. The 

procedure can be used to get a LPTN which is very accurate 

for time varying loads. The first step of the tuning procedure is 

the determination of the most critical model parameters to be 

adjusted with a multiplicative correction factor, which are: 

 

 External convection coefficient ℎ𝑒𝑥𝑡  

 Conductor electrical resistivity 𝑅𝑒𝑙20 

 Lamination thermal conductivity 𝑘𝑖𝑟𝑜𝑛 
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 Slot equivalent conductivity 𝑘𝑒𝑞  

 Slot equivalent specific heat capacity 𝑐𝑒𝑞  

 Housing specific heat capacity 𝑐ℎ𝑜𝑢𝑠 

 Airgap convection coefficient ℎ𝑎𝑔 

 

The corrective factors multiplying ℎ𝑒𝑥𝑡  and ℎ𝑎𝑔 account for 

uncertainties deriving from the heat transfer by convection. 

The one multiplying 𝑅𝑒𝑙20 tunes the Joule losses. The 

coefficients 𝑘𝑒𝑞  and 𝑐𝑒𝑞  need tuning due to the uncertainty in 

the heat flow within the slot. 𝑐ℎ𝑜𝑢𝑠 is multiplied by a 

corrective factor because of the uncertainty in the temperature 

distribution in the housing due to the presence of fins. The 

corrective factor multiplying the iron thermal conductivity 

coefficient 𝑘𝑖𝑟𝑜𝑛 incorporates the effects of the uncertain 

thermal resistance of the iron-slot and iron-housing contact 

surfaces. A general overview of the tuning procedure is as 

follow: 

 

 Experimental acquisition of winding temperature 

profiles for different DC currents; 

 Definition of an objective function representing the 

error between LPTN predictions and experimental 

temperature profiles; 

 Use of a Sequential Quadratic Programming (SQP) 

algorithm that finds a set of optimal correction 

factors which minimize the objective function. 

 

The slot temperature profiles have been experimentally 

determined via DC step current tests. During these tests, the 

motor was placed on a wooden plate in order to reduce the 

dissipation to ground. The windings were series connected and 

fed by an EA PSI 8360-15T DC power supply. The winding 

temperature was measured with 6 K-type thermocouples 

placed in the core of one slot at different axial positions and 

acquired with a TC-08 Data Logger at 1 second intervals. The 

profile with the highest temperatures was the winding 

temperature profile considered. Another K-type thermocouple 

was placed at sufficient distance from the motor for measuring 

the ambient temperature.  Each experiment was performed 

starting with the motor in thermal equilibrium in order to set 

the initial temperature of the circuit nodes in the model equal 

to ambient temperature during the tuning procedure.   

Since some LPTN's parameters are temperature dependent, 

several DC current step values (40, 50, 90 and 100% of the 

rated current) were applied. In this way, the optimizer is 

“forced” to find a set of parameters which make the LPTN 
accurate for different loads since the optimization needs to be 

performed for several specific temperature profiles. 

The experimental values are then used as inputs for the 

optimization problem defined in (4), where f is the objective 

function, the subscript i represents the i-th current applied, t is 

the time, 𝑡0,𝑖 and 𝑡𝑓,𝑖 are respectively the initial and final time 

of the temperature profile of the i-th current, whereas 𝑇𝑚𝑒𝑎,𝑖 
and 𝑇𝑚𝑜𝑑,𝑖 are respectively the measured and predicted 

winding temperatures. 

                                  𝑓 = ∑ 𝑒𝑟𝑟𝑖𝑖                                    

            𝑒𝑟𝑟𝑖 = 1𝑡𝑓,𝑖−𝑡0,𝑖 (∫ (𝑇𝑚𝑒𝑎,𝑖(𝑡)−𝑇𝑚𝑜𝑑,𝑖(𝑡)𝑇𝑚𝑒𝑎,𝑖(𝑡) )2 𝑑𝑡 𝑡𝑓
𝑡0 )12

       (4) 

 

