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Abstract

Classical gene expression models assume exponential switching time distributions between the active and
inactive promoter states. However, recent experiments have shown that many genes in mammalian cells may
produce non-exponential switching time distributions, implying the existence of multiple promoter states and
molecular memory in the promoter switching dynamics. Here we analytically solve a gene expression model
with random bursting and complex promoter switching, and derive the time-dependent distributions of the mRNA
and protein copy numbers, generalizing the steady-state solution obtained in [SIAM J. Appl. Math. 72, 789-818
(2012)] and [SIAM J. Appl. Math. 79, 1007-1029 (2019)]. Using multiscale simplification techniques, we find that
molecular memory has no influence on the time-dependent distribution when promoter switching is very fast or
very slow, while it significantly affects the distribution when promoter switching is neither too fast nor too slow. By
analyzing the dynamical phase diagram of the system, we also find that molecular memory in the inactive gene
state weakens the transient and stationary bimodality of the copy number distribution, while molecular memory in
the active gene state enhances such bimodality.

1 Introduction

Gene expression in individual cells is an inherently stochastic process due to small copy numbers of biochemical
molecules and probabilistic collisions between them [1]. Over the past two decades, numerous strides have
been made in the models and theory of single-cell stochastic gene expression dynamics [2], which has a dual
representation in terms of its probability distribution and stochastic trajectory. The former is described by a system
of chemical master equations (CMEs), while the latter is described by a continuous-time Markov chain that can be
simulated via Gillespie’s stochastic simulation algorithm. The simplest stochastic gene expression model is the
so-called one-state model, where the promoter of the gene of interest is assumed to be always transcriptionally
active [3]. This model takes into account synthesis and degradation of mRNA or protein, as well as possible
transcriptional or translational bursting with the burst size having a geometric distribution, which was widely
observed in experiments [4, 5]. If bursting is not considered, then the steady-state solution of the one-state model is
the well-known Poisson distribution; if bursting is considered, then the steady-state solution is given by a negative
binomial distribution [3], which was also extensively used in single-cell data analysis [6].

A more detailed gene expression model that is closer to the underlying molecular biology is the classical
two-state model, where the promoter of the gene is assumed to switch stochastically between a transcriptionally
active state and a transcriptionally inactive state [7–11]. This model has made great success in interpreting
many experimental phenomena. Specifically, the two-state model can be used to reveal the biophysical origin of
transcriptional bursting [12–14], which is due to a gene that is mostly inactive but transcribes a large number of
mRNA molecules when it is active. Moreover, it can account for the experimentally observed bimodal distributions
of mRNA and protein copy numbers that cannot be captured by the one-state model [9]. The two-state model is also
analytically solvable. If bursting in each gene state is not considered, which usually occurs for the mRNA dynamics,
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then the steady-state distribution of the gene product number is given by a confluent hypergeometric function [7]
and the time-dependent distribution can also be derived [10]. If bursting in each gene state is considered, which
usually occurs for the protein dynamics, then the steady-state solution is given by a Gaussian hypergeometric
function [9] and the time-dependent solution was derived in [15]. In addition, the steady-state and time-dependent
solutions for the two-state model of an auto-regulatory gene network were also extensively studied [16–20].

In the two-state model, the time spent in the active or inactive gene state has an exponential distribution. This
is generally a reasonable assumption for bacteria [21]. However, recent studies in mammalian cells have shown that
the inactive periods for many genes may have a non-exponential peaked distribution [22, 23]. This indicates that
the gene dynamics in the inactive period may contain multiple exponential steps and exhibit a “refractory” behavior:
after leaving the active state, the promoter has to progress through multiple inactive states before becoming active
again. In addition, there have been some experimental studies suggesting that the promoter may also have multiple
active states, yielding a non-exponential active period [24–28]. In such cases, one could still use a two-state
model by accepting the loss of the Markov property [29]. However, adding intermediate states not only provides a
convenient way to keep the Markov property, but also has the opportunity to reveal the details of the underlying
biological mechanisms behind promoter switching.

In fact, gene expression models with complex multi-state promoter switching mechanisms have been widely
studied from the theoretical perspective [30–37]. However, most previous papers focus on the steady-state behavior
of the system, while its time-dependent behavior has received comparatively little attention. If there is only one
active gene state and multiple inactive gene states, it has been found that the steady-state distribution of the mRNA
copy number is given by a generalized hypergeometric function [38–42]. Thus far, there is still a lack of a detailed
study about the time-dependent solution of a multi-state gene expression model with transcriptional or translational
bursting. In this paper, we fill in this gap by computing the analytical time-dependent distributions of mRNA and
protein copy numbers and investigate the influence of molecular memory on such distributions.

The structure of the present paper is organized as follows. In Sec. 2, we describe our multi-state model in
detail and provide its CMEs. Our model can simultaneously capture non-exponential active or inactive duration
distribution, as well as non-bursty or bursty gene expression pattern, and thus is very general. In Sec. 3, we obtain
the analytical time-dependent solution of the multi-state model, discuss how our results reduces to previous results
in one-state and two-state models, and reveal three types of possible dynamics behaviors of the system. In Sec. 4,
using multiscale simplification techniques, we provide simplified expressions for the time-dependent distributions
when the promoter switches rapidly or slowly between the multiple states. In Sec. 5, we investigate the phase
diagram characterizing the dynamics of the multi-state model and use it to reveal the influence of molecular memory
on the time-dependent distributions. We conclude in Sec. 6.

2 Model

The classical two-state gene expression model assumes that the promoter of a gene can switch between an
active and an inactive state with the active state having a higher transcription rate than the inactive one [7]. In the
two-state model, the durations of the active and inactive states both have an exponential distribution. However,
recent studies have shown that in mammalian cells, the inactive periods for many genes may have a non-exponential
distribution with a nonzero peak [22, 23], since the activation of the promoter is a complex multi-step biochemical
process due to chromatin remodeling and the binding and release of transcription factors. This indicates that the
gene dynamics in the inactive period may contain multiple exponential steps and in sum, the gene would undergo a
multiple-state switching process with molecular memory (recall that an exponentially distributed transition time
guarantees the Markovian property which is memoryless). Similar multi-state behavior has also been found for the
active period [24–28].

Here we consider a gene expression model with complex promoter switching (Fig. 1(a)). Specifically, we
assume that the promoter of the gene can exist in L+ 1 states, denoted by G0, G1, . . . , GL. Biophysically, these
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states correspond to different conformational states during chromatin remodelling or different binding states with
transcription factors [39, 40]. Moreover, we assume that the gene product of interest, i.e. mRNA or protein, is
produced in a non-bursty (constitutive) or bursty manner. In each gene state Gi, the synthesis of the mRNA is
usually non-bursty, while the synthesis of the protein is often bursty due to rapid translation of protein from a
single, short-lived mRNA molecule [13, 14]. Both non-bursty and bursty gene expression are commonly observed
in naturally occurring systems [43].

In the bursty case, the synthesis of the gene product is assumed to occur in bursts of random size sampled
from a geometric distribution with parameter p, in agreement with experiments [5]. Then the effective reactions
describing the gene product dynamics are given by

Gi
kij−−→ Gj , i, j = 0, 1, . . . , L, i 6= j,

G0
ρ0p

kq−−−−→ G0 + kP, Gi
ρ1p

kq−−−−→ Gi + kP, k ≥ 1, i = 1, . . . , L, (1)

P
d−→ ∅,

where q = 1− p. Here the first row describes switching of the promoter between all gene states with rates kij , the
second row describes bursty production of the gene product P in all gene states, and the third row describes the
decay of the gene product with rate d due to active degradation and dilution during cell division [44, 45]. Following
[40], we assume that bursts occur at a rate ρ0 when the promoter is in state G0 and occur at a different rate ρ1
when the promoter is in other states G1, . . . , GL. If ρ0 > ρ1, then G0 is the active state and G1, . . . , GL are the
inactive states. In this case, the active period is exponentially distributed, while the inactive period may have a
non-exponential distribution. If ρ0 < ρ1, then G0 is the inactive state and G1, . . . , GL are the active states. In this
case, the inactive period is exponentially distributed, while the active period is non-exponential distributed.

In our model, the switching dynamics between the L+ 1 gene states and the switching rates between them
can be chosen arbitrarily, and thus the sojourn time in the states G1, . . . , GL can have a very general probability
distribution. A special case occurs when promoter progression has an irreversible cyclic structure, as illustrated
in Fig. 1(b) [38, 39]. If ρ0 > ρ1, then the corresponding model is referred to as the multi-OFF model since
the promoter must undergo L inactive states one by one before entering the active state. If ρ0 < ρ1, then the
corresponding model is called the multi-ON model. For both the multi-OFF and multi-ON models, the sojourn
time in the gene states G1, . . . , GL is the independent sum of L exponential random variables and thus has a
hypoexponential distribution (also called a generalized Erlang distribution).

In the non-bursty case, the effective reactions describing the gene product dynamics are given by

Gi
kij−−→ Gj , i, j = 0, 1, . . . , L, i 6= j,

G0
s0−→ G0 + P, Gi

s1−→ Gi + P, i = 1, . . . , L, (2)

P
d−→ ∅.