The SQP iterative method is then implemented in order to find 

the values of the correction factors which minimize the 

objective function f. The optimization was launched several 

times, starting from different random correction factors values 

selected between 0.1 and 10.  For most of the initial 

conditions, the optimization algorithm showed convergence to 

the same optimum set of correction factors, except for the 

correction factors of 𝑘𝑖𝑟𝑜𝑛 and ℎ𝑎𝑔, which assumed different 

values for each run of the algorithm. Since these two 

correction factors scarcely contribute to the general shaping of 

the winding temperature profiles, then the convergence values 

selected where those closest to 1. TABLE II shows the 

reference value of the critical parameters (i.e. correction 

factors equal to 1) and their adjusted value after calculation of 

the optimal correction factors. It is important to note that the 

tuned values of the selected parameters do not actually have a 

physical meaning as the only objective of the procedure is to 

minimize the winding temperature prediction error. Only their 

reference values were determined based on the physical 

properties of the materials implemented, the motor geometry, 

and on the base of a preliminary manual tuning. However, 

their value is not relevant for the tuning procedure, as the 

correction factors initial values inserted in the algorithm are 

randomly chosen. TABLE III shows the values of the 

resistances and capacitances of the 7 node LPTN after the 

tuning of the critical parameters. 

 
TABLE II 

INITIAL AND OPTIMIZED VALUE FOR THE CRITICAL PARAMETERS 

Parameter 
Reference 

value 

Optimized 

value 
Unit ℎ𝑒𝑥𝑡 40 45.6 [W/(m2 °C)] 𝑅𝑒𝑙20 5.26 5.05 Ω 𝑘𝑖𝑟𝑜𝑛 29.3 23.7 [W/(m°C)] 𝑘𝑒𝑞  0.1 0.6 [W/(m°C)] 𝑐𝑒𝑞 𝑐ℎ𝑜𝑢𝑠 ℎ𝑎𝑔 

590 

897 

5 

531 

1166 

10.5 

[J/(kg °C)] 

[J/(kg °C)] 

[W/(m2 °C)] 

 
TABLE III  

TUNED VALUES OF THE RESISTANCES [°C/W] AND 

CAPACITANCES [J/°C] OF THE 7 NODES THERMAL NETWORK 𝑅1=23.64 𝑅7=10.34 𝑅8=1.12 𝑅9=4.47 𝑅10=240.29 𝑅11=747.93 𝑅12=160.79 

𝐶1=86.79 𝑅2=0.07 𝐶2=26.42 𝑅3=0.09 𝐶3=8.37 𝑅4=77.67 𝐶4=2.55 𝑅5=0.29 𝐶5=16.74 𝑅6=0.48 𝐶6=5.49 

 𝐶7=144.32 

 

The LPTN is then used to estimate the winding temperature, 

but this time considering the optimized values of the critical 
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parameters, resulting from the above procedure. It is important 

to highlight that the obtained temperature predictions refer to 

the hottest spot experimentally detected (and not to the 

average winding temperature). This is due to the procedure 

adopted for tuning the network parameters. 

In Fig. 4 the estimated winding temperatures (using the 

corrective factors) are plotted along with the experimental slot 

temperature profiles. Fig. 4 shows excellent agreement 

between the experimental (dot lines) and the predicted 

(continuous lines) slot temperature profiles, for each of the DC 

current steps tested. In fact, the mean relative error for this 

wide range of current values is between 0.9% and 1.5%, thus 

validating the critical parameters tuning procedure. 

In order to further validate the model, the LPTN network was 

then tested for a load cycle where 3 consecutive steps of 

currents were applied. The current applied, and the measured 

and the predicted temperatures are shown in Fig. 5. As can be 

observed excellent similarity is achieved. TABLE IV 

illustrates the accuracy of the model, where it can be noted 

that the maximum error obtained over the cycle is only 5.2 °C.  

 
Fig. 4. Measured winding temperatures (m.) compared to the 
temperatures predicted by the optimized LPTN for current I equal to 
40, 50, 90 and 100% of the nominal current. 
 

 
Fig. 5. Measured winding temperature and temperature predicted with 
the LPTN for three consecutive current steps of 90, 70 and 0% of the 
nominal current. 

TABLE IV  
MEAN RELATIVE AND MAXIMUM ABSOLUTE WINDING 

TEMPERATURE PREDICTION ERROR OF 7 NODES LPTN FOR 

DIFFERENT CURRENT PROFILES 

Load Mean relative 

error % 

Max. absolute 

error [°C] 

100% 𝐼𝑁 1.5 3.0 

90% 𝐼𝑁 1.7 2.5 

50% 𝐼𝑁 0.7 1 

40% 𝐼𝑁 0.9 0.7 

cycle 1.5 5.2 

 

The above results show that very good accuracy can be 

achieved with the 7-node LPTN for a wide range of operating 

currents upon careful tuning of some critical parameters.  