Here we assume that the gene product is produced in a constitutive manner with rate s0 when the promoter is
in state G0 and is produced with a different rate s1 when the promoter is in other states G1, . . . , GL. Note that
when the synthesis rate in the inactive gene state is zero (s0 = 0 or s1 = 0), the non-bursty model introduced
above reduces to the model proposed in [40]. Interestingly, the non-bursty model described by Eq. (2) is actually a
limiting case of the bursty model described by Eq. (1) [19, 46]. Since the burst size is geometrically distributed, the
mean burst size is given by B =

∑∞
k=1 kp

kq = p/q. It is easy to see that when ρ0, ρ1 → ∞ and B → 0, while
keeping ρ0B = s0 and ρ1B = s1 as constant, we have p→ 0, q → 1, and

ρipq → si, ρip
kq → 0, k ≥ 2, i = 0, 1.

This clearly shows that the bursty model reduces to the non-bursty model in the above limit. Hence in the following,
we will first derive the analytical results for the bursty model and then use them to obtain the relevant results for the
non-bursty model by taking the above limit.
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Figure 1: Multi-state gene expression models. (a) Schematic diagram of a multi-state model with complex promoter switching
and bursting dynamics. The promoter can exist in L + 1 states G0, G1, . . . , GL and the connections between them can be
arbitrary. The transcription rate is ρ0 in gene state G0 and is ρ1 in all other gene states. The gene product is produced in a
bursty manner. (b) Schematic diagrams of the multi-OFF and multi-ON models, where promoter switching has an irreversible
cyclic structure. For the multi-OFF model, there is only one active state and multiple inactive states. For the multi-ON model,
there is only one inactive state and multiple active states. (c) Transition diagram for the Markovian dynamics associated with
the multi-state model. Note that bursting can cause jumps from microstate (i, n) to microstate (i, n+ k) for any k ≥ 1. This
this is shown for microstates (i, 0) in the figure but is also true for other microstates. (d) The reduced Markovian model in
fast promoter conditions. When promoter switching is fast, the microstates (0, n), (1, n), . . . , (L, n) in (c), as enclosed by red
dashed squares, are in rapid equilibrium and thus can be aggregated into a group that is labeled by group n.

The microstate of the bursty model can be represented by an ordered pair (i, n): the state i of the promoter and
the copy number n of the gene product. Let pi,n(t) denote the probability of having n copies of the gene product
when the promoter is in state i at time t. Then the stochastic gene expression kinetics can be described by the
continuous-time Markov chain illustrated in Fig. 1(c). The evolution of the Markovian model is governed by the
following set of CMEs:

ṗ0,n =

[
n−1∑
k=0

ρ0p
n−kqp0,k −

∞∑
k=1

ρ0p
kqp0,n

]
+ [(n+ 1)dp0,n+1 − ndp0,n]

+
∑
j 6=0

(kj0pj,n − k0jp0,n),

ṗi,n =

[
n−1∑
k=0

ρ1p
n−kqpi,k −

∞∑
k=1

ρ1p
kqpi,n

]
+ [(n+ 1)dpi,n+1 − ndpi,n]

+
∑
j 6=i

(kjipj,n − kijpi,n), i = 1, . . . , L.

(3)

Here the first term on the right-hand side represents bursty production of the gene product, the second term
represents decay of the gene product, and the last term represents promoter switching. In what follows, for
convenience, we set d = 1 [42], which is equivalent to dividing each parameter by d and rescaling time by 1/d.
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3 Analytical time-dependent solutions

3.1 Analytical solution for the bursty model

Before stating our results, we first introduce some notation. Let K = (kij)(L+1)×(L+1) denote the generator
matrix of promoter switching dynamics, where kii = −

∑
j 6=i kij for each 0 ≤ i ≤ L. Following [42], we assume

that K is irreducible, which means that for any pair of gene states Gi and Gj , there exists a transition path

Gi = Gi1 → Gi2 → Gi3 → · · · → Gin = Gj

from Gi to Gj with positive transition rates, i.e. ki1i2ki2i3 · · · kin−1in > 0. Moreover, let H = (kij)1≤i,j≤L be the
matrix obtained by removing the first row and the first column of the matrix K. Since K is a generator matrix,
one eigenvalue of K must be zero. Let µ1, . . . , µL denote all the nonzero eigenvalues of −K and let λ1, . . . , λL
denote all the eigenvalues of −H . It follows from the Perron-Frobenius theorem and the irreducibility of K that λi
and µi all have positive real parts [42].

To proceed, we define the generating function fi(t, z) =
∑∞
n=0 pi,n(t)z

n for each 0 ≤ i ≤ L. Then Eq. (3)
can be converted into the following system of partial differential equations (PDEs):

∂f0
∂t

=
ρ0p(z − 1)

1− pz
f0 + (1− z)∂f0

∂z
+
∑
j 6=0

kj0fj −
∑
j 6=0

k0jf0,

∂fi
∂t

=
ρ1p(z − 1)

1− pz
fi + (1− z)∂fi

∂z
+
∑
j 6=i

kjifj −
∑
j 6=i

kijfi, i = 1, . . . , L.

(4)

Furthermore, let pn(t) =
∑L
i=0 pi,n(t) denote the probability of having n copies of the gene product at time t and

let f(t, z) =
∑L
i=0 fi(t, z) denote its generating function. To simplify the above system of PDEs, we define a new

variable ω = B(z − 1). Let f̃i(t, ω) and f̃(t, ω) denote the functions with variables t and ω that are associated
with fi(t, z) and f(t, z), i.e.

f̃i(t, ω) = fi(t, ω/B + 1), f̃(t, ω) = f(t, ω/B + 1). (5)

Then Eq. (4) can be rewritten as
∂f̃0
∂t

=
ρ0ω

1− ω
f̃0 − ω

∂f̃0
∂ω

+
∑
j 6=0

kj0f̃j −
∑
j 6=0

k0j f̃0,

∂f̃i
∂t

=
ρ1ω

1− ω
f̃i − ω

∂f̃i
∂ω

+
∑
j 6=i

kjif̃j −
∑
j 6=i

kij f̃i, i = 1, . . . , L.

(6)

For convenience, we set ρ = ρ0 − ρ1 and

gi(t, ω) = (1− ω)ρ1 f̃i(t, ω), i = 0, 1, . . . , L, g(t, ω) = (1− ω)ρ1 f̃(t, ω). (7)

Moreover, let A be the differential operator defined by

A =
∂

∂t
+ ω

∂

∂ω
.

It is straightforward to check that gi satisfies the following system of PDEs:
A g0 −

ρω

1− ω
g0 +

∑
j 6=0

k0jg0 −
∑
j 6=0

kj0gj = 0,

A gi +
∑
j 6=i

kijgi −
∑
j 6=i

kjigj = 0, i = 1, . . . , L.
(8)
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Note that Eq. (8) is much simpler than Eq. (6) since the latter contains both ρ0 and ρ1, while the former only
contains their difference ρ = ρ0 − ρ1. Summing up all the equations in Eq. (8) yields

g0(t, ω) =
1− ω
ρω

A g(t, ω), (9)

which shows that g0 can be expressed explicitly by g. Complex computations show that g0, g1, . . . , gL can all be
expressed by g as 

g0(t, ω)

g1(t, ω)
...

gL(t, ω)

 = A(ω)


g(t, ω)

A g(t, ω)
...

A Lg(t, ω)

 , (10)

where A(ω) is a square matrix of order L+ 1 with its entries being functions of ω (see Appendix A for the detailed
proof and the explicit expression of A(ω)). Substituting Eqs. (9) and (10) into the relation g =

∑L
i=0 gi, we obtain

a PDE specifically for g, which is given by (see Appendix A for the detailed proof){
A

L∏
i=1

(A − 1 + µi)− ω
L+1∏
i=1

(A + γi)

}
g(t, ω) = 0, (11)

where γ1, . . . , γL+1 are constants satisfying the equations

σk(γ1, . . . , γL+1) = σk (µ1, . . . , µL) + ρσk−1 (λ1, . . . , λL) , k = 1, . . . , L+ 1, (12)

with σk(µ1, . . . , µL) being the kth elementary symmetric polynomials defined by

σk(µ1, . . . , µL) =
∑

1≤i1<···<ik≤L

µi1µi2 . . . µik .

Here we assume that σ0(µ1, . . . , µL) = 1 and σL+1(µ1, . . . , µL) = 0. Since Vieta’s formulas relate the coefficients
of a polynomial to the elementary symmetric polynomials of its roots, we can see that γ1, . . . , γL+1 are actually all
the roots of a polynomial of degree L+ 1. The fundamental theorem of algebra guarantees that γ1, . . . , γL+1 are
uniquely determined by Eq. (12).

To solve Eq. (11), we use the method proposed in [10, 15] to convert it into a solvable ordinary differential
equation (ODE). To this end, we make the variable transformation ξ = logω − t and η = ω. Let g(ξ, η) be the
function with variables ξ and η that are associated with g(t, ω), i.e. g(ξ, η) = g(log η − ξ, η). In terms of the new
variables, we have

A =
∂

∂t
+ ω

∂

∂ω
= η

∂

∂η
.

Then Eq. (11) can be converted into the ODE{
η
∂

∂η

L∏
i=1

(
η
∂

∂η
− 1 + µi

)
− η

L+1∏
i=1

(
η
∂

∂η
+ γi

)}
g(ξ, η) = 0. (13)

Note that for each given ξ, Eq. (13) is a generalized hypergeometric ODE with respect to η [47, Eq. 16.8.3] and its
general solution is given by the linear combination of generalized hypergeometric functions [47, Eq. 16.8.6]

g(ξ, η) =
L∑
i=0

Ci(ξ)yi(η),

where Ci(ξ) are constants depending on ξ and yi(η) are functions defined by

y0(η) = L+1FL (γ1, . . . , γL, γL+1;µ1, . . . , µL; η) ,

yi(η) = η1−µi
L+1FL (1 + γ1 − µi, . . . , 1 + γL+1 − µi; 2− µi, 1 + µ1 − µi, . . . , ?, . . . , 1 + µL − µi; η) ,

(14)
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for i = 1, . . . , L. Here L+1FL(α1, . . . , αL+1;β1, . . . , βL;x) denotes the generalized hypergeometric function [47]
and “?” represents that the entry 1 + µi − µi is removed. In terms of the original variables t and ω, the function
g(t, ω) is given by

g(t, ω) =
L∑
i=0

φi(ωe
−t)yi(ω), (15)

where φi(x) = Ci(log x).
The remaining question is to determine the functions φi based on the initial conditions, or more precisely, the

functions gi(0, ω), i = 0, 1, . . . , L that are associated with the initial distributions. Note that for each n ≥ 0, it is
easy to check that

A ng(t, ω) =
L∑
i=0

ϑnyi(ω)φi(ωe
−t), (16)

where ϑ = ω d
dω . Inserting the above formula into Eq. (10) and setting t = 0 yield

g0(0, ω)

g1(0, ω)
...

gL(0, ω)

 = A(ω)


y0(ω) y1(ω) . . . yL(ω)

ϑy0(ω) ϑy1(ω) . . . ϑyL(ω)
...

...
. . .

...
ϑLy0(ω) ϑLy1(ω) . . . ϑLyL(ω)




φ0(ω)

φ1(ω)
...

φL(ω)

 , (17)

from which the functions φi(ω) can be recovered from the initial conditions gi(0, ω). Using the transformations
given in Eqs. (5) and (7), in terms of the original variables t and z, the generating function f(t, z) is given by

f(t, z) = [1−B(z − 1)]−ρ1g(t, B(z − 1)). (18)

Taking partial derivatives of f(t, z) with respect to z at z = 0, we finally obtain the time-dependent distribution of
the gene product number:

pn(t) =
1

n!

∂n

∂zn

∣∣∣∣
z=0

f(t, z). (19)

We then focus on the steady-state gene product number distribution. At the steady state, the functions f(t, z)
and g(t, ω) are independent of time t and we denote them by fss(z) and gss(ω), respectively. Then Eq. (11)
reduces to {

ϑ

L∏
i=1

(ϑ− 1 + µi)− ω
L+1∏
i=1

(ϑ+ γi)

}
gss(ω) = 0.

Note that this is a generalized hypergeometric ODE and its solution is given by

gss(ω) = L+1FL (γ1, . . . , γL, γL+1;µ1, . . . , µL;ω) .

In terms of the original variable z, the generating function fss(z) is given by

fss(z) = [1−B(z − 1)]−ρ1gss(B(z − 1))

= [1−B(z − 1)]−ρ1L+1FL(γ1, . . . , γL, γL+1;µ1, . . . , µL;B(z − 1)).
(20)

Taking derivatives on both sides of the above equation at z = 0 and using the differentiation formula for generalized
hypergeometric functions [47, Eq. 16.3.1], we finally obtain the steady-state distribution pssn of the gene product
number:

pssn =
qρ1

n!

n∑
i=0

(
n

i

)∏L+1
j=1 (γj)i∏L
j=1(µj)i

L+1FL (γ1 + i, . . . , γL+1 + i;µ1 + i, . . . , µL + i;−B) pn−iBi (ρ1)n−i ,

where (x)i = x(x + 1) . . . (x + i − 1) is the Pochhammer symbol. In the special case of ρ1 = 0, i.e. no gene
product molecules are produced during the inactive period, the expression can be simplified as

pssn =
Bn

n!

∏L+1
j=1 (γj)n∏L
j=1(µj)n

L+1FL (γ1 + n, . . . , γL + n, γL+1 + n;µ1 + n, . . . , µL + n;−B) .
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3.2 Analytical solution for the non-bursty model

Next we focus on the non-bursty model. Recall that the non-bursty model given in Eq. (2) is a limiting case
of the bursty model given in Eq. (1) when ρ0, ρ1 → ∞ and B → 0, while keeping ρ0B = s0 and ρ1B = s1 as
constant. Under this limit, it is clear that

|ρ| = |ρ0 − ρ1| = |s0 − s1|/B →∞, ρB → s := s0 − s1.

From Eq. (12), it is easy to see that γ1, . . . , γL+1 are functions of ρ, µ1, . . . , µL, and λ1, . . . , λL. In Appendix B,
we have proved that

lim
|ρ|→∞

γi = λi, i = 1, . . . , L, lim
|ρ|→∞

γL+1

ρ
= 1. (21)

Recall that when αL+1 → ∞ and z → 0, while keeping αL+1z as constant, we have the following limit for
generalized hypergeometric functions [47, Eq. 16.8.10]:

L+1FL(α1, . . . , αL, αL+1;β1, . . . , βL; z)→ LFL(α1, . . . , αL;β1, . . . , βL;αL+1z).

Applying this formula and taking ρ0, ρ1 →∞ and B → 0, while keeping ρ0B = s0 and ρ1B = s1 as constant,
we obtain the following limits:

[1−B(z − 1)]−ρ1 → es1(z−1),

L+1FL(γ1, . . . , γL, γL+1;µ1, . . . , µL;B(z − 1))→ LFL(λ1, . . . , λL;µ1, . . . , µL; s(z − 1)),

L+1FL(1 + γ1 − µi, . . . , 1 + γL+1 − µi; 2− µi, 1 + µ1 − µi, . . . , ?, . . . , 1 + µL − µi;B(z − 1))

→ LFL(1 + λ1 − µi, . . . , 1 + λL − µi; 2− µi, 1 + µ1 − µi, . . . , ?, . . . , 1 + µL − µi; s(z − 1)).

Thus from Eqs. (15) and (18), the generating function f(t, z) for the non-bursty model is given by

f(t, z) = es1(z−1)g(t, s(z − 1)),

where

g(t, ω) =

L∑
i=0

φi(ωe
−t)yi(ω),

with the functions y0, . . . , yL being defined by

y0(ω) = LFL (λ1, . . . , λL;µ1, . . . , µL;ω) ,

yi(ω) = ω1−µi
LFL (1 + λ1 − µi, . . . , 1 + λL − µi; 2− µi, 1 + µ1 − µi, . . . , ?, . . . , 1 + µL − µi;ω) ,

for i = 1, . . . , L. Here the functions φi can be determined by using similar methods. Then the time-dependent
copy number distribution can be recovered from f(t, z) based on Eq. (19).

At the steady state, it follows from Eq. (20) that the generating function reduces to

fss(z) = es1(z−1)LFL (λ1, . . . , λL;µ1, . . . , µL; s(z − 1)) .

Taking derivatives on both sides of the above equation at z = 0 yields the steady-state copy number distribution

pssn =
1

n!

n∑
i=0

(
n

i

)
LFL(λ1 + i, . . . , λL + i;µ1 + i, . . . , µL + i;−s)sm−i1 si.

In the special case of s1 = 0, i.e. no gene product molecules are produced during the inactive period, the expression
can be simplified as

pssn =
sn0
n!

LFL(λ1 + n, . . . , λL + n;µ1 + n, . . . , µL + n;−s0).

This coincides with the results obtained in [40, 42].
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3.3 Special case of L = 0

We next focus on two important special cases. In the case of L = 0, there is only one gene state G0 and
the promoter is always active. If the gene product is produced in a bursty manner, then our model reduces to the
classical bursty gene expression model [3], whose effective reactions are given by

G
ρ0p

kq−−−−→ G+ kP, k ≥ 1, P
d−→ ∅,

where we assume d = 1 for simplicity. Since L = 0, it follows from Eq. (15) that

g(t, ω) = φ0(ωe
−t)y0(ω). (22)

If the initial gene product number is zero, then we have g(0, ω) = f̃(0, ω) = 1. It the follows from Eq. (22) that

φ0(ω) =
1

y0(ω)
=

1

1F0 (ρ0; ;ω)
= (1− ω)ρ0 .

Then we obtain

g(t, ω) =
φ0(ωe

−t)

φ0(ω)
=

(
1− ωe−t

1− ω

)ρ0
.

In terms of the original variables t and z, the generating function f(t, z) is given by

f(t, z) = g(t, B(z − 1)) =

[
1−B(z − 1)e−t

1−B(z − 1)

]ρ0
. (23)

Thus when the promoter is always active, the time-dependent distribution of the gene product number can be
recovered from f(t, z) by taking the partial derivatives with respect to z at z = 0:

pn(t) =
(ρ0)n
n!