However, the model’s computational time needed for the 
resolution of the equivalent circuit could be excessive for 

some applications. An analysis of the dynamics involved in 

the LPTN is reported in the next section, which will lead to the 

definition of a simplified thermal model characterized by a 

lower computational cost. 

IV. LPTN ANALYTICAL SOLUTION 

In the previous section, an optimal set of correction factors for 

the 7-node LPTN was found such that an accurate stator 

winding temperature estimation could be provided for 

different current profiles.  

Using the well-known node potential method for the 

resolution of circuits, the LPTN can be represented by the 

system of first order differential equations described in (5), 

where T is the vector of the temperatures in the 7 nodes of the 

thermal network (i.e. vector of the unknowns), u is the inputs 

vector [𝑇𝑎𝑚𝑏 , 𝐼2]T with 𝑇𝑎𝑚𝑏  ambient temperature and I 

electric current.  

 

                                   �̇� = 𝐴𝑇 + 𝐵𝑢                                    (5) 𝐴 = 𝐶−1𝐴1 ,        𝐵 = 𝐶−1𝐵1          

Matrices 𝐴1, 𝐵1 and C are as shown in (6), where C is a 

diagonal matrix and 𝐴1 is a symmetric matrix. 

 

𝐴1  =   
[  
   
  𝑎11 𝑅2−1 𝑅3−1 0 0 0 0𝑅2−1 𝑎22 0 𝑅5−1 0 0 0𝑅3−1 0 𝑎33 𝑅6−1 𝑅7−1 0 00 𝑅5−1 𝑅6−1 𝑎44 0 𝑅8−1 00 0 𝑅7−1 0 𝑎55 𝑅9−1 𝑅10−10 0 0 𝑅8−1 𝑅9−1 𝑎66 𝑅11−10 0 0 0 𝑅10−1 𝑅11−1 𝑎77 ]  

   
  
 

𝑎11 = −(𝑅1−1 + 𝑅2−1 + 𝑅3−1) 𝑎22 = −(𝑅2−1 + 𝑅4−1 + 𝑅5−1) 𝑎33 = −(𝑅3−1 + 𝑅6−1 + 𝑅7−1) 𝑎44 = −(𝑅5−1 + 𝑅6−1 + 𝑅8−1)     𝑎55 = −(𝑅7−1 + 𝑅9−1 + 𝑅10−1) + 𝑅𝑒𝑙20 𝐼2𝛼0 𝑎66 = −(𝑅8−1 + 𝑅9−1 + 𝑅11−1) 𝑎77 = −(𝑅10−1 + 𝑅11−1 + 𝑅12−1) 

 

𝐵1 =
[  
   
 0 𝑅1−10 𝑅4−10 00 0𝑅𝑒𝑙20(1 − 20𝛼0) 00 00 𝑅12−1]  

   
 
 

 

                                 𝐶 = 𝐝𝐢𝐚𝐠(𝐶1, … , 𝐶7)                          (6) 
 

Matrix 𝐴1 is linearly dependent on 𝐼2 through the element 𝑎55, 

since the heat source related to the Joule losses 𝐽𝑙𝑜𝑠𝑠 is 

represented by (7), where 𝑅𝑒𝑙20 and 𝛼0 are physical constants 

and 𝑇5 is the fifth element of vector T, which represents the 

temperature in the slot. 
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               𝐽𝑙𝑜𝑠𝑠 = 𝑅𝑒𝑙20(1 + 𝛼0(𝑇5 − 20))𝐼2                       (7) 

 

Thus, if the current is not constant, the matrix 𝐴1 will be time-

variant.  

Under the preliminary hypothesis of constant current I, the 

system is time-invariant, and the general solution of (5) at the 

generic time t  is given by (8), where 𝑡0 is the initial time. 