(
B

1 +B

)n(
1 +Be−t

1 +B

)ρ0
2F1

(
−n,−ρ0; 1− ρ0 − n;

1 +B

et +B

)
. (24)

This agrees with the results obtained in [9]. Taking t→∞ in the above equation yields the following steady-state
distribution of the gene product number:

pssn =
(ρ0)n
n!

pnqρ0 .

This is the well-known negative binomial distribution and agrees with the results obtained in [3].
If the gene product is produced in a non-bursty manner, then our model reduces to the following simple gene

expression model:
G

s0−→ G+ P, P
d−→ ∅.

To solve this model, we only need to apply the limit ρ0 →∞ and B → 0, while keeping ρ0B = s0 as constant, to
the above results. Taking this limit in Eq. (23), we obtain

f(t, z) = es0(1−e
−t)(z−1).

Taking the derivatives of the generating function f(t, z), we find that the gene product number has a Poisson
time-dependent distribution that is given by

pn(t) =
[s0(1− e−t)]

n

n!
e−s0(1−e

−t).

9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 6, 2022. ; https://doi.org/10.1101/2022.01.05.475050doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.05.475050


3.4 Special cases of L = 1 and L = 2

We next consider the special case of L = 1, where there are only two gene states G0 and G1. If the gene
product is produced in a bursty manner, then our model reduces to the classical two-state bursty gene expression
model [9, 14], whose effective reactions are given by

G0
k01−−→ G1, G1

k10−−→ G0,

G0
ρ0p

kq−−−−→ G0 + kP, G1
ρ1p

kq−−−−→ G1 + kP, k ≥ 1, P
d−→ ∅,

where we assume d = 1 for simplicity. Since L = 1, it is easy to check that λ1 = k10, µ1 = k01 + k10. It follows
from Eq. (12) that γ1 and γ2 are determined by

γ1γ2 = k10ρ, γ1 + γ2 = k10 + k01 + ρ.

Based on Eqs. (15) and (17), we have

g(t, ω) = φ0(ωe
−t)y0(ω) + φ1(ωe

−t)y1(ω), (25)

where

y0(ω) = 2F1 (γ1, γ2;µ1;ω) , y1(ω) = ω1−µ1
2F1 (1 + γ1 − µ1, 1 + γ2 − µ1; 2− µ1;ω) ,

and φ0(ω) and φ1(ω) satisfy the following two restrictions:

y0(ω)φ0(ω) + y1(ω)φ1(ω) = g0(0, ω) + g1(0, ω),

1− ω
ρω

ϑ (y0(ω))φ0(ω) +
1− ω
ρω

ϑ (y1(ω))φ1(ω) = g0(0, ω).

Here the first equation follows from Eq. (25) and the second one follows from Eq. (9). If the initial gene product
number is zero and the promoter is in the state G0, then we have g0(0, ω) = (1− ω)ρ1 and g1(0, ω) = 0. Solving
the above two equations yield

φ0(ω) = (1− ω)ρ0+1
2F1 (1 + γ1 − µ1, 1 + γ2 − µ1; 1− µ1;ω)

− ρ

1− µ1
ω(1− ω)ρ02F1 (1 + γ1 − µ1, 1 + γ2 − µ1; 2− µ1;ω) ,

φ1(ω) =
k01ρ

µ1(1− µ1)
ωµ1(1− ω)ρ02F1(γ1, γ2;µ1 + 1;ω),

where we have used [47, Eqs. 15.5.4 and 15.5.21] in the calculations. Inserting the above formulas into Eq. (25)
gives the explicit expression of g(t, ω). Then the generating function in terms of the original variables t and z is
given by f(t, z) = (1−B(z − 1))−ρ1g(t, B(z − 1)). This is in agreement with the result obtained in [15]. The
time-dependent copy number distribution can be recovered from f(t, z) by taking derivatives.

If the gene product is produced in a non-bursty manner, then our model reduces to the following classical
two-state non-bursty gene expression model [7]:

G0
k01−−→ G1, G1

k10−−→ G0,

G0
s0−→ G0 + P, G1

s1−→ G1 + P, k ≥ 1, P
d−→ ∅.

To solve this model, we consider the limit ρ0, ρ1 → ∞ and B → 0, while keeping ρ0B = s0 and ρ1B = s1 as
constant. Under this limit, it follows from Eq. (21) that γ1 → λ1 = k10 and γ2/ρ→ 1. If the initial gene product
number is zero and the promoter is in the state G0, then taking the above limit in Eq. (25) gives the generating
function f(t, z) = es1(z−1)g(t, s(z − 1)), where s = s0 − s1 and

g(t, ω) = φ0(ωe
−t)y0(ω) + φ1(ωe

−t)y1(ω),
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with
y0(ω) = 1F1 (k10; k01 + k10;ω) , y1(ω) = ω1−k01−k10

1F1 (1− k01; 2− k01 − k10;ω) ,

and

φ0(ω) = e−s0ω/s1F1 (1− k01; 1− k01 − k10;ω)−
ωe−s0ω/s

1− k01 − k10
1F1 (1− k01; 2− k01 − k10;ω) ,

φ1(ω) =
k01ω

k01+k10e−s0ω/s

(k01 + k10)(1− k01 − k10)
1F1 (k10; 1 + k01 + k10;ω) .

In the special case of s0 = 0, which means G0 is the inactive state and G1 is the active state, our result has a
slightly different form but is essentially in accordance with the one obtained in [10].

Finally, we consider the case of L = 2, where the promoter can switch between three states. In this case, our
model reduces to the classical refractory model proposed in [22]. Note that in the original refractory model, G0 is
an active gene state, and the bursting in each gene state is not considered. The analytical solutions for this model
are given in Appendix C.

3.5 Three types of dynamic behaviors

To validate our analytical solutions, we compare them with numerical solutions obtained using the finite-state
projection algorithm (FSP) [48]. When performing FSP, we truncate the state space at a large integer N and solve
the truncated master equation numerically using the MATLAB function ODE45. The truncation size is chosen
as N = 5max(ρ0B/d, ρ1B/d). Since ρ0B/d and ρ1B/d are the typical gene product numbers in the active and
inactive gene states, respectively, the probability that the copy number is outside the truncated size is very small
and practically can always be ignored. From Fig. 2, we can see that our exact solution coincides perfectly with the
numerical solution obtained by the FSP at all time points.

In what follows, we assume that the initial gene product number is zero and the promoter initially starts from
the steady-state distribution of all gene states G0, . . . , GL, unless otherwise stated. Recall that the gene product
number distribution can be divided into being unimodal or bimodal according to the number of modes. In general,
bimodality implies multiple phenotypic states of the underlying biological system [49]. To further understand the
shape of the time-dependent distribution, we classify the dynamic behavior of our model into three different phases,
following [20]: (i) the distribution is unimodal at all times (Fig. 2(a)); (ii) the distribution is unimodal at small and
large times and becomes bimodal at intermediate times (Fig. 2(b)); and (iii) the distribution is unimodal at small
times and becomes bimodal at large times (Fig. 2(c)). Multimodality with more than two modes is not detected
over large swaths of the parameter space. To distinguish between them, we refer to (i) as unimodality (U), to (ii) as
transient bimodality (TB), and to (iii) as stationary bimodality (SB). It is clear that all the three types of dynamic
behaviors can occur in our model.

4 Cases of fast and slow promoter switching

We next focus on two nontrivial special cases. The first case occurs when the promoter switches rapidly
between all gene states, i.e. kij � ρ0, ρ1, d. In this case, the gene product number n is a slow variable and the
promoter state i is a fast variable. Hence our model can be greatly simplified using the classical simplification
technique of two-time-scale Markov chains called averaging [19, 51, 52]. For simplicity, we only consider the
bursty model here; the non-bursty model can be analyzed in a similar way. Since kij are large, for each n ≥ 0,
the microstates (0, n), (1, n), . . . , (L, n) are in rapid equilibrium and thus can be aggregated into a group that is
labeled by group n, as illustrated in Fig. 1(c). In this way, our model can be simplified to the Markovian model
illustrated in Fig. 1(d), whose state space is given by

{group 0, group 1, · · · , group n, · · · },
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Figure 2: Three types of dynamic behaviors for the multi-state model. (a) Unimodality. The blue curve shows the exact
solution computed via Eq. (15) and the red circles show the numerical solution computed via FSP. When computing the exact
solution, we use the discrete Fourier transform algorithm proposed in [50]. This algorithm can recover the distribution directly
from the generating function without calculating the higher order derivatives as in Eq. (19), which is very time-consuming
and numerically unstable. Here we have assumed that k01 = u and k12 = k23 = · · · = kL0 = Lv. The parameters are
chosen as u = 50, v = 20, ρ0 = 240, ρ1 = 20, B = 1, L = 3. (b) Transient bimodality. The parameters are chosen
as u = 0.65, v = 1.2, ρ0 = 66, ρ1 = 10.5, B = 1.5, L = 3. (c). Stationary bimodality. The parameters are chosen as
u = 0.1, v = 0.25, ρ0 = 70, ρ1 = 10, B = 1.5, L = 3. In (a)-(c), the initial gene product number is zero and the promoter
initially starts from the steady-state distribution of all gene states.