 

            𝑇(𝑡) = 𝑒𝐴(𝑡−𝑡0)𝑇(𝑡0) + ∫ 𝑒𝐴(𝑡−𝜏)𝐵𝑢𝑡𝑡0 𝑑𝜏                  (8) 

Assuming that A has 7 distinct eigenvalues (the original LPTN 

can be designed in order that this assumption is valid), then a 

linear transformation represented by the orthonormal matrix M 

exists, such that 

 

                     𝐴 = 𝑀−1Λ𝑀,     Λ = 𝐝𝐢𝐚𝐠(𝜆1, … , 𝜆7)              (9) 

 

with 𝜆𝑖 i-th eigenvalue of the matrix A and the columns of M 

eigenvectors of A. Thus, by considering the change of 

variables 𝑧 = 𝑀−1𝑇, system (5) becomes �̇� = Λ𝑧 + 𝑀−1𝐵𝑢, 

whose solution is given by (10). 

 

            𝑧(𝑡) = 𝑒Λ(𝑡−𝑡0)𝑧(𝑡0) + ∫ 𝑒Λ(𝑡−𝜏)𝑀−1𝐵𝑢𝑡𝑡0 𝑑𝜏          (10) 𝑒Λ(𝑡−𝑡0) = 𝐝𝐢𝐚𝐠(𝑒𝜆1(𝑡−𝑡0), … , 𝑒𝜆7(𝑡−𝑡0)) = 𝐾(𝑡) 

 

Considering (8), then it can be observed that the exponential 

matrix in (10) is a diagonal matrix. Therefore, assuming a 

constant ambient temperature 𝑇𝑎𝑚𝑏 , the integral in (10) can be 

explicitly calculated and the solution of (5) can be rewritten as 

in (11). where 𝑆(𝑡) is defined in (12). 

  

          𝑇(𝑡) = 𝑀𝐾(𝑡)𝑀−1𝑇(𝑡0) + 𝑀𝑆(𝑡)𝑀−1𝐵𝑢              (11) 
     𝑆(𝑡) = 𝐝𝐢𝐚𝐠(− 1𝜆1 (1 − 𝑒𝜆1(𝑡−𝑡0)),… , − 1𝜆7 (1 − 𝑒𝜆7(𝑡−𝑡0)))   (12)    

 

Thus, in (11) the temperature profiles in the nodes of the 

LPTN for the case of constant current I are expressed as a 

linear combination of exponential functions of time t. 

If a discrete time domain is considered, temperature prediction 

in case of time-varying current I and ambient temperature 𝑇0 

can be computed as follows. Defining 𝑡𝑗 and 𝑡𝑗+1 as two 

consecutive time instants, and assuming the current I and the 

ambient temperature 𝑇0 as constant in the interval [𝑡𝑗 , 𝑡𝑗+1) 

and equal to their initial value at time  𝑡𝑗, then by considering 

(11) with 𝑡0 = 𝑡𝑗 and 𝑡 = 𝑡𝑗+1, the temperature can be 

iteratively predicted as shown in (13). 

 𝑇(𝑡𝑗+1) = 𝑀(𝐼𝑗)𝐾(𝐼𝑗)𝑀−1(𝐼𝑗)𝑇(𝑡𝑗)        + 𝑀(𝐼𝑗)𝑆(𝐼𝑗)𝑀−1(𝐼𝑗)𝐵𝑢(𝑇0,𝑗 , 𝐼𝑗),      
                      𝐼𝑗 = 𝐼(𝑡𝑗),              𝑇0,𝑗 = 𝑇0(𝑡𝑗)               (13) 

 

The assumption of ambient temperature and current constants 

between two consecutive instants is not critical as the 

approximation error can be arbitrarily reduced by increasing 

the sampling time and because the temperature dynamics are 

typically slow compared to the sampling time of a Digital 

Signal Processor (DSP). 

It has to be noted that in (13) the matrixes M, 𝐾 and 𝑆 are 

functions of the current I through the eigenvalues and the 

eigenvectors of A. For this reason, when considering time 

varying currents, these matrices are to be updated at each 

instant for a correct calculation of the temperature. Therefore, 

the computational effort of the temperature prediction could 

be unsatisfactory. In the next sections a solution for the 

reduction of the model computational cost will be proposed.  