The remaining step is to compute the effective transition rates between two groups. In the fast switching
regime, for each n ≥ 0, the microstates (i, n), i = 0, 1, . . . , L will reach a quasi-steady state. Since the transition
rates between gene states are independent of n, the quasi-steady-state distribution is also independent of n. Let pGi

denote the quasi-steady-state probability of being in gene state Gi. It then follows from [42, Lemma 5.3] that

pG0
=
λ1 · · ·λL
µ1 · · ·µL

. (26)

For convenience, we define the effective transcription rate as

ρ̃ =
λ1 · · ·λL
µ1 · · ·µL

ρ0 +

(
1− λ1 · · ·λL

µ1 · · ·µL

)
ρ1. (27)

Let q(i,n),(i′,n′) denote the transition rate from microstate (i, n) to microstate (i′, n′) for the full model. According
to the averaging theory [51, 52], the effective transition rate from group n to group n+ k is given by

L∑
i=0

pGi
q(i,n),(i,n+k) = pG0

ρ0p
kq + (1− pG0

)ρ1p
kq = ρ̃pkq,

and the effective transition rate from group n to group n− 1 is given by

L∑
i=0

pGi
q(i,n),(i,n−1) = nd.

Thus far, we have obtained all effective transition rates for the group dynamics (Fig. 1(d)). Note that this is
equivalent to a one-state model in the case of L = 0, where the transcription rate ρ0 in the gene state G0 is
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replaced by the effective transcription rate ρ̃. Since we have assumed that the promoter initially starts from the
quasi-steady-state distribution of all gene states, the averaging theory guarantees that distributions of the full and
reduced models agree with each other over the whole time axis [53]. If the initial gene product number is zero, then
it follows from Eq. (24) that the approximate time-dependent distribution of the gene product number in the fast
switching regime is given by

pn(t) =
(ρ̃)n
n!

(
B

1 +B

)n(
1 +Be−t

1 +B

)ρ̃
2F1

(
−n,−ρ̃; 1− ρ̃− n; 1 +B

et +B

)
. (28)

To validate this result, we compare the approximate solution with the exact solution in Fig. 3(a). It can be seen that
they coincide with each other perfectly at all time points.

The second case occurs when the promoter switches slowly between all gene states, i.e. kij � ρ0, ρ1, d. In
this case, the gene product number n is a fast variable and the promoter state i is a slow variable. Since kij are
small, for each 0 ≤ i ≤ L, the microstates (i, n), n ≥ 0 will relax to a quasi-steady state before promoter switching
takes places. If the initial gene product number is zero, then it follows from Eq. (24) that the distribution pn|i(t) of
the gene product number conditioned on gene state Gi is given by

pn|0(t) =
(ρ0)n
n!

(
B

1 +B

)n(
1 +Be−t

1 +B

)ρ0
2F1

(
−n,−ρ0; 1− ρ0 − n;

1 +B

et +B

)
,

pn|i(t) =
(ρ1)n
n!

(
B

1 +B

)n(
1 +Be−t

1 +B

)ρ1
2F1

(
−n,−ρ1; 1− ρ1 − n;

1 +B

et +B

)
, i = 1, . . . , L.

(29)

Let pGi
denote the steady-state probability of being in gene state Gi, respectively. It follows from Eq. (26) that

pG0 =
λ1 · · ·λL
µ1 · · ·µL

.

Since we have assumed that the promoter initially starts from the steady-state distribution of all gene states, the
approximate time-dependent distribution of the gene product number in the slow switching regime is given by

pn(t) =

L∑
i=1

pGipn|i(t) =
λ1 · · ·λL
µ1 · · ·µL

pn|0(t) +

(
1− λ1 · · ·λL

µ1 · · ·µL

)
pn|1(t), (30)

where pn|0(t) and pn|1(t) are given in Eq. (29). Taking t → ∞ in the above equation yields the steady-state
distribution of the gene product number, which is given by

pssn =
λ1 · · ·λL
µ1 · · ·µL

(ρ0)n
n!

pnqρ0 +

(
1− λ1 · · ·λL

µ1 · · ·µL

)
(ρ1)n
n!

pnqρ1 .

This is the mixture of two negative binomial distributions. Since a negative binomial distribution is unimodal,
the mixture of two negative binomials can yield a bimodal copy number distribution. To validate this result, we
compare the approximate solution with the exact solution in Fig. 3(b), from which we see that they coincide with
each other perfectly at all time points.

5 Influence of molecular memory on the time-dependent distribution

5.1 Fast and slow promoter switching

The major difference between our model and the classical one-state or two-state model is the complex promoter
switching mechanism, which leads to complex non-exponential distribution of the active or inactive period, i.e.
molecular memory. Here we investigate the effect of molecular memory on the time-dependent distribution of the
gene product.

To do this, we focus on the multi-ON and multi-OFF models with L + 1 gene states (Fig. 1(b)). For the
multi-ON (multi-OFF) model, the active (inactive) period has a non-exponential distribution. Here the parameter L
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Figure 3: Comparison between the exact and approximate time-dependent distributions in fast and slow switching
conditions for the multi-OFF model. (a) Fast promoter switching. The parameters are chosen as u = 100, v = 200, ρ0 =
42, ρ1 = 10, B = 1.5. (b) Slow promoter switching. The parameters are chosen as u = 0.003, v = 0.005, ρ0 = 32, ρ1 =
5, B = 1.5. In (a),(b), the blue curve shows the exact solution when L = 2, the red circles show the approximate solution
when L = 2, and the grey region shows the exact solutions when L = 10. The exact solution is computed via Eq. (18), while
the approximate solution is computed via Eq. (28) for fast switching and via Eq. (30) for slow switching. Clearly, molecular
memory has no effect on the distributions in fast and slow switching conditions.

can be understood as the strength of molecular memory. A larger L usually gives rise to a larger deviation from the
exponential distribution. To make an equitable comparison between models with different values of L, we assume
that the promoter switching rates are given by

G0
u−→ G1

Lv−−→ G2
Lv−−→ · · · Lv−−→ GL

Lv−−→ G0.

In other words, we assume k01 = u and k12 = k23 = · · · = kL0 = Lv. Under this assumption, the transition
time from G0 to G1, denoted by T0, has an exponential distribution with mean 1/u. Moreover, the transition time
from G1 to G0, denoted by T1, has an Erlang distribution with shape parameter L and mean 1/v. Therefore, the
parameter v can be interpreted as the effective switching rate from G1 to G0. Note that the means of the two
transition times are independent of L. The noise, characterized by the coefficient of variation squared, in T1 is
given by 1/L. As L→∞, the noise in T1 tends to zero and thus T1 converges to a point mass at 1/v, in which
case the molecular memory is the strongest.

To understand the influence of molecular memory on the time-dependent distribution, we first focus on the
cases of fast or slow promoter switching. For both the multi-ON and multi-OFF models, the eigenvalues µ1, . . . , µL

of the matrix −K satisfy
µ1 · · ·µL = det(−K) = (Lv)L + Lu(Lv)L−1,

and the eigenvalues λ1, . . . , λL of the matrix −H satisfy

λ1 · · ·λL = det(−H) = (Lv)L.

Combining the above two equations shows that the steady-state probability of being in gene state G0 is given by

pG0
=
λ1 · · ·λL
µ1 · · ·µL

=
v

u+ v
,

which does not depend on L. In the fast switching regime, the effective transcription rate given in Eq. (27) and the
time-dependent distribution given in Eq. (28) are both independent of L. On the other hand, in the slow switching
regime, the time-dependent distribution given in Eq. (30) is also independent of L. This shows that molecular
memory has no effect on the time-dependent distribution in the limiting cases of fast and slow promoter switching,
as illustrated in Fig. 3.
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5.2 General case

We have seen that molecular memory has no influence on the time-dependent distribution when the promoter
switches rapidly or slowly between all gene states. A natural question is whether molecular memory will affect the
time-dependent distribution when promoter switching is neither too fast nor too slow. To see this, recall that the
gene expression system can exhibit three types of dynamical behaviors: unimodality (U), transient bimodality (TB),
and stationary bimodality (SB). To gain a deeper insight into a bimodal copy number distribution, following [20],
we define the strength of bimodality as

κ =
Hlow −Hvalley

Hhigh
,

where Hlow is the height of the lower peak, Hhigh is the height of the higher peak, and Hvalley is the height of the
valley between them. For unimodal distributions, κ is automatically set to be 0. For bimodal distributions, κ is
a quantity between 0 and 1 since Hvalley < Hlow ≤ Hhigh. In general, to display strong bimodality, the following
two conditions are necessary: (i) the two peaks should have similar heights and (ii) there should be a deep valley
between them. The former ensures that the time periods spent in the low and high expression states are comparable,
while the latter guarantees that the two expression levels are distinguishable. Clearly, κ is large if both conditions
are satisfied and is small if any one of the two conditions is violated. Hence, κ serves as an effective indicator that
characterizes the strength of bimodality.
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Figure 4: Dynamic phase diagrams for the multi-OFF and multi-ON models as u and v vary. The green and yellow curves
enclose the regions for TB and SB, respectively. (a) Phase diagram for the multi-OFF model under different choices of L. The
parameters are chosen as ρ0 = 40, ρ1 = 0, p = 0.3. (b) Same as (a) but for the multi-ON model. The parameters are chosen as
ρ0 = 0, ρ1 = 40, p = 0.3.