V. LOW COMPUTATIONAL COST MODEL 

The computational cost of the analytical solution presented in 

the previous section is relatively high as the eigenvalues and 

eigenvectors of A need to be calculated at each time instant as 

well as the inverse of the matrix M. In this section, a solution 

for the reduction of the computational cost of (13) is proposed 

and investigated. The main steps which lead to the simplified 

thermal model are the following: 

 

 Calculation of the elements of the matrices in (13) for 

the current I in a specified domain; 

 Computation of the 2nd order polynomial 

approximation of the relationship between the 

matrices elements and the current I; 

 Exploitation of the coefficients of the computed 

polynomial functions for representing each matrix of 

(13) as 2nd order matrix polynomials of the variable I; 

 Substitution in (13) of the approximating matrix 

polynomials for obtaining the simplified model. 

 

As a first step, a maximum current 𝐼𝑀𝐴𝑋  is fixed and the 

elements of the matrices K, S, 𝑀 and 𝑀−1 are calculated for I 

between 0 and 𝐼𝑀𝐴𝑋. For the sake of clarity, Fig. 6 shows only 

the variation of the last four diagonal elements 𝑘𝑖,𝑖 , 𝑖 = 4, … ,7 

of the matrix K in the range of current considered, normalized 

to their value at zero current, showing an almost parabolic 

behavior. However, a similar parabolic behavior can be 

observed for each of the coefficients of matrix K, as well as 

for each element of matrices 𝑆, M and of its inverse 𝑀−1. 

The relationship between each element of 𝐾 and the current 

can be well approximated with a 2nd order polynomial as in 

(14). The coefficients 𝑐𝐾𝑖,𝑖,𝑛 of the approximating polynomial 

for the i-th element on the diagonal of 𝐾 are calculated using 

the least squares method. 

 

                𝑘𝑖,𝑖(𝐼) ≅ 𝑐𝐾𝑖,𝑖,2𝐼2 + 𝑐𝐾𝑖,𝑖,1𝐼 + 𝑐𝐾𝑖,𝑖,0                  (14) 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

 
Fig. 6. Last four elements of the diagonal of  𝑲 respect to current I 
normalized by their value for I=0. 
 

Similar results were obtained for the relationship of each 

element of the matrices 𝑆, M and of its inverse 𝑀−1 respect to 

current I. The same approximating polynomials were therefore 

used as in (15), where 𝑐𝑆𝑖,𝑖,𝑛, 𝑐𝑀𝑖,𝑗,𝑛, and 𝑐−𝑀𝑖,𝑗,𝑛 are the 

coefficient of the polynomial functions for the i-th diagonal 

element of 𝑆 and the i-th row, j-th column of the matrixes M 

and 𝑀−1, respectively. 

 𝑠𝑖,𝑖(𝐼) ≅ 𝑐𝑆𝑖,𝑖,2𝐼2 + 𝑐𝑆𝑖,𝑖,1𝐼 + 𝑐𝑆𝑖,𝑖,0 𝑚𝑖,𝑗(𝐼) ≅ 𝑐𝑀𝑖,𝑗,2𝐼2 + 𝑐𝑀𝑖,𝑗,1𝐼 + 𝑐𝑀𝑖,𝑗,0 

             𝑚𝑖,𝑗−1(𝐼) ≅ 𝑐−𝑀𝑖,𝑗,2𝐼2 + 𝑐−𝑀𝑖,𝑗,1𝐼 + 𝑐−𝑀𝑖,𝑗,0        (15) 

From (14, 15), the matrices 𝐾, 𝑆, 𝑀 and 𝑀−1 can therefore be 

represented as in (16). 

 𝐾 ≅ 𝐾2𝐼2 + 𝐾1𝐼 + 𝐾0 

                                 𝑆 ≅ 𝑆2𝐼2 + 𝑆1𝐼 + 𝑆0 𝑀 ≅ 𝑀2𝐼2 + 𝑀1𝐼 + 𝑀0                                𝑀−1 ≅ �̅�2𝐼2 + �̅�1𝐼 + �̅�0                      (16) 

where the elements of the constant matrices at the right side of 

(16) are the coefficients of the polynomials introduced in 

(14,15), as summarized in (17), where 𝑘𝑛𝑖,𝑖 ,  𝑠𝑛𝑖,𝑖, 𝑚𝑛𝑖,𝑗 and  �̅�𝑛𝑖,𝑗 are the elements of 𝐾𝑛, 𝑆𝑛, 𝑀𝑛 and �̅�𝑛, respectively.  

                             𝑘𝑛𝑖,𝑖 = 𝑐𝐾𝑖,𝑖,𝑛 

                              𝑠𝑛𝑖,𝑖 = 𝑐𝑆𝑖,𝑖,𝑛                                 𝑚𝑛𝑖,𝑗 = 𝑐𝑀𝑖,𝑗,𝑛                                 �̅�𝑛𝑖,𝑗 = 𝑐�̅�𝑖,𝑗,𝑛    ,    𝑛 = 0,1,2              (17)  

 

Finally, if the approximations presented in (16) are applied to 

the matrices of (13), the new LCC model for the temperature 

prediction is obtained as in (18), where 𝑊𝑖 and 𝑉𝑖 are constant 

matrices of dimension 7x7 and 7x2, respectively, that are 

obtained from the multiplications between the approximating 

matrices on the right side of (16).   

 

          𝑇(𝑡𝑗+1) = ∑ (𝑊𝑖𝐼𝑗𝑖𝑇(𝑡𝑗) + 𝑉𝑖𝐼𝑗𝑖𝑢(𝐼𝑗))6𝑖=0               (18) 

 

Since the matrices involved in (18) are constant matrices 

which can be calculated once at all, this model significantly 

decreases the computational cost of the temperature 

prediction, compared to the LPTN, as at each instant it is not 

required to compute any matrix inversion or products between 

matrices. 

Although the presented model considers only Joule losses as a 

heat source, it is important to note that it can be easily 

extended to applications where the stator iron losses are not 

negligible. Indeed, with the original LPTN these losses can be 

modelled as heat sources in the nodes of the stator teeth and 

the stator yoke [14]. Under the common assumption of 

temperature independent iron losses, they can be represented 

as a function of the electrical frequency f and the current I 

[25]. It follows that the matrix A in (5) is unchanged if the heat 

sources representing the temperature independent iron losses 

are included in the original LPTN, and only the input vector 𝑢 

and the input matrix B would be modified. Thus, a procedure 

similar to the one presented in Sections IV and V can still be 

adopted for the new system, with the only difference that in 

(18) the input u will be function of I and f.  

In order to validate all the above, the LCC thermal model 

described by (18) for the fast winding temperature prediction 

is tested for the same current profiles used in Section III. This 

also serves to compare the accuracy of the original LPTN to 

that of the simplified analytical model. In TABLE V the mean 

relative and the maximum absolute errors of the predicted 

temperature using (18) respect to the measured slot 

temperature are reported for each current profile considered. It 

can be seen that the simplification of the LPTN does not affect 

sensibly the accuracy of the slot temperature prediction. 

 
TABLE V 

MEAN RELATIVE AND MAXIMUM ABSOLUTE WINDING 

TEMPERATURE PREDICTION ERROR OF ANALYTICAL MODEL 

FOR DIFFERENT CURRENT PROFILES 

Load Mean relative 

error % 

Max. absolute 

error [°C] 

100% 𝐼𝑁 1.5 2.7 

90% 𝐼𝑁 1.6 3 

50% 𝐼𝑁 2.2 1.3 

40% 𝐼𝑁 2.3 1.3 

cycle 1.5 5.2 

 

The model proposed in (18) has similar accuracy as the 

original LPTN and lower computational cost since it is 

characterized by reduced complexity. However, its complexity 

can be further reduced by decreasing the number of nodes of 

the original LPTN, which would reduce the dimension of the 

matrices in (18). Thus, in the next section a 3-node LPTN 

deriving from the original 7-node LPTN is evaluated, from 

which an even lower computational cost model will be 

obtained. 

VI. LOWER ORDER MODELS 

Equations (11, 12) show that the motor temperatures can be 

represented as linear combination of exponential functions of 

time t. In particular, the exponents of the exponential functions 

are in the form 𝜆𝑖𝑡 , with 𝜆𝑖 i-th eigenvalue of the matrix A. 

Since in the application considered the magnitudes of these 

eigenvalues are significantly different, in this section reduced 

dynamics models are evaluated in order to further reduce the 

computational cost of the stator temperature prediction.  
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Assuming that the eigenvalues 𝜆𝑖 of matrix A are ordered such 

that 𝜆𝑖 < 𝜆𝑗 for 𝑖 < 𝑗, the performance of the reduced 

dynamics model is investigated by incrementally setting to 

zero the diagonal elements of matrices K and S in (13). In this 

way, for instance by setting 𝑘1,1 and 𝑠1,1 equal to zero, the 

exponential functions relative to 𝜆1 can be neglected.  