To understand the influence of molecular memory on the copy number distribution, we illustrate the u− v
phase diagrams for the multi-ON and multi-OFF models under different choices of L in Fig. 4. Clearly, for both
models, U occurs when promoter switching is very fast, while TB and SB can only occur when promoter switching
is relatively slow. This is in sharp contrast to a positive or negative feedback genetic loop, where TB can also occur
in fast switching conditions [20]. Compared with TB, the occurrence of SB requires slower promoter switching
rates. Previous studies [40] have shown that for both models, the steady-state noise in the gene product number will
decrease as the strength L of molecular memory increases. This is because the increase of L leads to a smaller
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noise in the transition time from G1 to G0 and thus will also reduce noise in the steady-state distribution. Generally,
unimodal distributions have smaller noise than bimodal ones. Hence intuitively, we expect that the increase of L
should reduce the regions of TB and SB in the phase diagram. For the multi-OFF model, we find that this is indeed
the case, where the regions of TB and SB both shrink remarkably as L increases (Fig. 4(a)). However, for the
multi-ON model, we find that the intuition is incorrect and the opposite is true — the regions of TB and SB both
enlarge with the increase of L (Fig. 4(b)).

To explain this counteractive phenomenon, we illustrate the steady-state copy number distribution under
different choices of L in Fig. 5 for both the multi-OFF and multi-ON models. In Fig. 5(a), the steady-state
distribution is bimodal when L = 1 with two nonzero modes. This usually occurs when ρ0 and ρ1 are both
nonzero, which means that mRNA can be produced in all gene states. Clearly, increasing L results in a distribution
that is more concentrated and has smaller noise, just as expected. Interestingly, the ways that the distribution is
concentrated are significantly different for the two models. For the multi-OFF model, the left mode moves to the
right and becomes higher as L increases, while the right mode remains almost unchanged and becomes lower. For
the multi-ON model, however, the right mode moves to the left and becomes higher as L increases, while the left
mode remains almost unchanged and becomes lower.

We emphasize that similar distribution properties also hold when the left mode is located at zero. In Fig. 5(b),
the steady-state distribution is bimodal when L = 1 with a zero mode and a non-zero mode. This usually takes
place when ρ0 = 0 or ρ1 = 0, which means that mRNA can be produced only in the active gene state. For the
multi-OFF model, the zero mode moves rightwards as L increases and thus the distribution has two non-zero modes
when L is large. Note that the fact that the multi-OFF model may produce two non-zero modes even when ρ1 = 0

has already been reported in [40]. For the multi-ON model, however, the zero mode still exists and the non-zero
mode moves leftwards.
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Figure 5: Influence of molecular memory on the steady-state distributions. (a) The case where the steady-state distribution
is bimodal when L = 1 with two non-zero modes. The three curves show the distributions under different choices of L. The
parameters are chosen as u = 0.35, v = 0.46, ρ0 = 42, ρ1 = 10, B = 1.5. (b) The case where the steady-state distribution is
bimodal when L = 1 with a zero mode and a non-zero mode. The parameters are chosen as u = 0.4, v = 0.7, ρ0 = 70, ρ1 =
0, B = 1. (c) The case where the steady-state distribution is bimodal when L = 1 with an apparent zero mode and an inapparent
non-zero mode. The parameters are chosen as u = 0.8, v = 0.8, ρ0 = 40, ρ1 = 0, B = 1.5.

We next use these distribution properties to explain the counterintuitive enlargement for the TB and SB regions
in the phase diagram for the multi-ON model. In Fig. 5(c), the steady-state distribution is bimodal when L = 1

with the left mode being dominant and the right mode being inapparent. This usually occurs around the cusp of
the SB region in Fig. 4(b). For the multi-OFF model, the left mode moves to the right as L increases and thus U
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becomes more apparent when L is large. This is consistent with the observed shrinkage of the TB and SB regions
in the phase diagram for the multi-OFF model. In contrast, for the multi-ON model, the right mode moves to the
left and becomes higher with the increase of L. Since the left model is dominant, when L is large, the heights of
the two modes become closer and bimodality becomes more apparent. This explains why the TB and SB regions
enlarge in the phase diagram for the multi-ON model.

To summarize, we find that molecular memory has a marked impact on the dynamical behavior of the system
when promoter switching is neither too fast nor too slow. Enhancing molecular memory in the inactive period
reduces the TB and SB regions, while enhancing molecular memory in the active period enlarges them. Recent
experiments have shown that in mammalian cells, the inactive periods for many genes has a non-exponential
distribution [22, 23]. Our results suggest that this non-exponential behavior can significantly reduce transient and
stationary bimodality, and thus stabilize both time-dependent and steady-state gene expression levels. This may
explain why non-exponential inactive duration distributions are widely observed in nature.

6 Conclusions and discussion

In this paper, we derived the time-dependent distributions of mRNA and protein copy numbers for a multi-state
gene expression model with complex promoter switching. Our model allows two different transcriptional rates,
one corresponding to the transcriptionally active periods of the promoter and the other corresponding to the
transcriptionally inactive periods. Moreover, our model takes into account two possibilities: (i) there are multiple
inactive states of the promoter and only one active state; (ii) there are multiple active states and only one inactive
state. The former corresponds to the case where the inactive period is non-exponentially distributed and thus has
molecular memory, while the latter corresponds to the case where the active period has molecular memory. In each
gene state, our model assumes that the gene product is produced in a non-bursty or bursty manner. The non-bursty
case usually occurs for the mRNA dynamics while the bursty case usually occurs for the protein dynamics.

Following previous work, we transformed the CMEs satisfied by the probability distribution into the PDEs
satisfied by the generating function. The key to our analytical approach is to make nontrivial temporal, spatial, and
functional transformations to obtain a generalized hypergeometric differential equation satisfied by the (transformed)
generating function. Once this is done, the generating function can be represented as the linear combinations
of fundamental solutions of the generalized hypergeometric differential equation. Moreover, we focused on the
special cases where the promoter switching dynamics is very fast or very slow. By using multiscale simplification
techniques of Markov chains, we obtained the simplified analytical expressions of the time-dependent distributions
in the fast and slow switching limiting cases when the gene product number is initially zero and the promoter
initially starts from the steady-state distribution of all gene states.

We then investigated the dynamical behavior of the multi-state model. We identified three dynamical phases
of the multi-state model that are associated with three distinct types of time-evolution: unimodality, transient
bimodality, and stationary bimodality. To understand the influence of molecular memory on the gene product
number distribution, we determined the dynamical phase diagram of the multi-state model as the strength L of
molecular memory varies. Based on the analytical solution and the phase diagram, we showed that (i) molecular
memory has no influence on the time-dependent distribution when the promoter switches rapidly or slowly between
all gene states; (ii) molecular memory significantly affects the time-dependent distribution when the promoter
switching dynamics is neither too fast nor too slow. In the latter case, we found that molecular memory remarkably
enhances the regions of transient bimodality and stationary bimodality if the active period has a non-exponential
distribution, while the opposite is true if the inactive period is non-exponentially distributed.

For simplicity and analytical tractability, here we have not included any feedback regulation and cell cycle
events. While we have considered an implicit description of gene product dilution due to cell division, via the
effective gene product decay rate, it has recently been shown that in some parameter regimes, this type of model
cannot capture the stochastic dynamics predicted by models with an explicit description of the cell cycle [54]. We
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hence anticipate that a more detailed gene expression model with the inclusion of feedback loops [16–20] and cell
cycle events, such as cell growth, cell division, and gene replication [54–59] may display more complex behavior
of time-evolution and may even introduce novel dynamical phases hitherto undescribed. These effects are currently
under investigation.

Appendix A Derivation of Eqs. (10) and (11)

We first rewrite Eq. (8) in matrix form as
A − ρω

1−ω +K0 −k10 · · · −kL0
−k01 A +K1 · · · −kL1

...
...

. . .
...

−k0L −k1L · · · A +KL




g0

g1
...
gL

 = 0,

where Ki =
∑
j 6=i kij for i = 0, 1, . . . , L. This equation, together with Eq. (9), shows that

(
v>

A I −H

)
g1
...
gL

 =

(
A +K0

vT⊥

)
g0 −

(
A

0T

)
g, (31)

where v> = (k10, . . . , kL0), v⊥ = (k01, . . . , k0L), I is the identity matrix, H = HT is the transpose of H , and 0

denotes the row vector whose components are all 0. Let S be an (L− 1)× L operator-valued matrix defined by

S =



v>

v>A

v>A 2

...
v>A L−2


+



0

v>H

v>AH
...

v>A L−3H


+



0

0

v>H
2

...

v>A L−4H
2


+ · · ·+



0
...
0

v>H
L−3

v>AH
L−3


+



0

0
...
0

v>H
L−2


:= S1 + S2 + S3 + · · ·+ SL−2 + SL−1,

where the vectors v>A i are defined by v>A i = (k10A i, . . . , kL0A i). Then we have

S(A I −H) = A S1 − (S1H −A S2)− (S2H −A S3)− · · · − (SL−2H −A SL−1)− SL−1H. (32)

Note that

S1H −A S2 =



v>H

v>AH

v>A 2H
...

v>A L−2H


−



0

v>AH

v>A 2H
...

v>A L−2H


=



v>H

0

0
...
0


.

Similarly, we have

Si−1H −A Si =



0
...
0

v>H
i−1

v>AH
i−1

...

v>A L−iH
i−1


−



0
...
0

0

v>AH
i−1

...

v>A L−iH
i−1


=



0
...
0

v>H
i−1

0
...
0


, 3 ≤ i ≤ L− 1.
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Inserting the above equations into Eq. (32), we obtain

S(A I −H) =


v>A

v>A 2

...
v>A L−1

−


v>H

v>H
2

...

v>H
L−1

 = v(A )T v> −


v>H

v>H
2

...

v>H
L−1

 , (33)

where v(A ) = (A , . . . ,A L−1). Next we define an L× (L+ 1) operator-valued matrix T as

T =

(
−1 0

−v(A )T S

)
.

Then we obtain

T

(
v>

A I −H

)
=

(
−v>

−v(A )T v> + S(A I −H)

)
=M,

where

M = −


v>

v>H
...

v>H
L−1

 (34)

is a constant matrix which is called the Krylov matrix [60]. Multiplying T on both sides of Eq. (31) then yields

M


g1
...
gL

 = T

(
A +K0

vT⊥

)
g0 − T

(
A

0T

)
g

:= b1(A )T g0 − b2(A )T g.

(35)

Since g0 can be expressed by g via Eq. (9), the above equation indicates that all g1, . . . , gL can also be expressed
by g. This is exactly Eq. (10) in the main text. Clearly, the matrix T only involves terms A i with i ≤ L− 1. Hence
both b1(A ) and b2(A ) involve terms A i with i ≤ L. It then follows Eq. (9) that b1(A )T g0 involves terms A ig

with i ≤ L+ 1. This shows that b1(A )T g0 − b2(A )T g only involves terms A ig with i ≤ L+ 1. To summarize,
we can obtain from Eq. (35) that

M


g1
...
gL

 = B(ω)


g(t, ω)

A g(t, ω)
...

A L+1g(t, ω)

 , (36)

where B(ω) is an L× (L+ 2) matrix with its entries being functions of ω.
In general, the matrix M defined in Eq. (34) may not be invertible. However, it is easy to check that M is

always invertible when L = 1 and is always invertible when L = 2 for the multi-OFF and multi-ON models under
all model parameters (see Appendix C for the proof). Even if M is not invertible, it can always be approximated by
an invertible matrix with an arbitrary degree of accuracy. Thus, without loss of generality, we assume M to be
invertible.

By using the Cramer’s rule, we obtain

gi =
|Mi|
|M |

, i = 1, . . . , L,
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where |M | represents the determinant of M , and Mi is the matrix formed by replacing the ith column of M by the
vector b1(A )T g0 − b2(A )T g. Since g = g0 + g1 + · · ·+ gL, we obtain

|M |g = |M |g0 +
L∑
i=1

|Mi| =

∣∣∣∣∣ g0 1

−b1(A )T g0 + b2(A )T g M

∣∣∣∣∣
=

∣∣∣∣∣∣∣
1 1

T

(
−A −K0

−vT⊥

)
T

(
v>

A I −H

) ∣∣∣∣∣∣∣ g0 −
∣∣∣∣∣∣∣

0 1

T

(
−A

0T

)
T

(
v>

A I −H

) ∣∣∣∣∣∣∣ g
:= I− II,

(37)

where 1 denotes the row vector whose components are all 1. We first analyze the first part I. Note that

I =

∣∣∣∣∣∣∣
1

T

(
−A −K0 v>

−vT⊥ A I −H

) ∣∣∣∣∣∣∣ g0 =

∣∣∣∣∣∣∣
1(

−1 0

−v(A )T S

)(
−A −K0 v>

−vT⊥ A I −H

) ∣∣∣∣∣∣∣ g0

=

∣∣∣∣∣∣∣
1(

−1 0

−v(A )T S

)(
−1 0

0T I

)(
A +K0 −v>
−vT⊥ A I −H

) ∣∣∣∣∣∣∣ g0

=

∣∣∣∣∣∣∣
1(

1 0

v(A )T S

)(
A +K0 −v>
−vT⊥ A I −H

) ∣∣∣∣∣∣∣ g0,

(38)

where K = KT . Since 1(A I −K) = 1A , we have

A I =

∣∣∣∣∣∣∣
1A(

1 0

v(A )T S

)(
A +K0 −v>
−vT⊥ A I −H

) ∣∣∣∣∣∣∣ g0 =

∣∣∣∣∣∣∣
 1 1

1 0

v(A )T S

(A I −K
) ∣∣∣∣∣∣∣ g0

=−

∣∣∣∣∣ 1

S

∣∣∣∣∣ ∣∣A I −K
∣∣ g0.

(39)

To proceed, note that

∣∣∣∣∣ 1

S

∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣∣∣

1

v>

v>A + v>H
...

v>A L−2 + v>A L−3H + · · ·+ v>AH
L−3

+ v>H
L−2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1
v>

v>H
...

v>H
L−2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣−MH
−1
∣∣∣ = − |−M | ∣∣∣H−1∣∣∣ = (−1)L+1|M |/|H|,

where we have used the fact that 1H = −v>. Since we have assumed that M is invertible, i.e. |M | 6= 0, it follows
from the above equation that |1T ST | 6= 0. Note that∣∣A I −K

∣∣ = A (A + µ1) . . . (A + µL) .

Combining this equation with Eqs. (38) and (39), we obtain

I = −

∣∣∣∣∣ 1

S

∣∣∣∣∣ (A + µ1) . . . (A + µL)g0. (40)
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We then analyze the second part II. Since 1(A I −H) = A I + v>, we have

II =

∣∣∣∣∣∣∣
0 1

T

(
−A

0T

)
T

(
v>

A I −H

) ∣∣∣∣∣∣∣ g =

∣∣∣∣∣∣∣
0 1

A −v>
A v(A )T −v(A )T v> + S(A I −H)

∣∣∣∣∣∣∣ g

=

∣∣∣∣∣∣∣
0 1

A −v>
0T S(A I −H)

∣∣∣∣∣∣∣ g = −

∣∣∣∣∣ A 1+ v> − v>
S(A I −H)

∣∣∣∣∣ g
= −

∣∣∣∣∣ 1

S

∣∣∣∣∣ ∣∣A I −H
∣∣ g + ∣∣∣∣∣ v>

S(A I −H)

∣∣∣∣∣ g = −

∣∣∣∣∣ 1

S

∣∣∣∣∣
L∏
i=1

(A + λi)g +

∣∣∣∣∣ v>

S(A I −H)

∣∣∣∣∣ g.

(41)

It is easy to see from Eq. (33) that

∣∣∣∣∣ v>

S(A I −H)

∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣

v>

v>A − v>H
. . .

v>A L−1 − v>H
L−1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
v>

−v>H
. . .

−v>H
L−1

∣∣∣∣∣∣∣∣∣∣
= −|M |. (42)

Inserting Eqs. (40), (41), (42) into Eq. (37) and using the fact that |1T ST | 6= 0, we obtain

L∏
i=1

(A + λi)g −
L∏
i=1

(A + µi)g0 = 0. (43)

By induction and using Eq. (9), it is not difficult to prove that

L∏
i=1

(A + µi)g0 =

{
A
∏L
i=1(A − 1 + µi)

ρω
−

A
∏L
i=1(A + µi)

ρ

}
g.

Inserting the above equation into Eq. (43) yields[
A

L∏
i=1

(A − 1 + µi)− ω

(
A

L∏
i=1

(A + µi) + ρ
L∏
i=1

(A + λi)

)]
g = 0.

Note that

A
L∏
i=1

(A + µi) + ρ
L∏
i=1

(A + λi) =
L+1∏
i=1

(A + γi) ,

where γi are determined by Eq. (12). We then obtain Eq. (11) in the main text. From Eq. (11), it is clear that we
can express A L+1g by g,A g, . . . ,A Lg. Combining Eqs. (9) and (36), we finally obtain Eq. (10) in the main text.

Appendix B Derivation of Eq. (21)

By the definition of elementary symmetric polynomials and Eq. (12), we have

L+1∏
k=1

(x− γk) =
L+1∑
k=0

σk(γ1, . . . , γL+1)(−1)kxL+1−k = xL+1 +
L+1∑
k=1

σk(γ1, . . . , γL+1)(−1)kxL+1−k

= xL+1 +
L+1∑
k=1

[σk(µ1, . . . , µL) + ρσk−1(λ1, . . . , λL)] (−1)kxL+1−k

= xL+1 +
L∑
k=1

σk(µ1, . . . , µL)(−1)kxL+1−k − ρ
L∑
k=0

σk(λ1, . . . , λL)(−1)kxL−k,
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where we have used σL+1(µ1, . . . , µL) = 0. Let f be a function defined by

f(x) =
xL+1 +

∑L
k=1 σk(µ1, . . . , µL)(−1)kxL+1−k

xL +
∑L
k=1 σk(λ1, . . . , λL)(−1)kxL−k

− ρ.