The reduced models are then tested for each current profile 

considered in TABLE I. In particular, it was found that, by 

neglecting the dynamics related to 𝜆𝑖 , 𝑖 = 1, … ,4 the prediction 

of the stator temperature is similar to the output of the original 

LPTN. However, if the dynamics associated to 𝜆5 are also 

neglected, then the system accuracy is reduced with a 

maximum relative error of 22%. This can be observed in Fig. 

7, where the stator temperature calculated with the 3rd order 

(𝑘𝑖,𝑖 and 𝑠𝑖,𝑖 equal to zero for 𝑖 = 1,… ,4) and the 2nd order 

(also 𝑘5,5 and 𝑠5,5 equal to zero) models are plotted along with 

the measured temperature for the current profile of Fig. 5. 

It is important to note that the benefits in terms of 

computational cost of the reduced order models are limited. In 

fact, setting the appropriate elements of K and S to zero 

reduces the initial calculation time of the constant matrices of 

(18), but does not have an impact on the amount of operations 

to be computed online at each iteration. However, a perceived 

advantage is that high accuracy could be achieved with a 

lower order LPTN. 

 

 
Fig. 7. Measured winding temperature and predicted temperature 
using second and third order thermal models. 

A. Third order model 

Considering the above, then the 7-node equivalent circuit of 

Fig. 3 is reduced to a 3-node circuit by removing its less 

significant components. For the network of Fig. 3, it can be 

noticed from TABLE III that the resistances 𝑅2, 𝑅3, 𝑅5, 𝑅6 

and 𝑅8, and the thermal masses 𝐶3, 𝐶4 and 𝐶6 are the 

components with less significance to the overall circuit. In 

particular, these resistances can be approximated with a short 

circuit, whereas the capacitances can be discarded. Thus, the 

7-node LPTN is reduced to the 3-node LPTN as shown in Fig. 

8. The new resistances and thermal masses are defined by 

(19). 

 𝑅𝐼 = 𝑅1𝑅4𝑅1 + 𝑅4               𝑅𝐼𝐼 = 𝑅7𝑅9𝑅7 + 𝑅9 

         𝑅𝐼𝐼𝐼 = 𝑅10𝑅11𝑅10 + 𝑅11           𝑅𝐼𝑉 = 𝑅12                      𝐶𝐼 = 𝐶1 + 𝐶2      𝐶𝐼𝐼 = 𝐶5       𝐶𝐼𝐼𝐼 = 𝐶7        (19) 

 

 
Fig. 8. 3-node LPTN equivalent circuit. 
 

The same procedure described in Sections IV and V can be 

applied also to the 3-node LPTN introduced. Thus, an 

analytical model similar to the one of (18) can be obtained 

also from the new 3-node LPTN, where now T is the vector of 

the temperatures in the 3 nodes of the LPTN, 𝑊𝑖 and 𝑉𝑖 are 

constant matrices of dimension 3x3 and 3x2, respectively, 

whereas current 𝐼𝑗 and input vector u are unchanged. The 

second element of T represents the temperature in the stator 

slots. The computational cost of the new model will be lower 

compared to the one of (18), as shown in TABLE VII, because 

the dimensions of the matrices involved are more than halved. 

B. Validation of the 3rd order model 

The reduced computational cost analytical model derived from 

the 3-node LPTN shown in Fig. 8 is tested for the same 

experimental current profiles used in Section III.  

Fig. 9 shows the measured temperature and the predicted 

temperature for step currents of 40, 50, 90 and 100% of the 

nominal current. Fig. 10 shows measured and predicted 

temperatures for the current cycle introduced in Fig. 5. 

In TABLE VI the mean relative and the maximum absolute 

errors between measured slot temperature and the predicted 

temperature using the reduced computational cost analytical 

model are reported for each current profile considered.  

 

 
Fig. 9. Measured winding temperatures (m.) compared to the 
temperatures predicted by the 3rd order analytical model for current I 
equal to 40, 50, 90 and 100% of the nominal current. 
 

It can be noticed that even in this case the errors are small. In 

particular, the 3rd order model outperforms the 7-node LPTN 

in terms of maximum absolute temperature error for the case 

of the cycle of three step currents. However, as expected the 7-

node LPTN has a lower mean relative error, which is the error 

measure the LPTN was optimized for, as can be seen from the 

objective function (4). 
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Fig. 10. Measured winding temperature and temperature predicted with 
the 3rd order analytical model for three consecutive current steps of 
90, 70 and 0% of the nominal current. 

 
TABLE VI 

MEAN RELATIVE AND MAXIMUM ABSOLUTE WINDING 

TEMPERATURE PREDICTION ERROR OF REDUCED DIMENSIONS 

ANALYTICAL MODEL FOR DIFFERENT CURRENT PROFILES 

Load 
Mean relative  

error % 

Max. absolute 

error [°C] 

100% 𝐼𝑁 2.4 3.3 

90% 𝐼𝑁 1.4 2.2 

50% 𝐼𝑁 1.4 1.1 

40% 𝐼𝑁 1.4 1.1 

cycle 2.6 3 

 

Finally, the performance of the 3rd order model has been 

evaluated considering repeated cycles, in order to take into 

account the case of intermittent operations. In each cycle, 1A 

DC was applied for 1000 seconds, followed by 1000 seconds 

at 0 current. The cycle was repeated 5 times. A comparison 

between experimental and predicted winding temperatures is 

shown in Fig. 11, where the maximum absolute error is equal 

to 2.3 °C. 

 
Fig. 11. Measured winding temperatures compared to the temperature 
predicted by the 3rd order analytical model for repeated cycles, each 
one composed of 1000 seconds at 1A followed by 1000 seconds at 0A. 

C. Computational performance of different methods 

A comparative study between the computational speeds of all 

the models presented above has been done. The models were 

implemented on MATLAB and run on a standard desktop PC, 

processor i3-4150 @3.50 GHz, 8GB RAM. The time required 

at each iteration for the calculation of the winding temperature 

was recorded using the MATLAB start stopwatcher timer. The 

results are illustrated in TABLE VII, and show that the 

simplification of the 7-node LPTN with the 3rd order LCC 

model allows for an almost 7 times faster computation.  

All the above highlights that the analytical solution presented 

in this paper does give significant advantages in terms of 

required computational resources without any negative impact 

on the overall model accuracy.  
 

TABLE VII 

COMPUTATIONAL TIME FOR THE TEMPERATURE PREDICTION AT 

EACH ITERATION FOR THE THERMAL MODELS CONSIDERED 

Model 
Computational 

time [𝟏𝟎−𝟔 s] 

7 nodes LPTN 45 

3 nodes LPTN 25 

7th order LCC model 9 

3rd order LCC model 7 

VII. CONCLUSIONS 

In this paper, an innovative, analytical thermal modelling 

technique for the prediction of electrical machines’ winding 
temperatures has been presented and discussed. As vessel to 

investigate the proposed method a 12-slot/10-pole PMSM 

motor was used. The motor’s thermal model is derived from a 
7-node LPTN. The main feature of the proposed model is its 

low computational cost respect to the original LPTN, which is 

achieved through a polynomial approximation of the solution 

of the LPTN respect to the winding current. Indeed, this is due 

to the fact that the LCC model does not require computation of 

inverse matrices or multiplications between matrices. After an 

evaluation of the system’s dynamics, it was observed that a 
representative 3-node network can be achieved with little 

impact on the accuracy of the model. Following the same 

procedure, then from the 3rd order thermal network another 

even faster analytical model was derived. The inherent 

velocity and accuracy of this technique would be ideal for its 

implementation on online temperature prediction platforms, 

such as are required for aircraft systems’ health monitoring 
and prognostics. 

One of the main strengths of this proposed validated technique 

is its perceived flexibility and applicability to various machine 

types and families. The authors are already exploring this 

technique with promising results on similar rating induction 

machines and synchronous reluctance machines. Another 

perceived advantage of this technique is its applicability to on-

line monitoring of performance. In the future, the authors will 

be investigating this, by focusing on the implementation of the 

LCC model on a DSP for online temperature monitoring. A 

more general version of the model, where also mechanical and 

iron losses are included, will be also investigated. 
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