Clearly, the function f has exactly L+ 1 zeros γ1, . . . , γL+1 in the complex plane. Moreover, it is easy to see that

f(x) = x− ρ+
∑L
k=1 [σk(µ1, . . . , µL)− σk(λ1, . . . , λL)] (−1)kxL+1−k

xL +
∑L
k=1 σk(λ1, . . . , λL)(−1)kxL−k

= x− ρ+
∑L−1
k=0 [σk+1(µ1, . . . , µL)− σk+1(λ1, . . . , λL)] (−1)k+1xL−k∑L

k=0 σk(λ1, . . . , λL)(−1)kxL−k

:= x− ρ+ h(x).

Since the numerator and denominator of h(x) are polynomials of the same degree, we have

lim
|x|→∞

h(x) <∞.

Hence there exists a constant C > 0 such that |h(x)| ≤ C when |x| is sufficiently large. Thus for any ε > 0,
whenever ρ ≥ ρ0 = C/ε, we have

f ((1 + ε)ρ)) = ερ+ h ((1 + ε)ρ) ≥ ερ− C ≥ 0,

f ((1− ε)ρ)) = −ερ+ h ((1 + ε)ρ) ≤ −ερ+ C ≤ 0.

By the mean value theorem, there exists x0 ∈ [(1− ε)ρ, (1 + ε)ρ] such that f(x0) = 0. Since x0 is a zero of f , for
convenience, we denote it by γL+1. By the arbitrariness of ε, we have

lim
ρ→∞

γL+1

ρ
= 1.

Along the same line, we can also prove that the above limit holds when ρ→ −∞. Finally we obtain

lim
|ρ|→∞

γL+1

ρ
= 1. (44)

We then prove by induction that

lim
|ρ|→∞

σk(γ1, . . . , γL) = σk(λ1, . . . , λL), (45)

for any k = 1, . . . , L. To this end, we first prove that Eq. (45) holds for k = L. Setting k = L+ 1 in Eq. (12), we
obtain

L+1∏
i=1

γi = ρ
L∏
i=1

λi.

This equation, together with Eq. (44), shows that Eq. (45) holds for k = L. Then we prove the desired result by
induction. Suppose that Eq. (45) holds for some k = 2, . . . , L. Then it follows from Eq. (12) that

σk(γ1, . . . , γL+1) = σk(µ1, . . . , µL) + ρσk−1(λ1, . . . , λL). (46)

By the definition of elementary symmetric polynomials, it is easy to see that

σk(γ1, . . . , γL, γL+1) = σk(γ1, . . . , γL) + γL+1σk−1(γ1, . . . , γL).

Then it follows from Eq. (46) that

σk(γ1, . . . , γL) + γL+1σk−1(γ1, . . . , γL) = σk(µ1, . . . , µL) + ρσk−1(λ1, . . . , λL).
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Since Eq. (45) holds for k, it follows from Eq. (44) that

lim
|ρ|→∞

σk−1(γ1, . . . , γL) = σk−1(λ1, . . . , λL),

which shows that Eq. (45) holds for k − 1. Therefore, Eq. (45) holds for any k = 1, . . . , L. Finally, by the
fundamental theory of algebra, we obtain from Eq. (45) that

lim
|ρ|→∞

γi = λi, i = 1, . . . , L.

Appendix C Time-dependent solution for the three-state model

For the three-state model with L = 2, we have

Q =

 −k01 − k02 k01 k02

k10 −k10 − k12 k12

k20 k21 −k20 − k21

 , H =

(
−k10 − k12 k12

k21 −k20 − k21

)
.

It follows from Eq. (15) that

g(t, ω) = φ0(ωe
−t)y0(ω) + φ1(ωe

−t)y1(ω) + φ2(ωe
−t)y2(ω), (47)

where
y0(ω) = 3F2(γ1, γ2, γ3;µ1, µ2;ω),

y1(ω) = 3F2(1 + γ1 − µ1, 1 + γ2 − µ1, 1 + γ3 − µ1; 2− µ1, 1 + µ2 − µ1;ω)ω
1−µ1 ,

y2(ω) = 3F2(1 + γ1 − µ2, 1 + γ2 − µ2, 1 + γ3 − µ2; 2− µ2, 1 + µ1 − µ2;ω)ω
1−µ2 .

It is easy to check that µi, λi, and γi are determined by the following equations:

µ1 + µ2 = −tr(Q), µ1µ2 =
1

2

[
tr(Q)2 − tr(Q2)

]
, λ1 + λ2 = −tr(H), λ1λ2 = det(H),

γ1γ2γ3 = ρλ1λ2, γ1γ2 + γ1γ3 + γ2γ3 = µ1µ2 + ρ(λ1 + λ2), γ1 + γ2 + γ3 = µ1 + µ2 + ρ.

Straight forward computations show that Eq. (35) has the form of

M

(
g1

g2

)
=

(
−A − k01 − k02

−A 2 − (k01 + k02)A + k01k10 + k02k20

)
g0 +

(
A

A 2

)
g, (48)

where

M =

(
−k10 −k20

k210 + k10k12 − k12k20 k220 + k20k21 − k10k21

)
is a constant matrix. It is easy to check that

det(M) = k210k21 − k12k220 + k10k20(k10 + k12 − k20 − k21).

For the multi-ON and multi-OFF models, we have k02 = k21 = k10 = 0 and thus det(M) = −k12k220, which is
always non-zero. Since the analytical solution in the general case is too complicated, we next only focus on the
multi-ON and multi-OFF models. From Eq. (9), it is not difficult to prove that

A ig0 =

{
A (A − 1)i

ρω
− A i+1

ρ

}
g, i ≥ 1.

Applying this equation, Eq. (48) becomes

(
0 −k20

−k12k20 k220

)(
g1

g2

)
=

(
k01(ω−1)

ρω + 1
ρω + 1 ω−1

ρω 0
k01
ρω −

1
ρω

k01(ω−1)
ρω + 2

ρω + 1 ω−1
ρω

) A

A 2

A 3

 g.
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This shows that
g2(t, ω) =

(
k01 − 1

k20ρω
− k01 + ρ

k20ρ

)
A g(t, ω) +

1− ω
k20ρω

A 2g(t, ω).

This equation, together with Eq. (9), yields g0(t, ω) + g1(t, ω) + g2(t, ω)

g0(t, ω)

g2(t, ω)

 =

 1 0 0

0 1−ω
ρω 0

0 k01−1
k20ρω

− k01+ρ
k20ρ

1−ω
k20ρω


 g(t, ω)

A g(t, ω)

A 2g(t, ω)

 .

Applying Eq. (16) to the above equation and then setting t = 0, we obtain y0(ω) y1(ω) y2(ω)
1−ω
ρω ϑy0(ω)

1−ω
ρω ϑy1(ω)

1−ω
ρω ϑy2(ω)

h0(ω) h1(ω) h2(ω)


 φ0(ω)

φ1(ω)

φ2(ω)

 =

 g0(0, ω) + g1(0, ω) + g2(0, ω)

g0(0, ω)

g2(0, ω)

 , (49)

where
hi(ω) =

(
k01 − 1

k20ρω
− k01 + ρ

k20ρ

)
ϑyi(ω) +

1− ω
k20ρω

ϑ2yi(ω), i = 0, 1, 2.

We then use Cramer’s rule to solve the above system of linear equations. Let A(ω) denote the coefficient matrix of
the above system of linear equations. It is easy to see that

det(A(ω)) =

∣∣∣∣∣∣∣
y0(ω) y1(ω) y2(ω)

1−ω
ρω ϑy0(ω)

1−ω
ρω ϑy1(ω)

1−ω
ρω ϑy2(ω)

h0(ω) h1(ω) h2(ω)

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

y0(ω) y1(ω) y2(ω)
1−ω
ρ y′0(ω)

1−ω
ρ y′1(ω)

1−ω
ρ y′2(ω)

(1−ω)ω
k20ρ

y′′0 (ω)
(1−ω)ω
k20ρ

y′′1 (ω)
(1−ω)ω
k20ρ

y′′2 (ω)

∣∣∣∣∣∣∣
=

(1− ω)2ω
k20ρ2

W (y0(ω), y1(ω), y2(ω)) .

where W (y0(ω), y1(ω), y2(ω)) is the Wronskian of the functions y0(ω), y1(ω), and y2(ω). We emphasize here
that the Wronskian is defined with respect to the original derivative, instead of ϑ. The following lemma gives the
analytical expression for the Wronskian.

Lemma 1. Let y0(ω), y1(ω), · · · , yL(ω) be the functions given in Eq. (14). Then for each L ≥ 1, the Wronskian
of these functions is given by

W (y0(ω), y1(ω), . . . , yL(ω)) =
L∏
i=1

(1− µi)
∏

1≤i<j≤L

(µi − µj)
(1− ω)µ1+···+µL−γ1−···−γL+1−L

ωµ1+···+µL+
L(L−1)

2

. (50)

Proof. It has been shown in [61] that

W (y0(ω), y1(ω), . . . , yL(ω)) = C
(1− ω)µ1+···+µL−γ1−···−γL+1−L

ωµ1+···+µL+
L(L−1)

2

, (51)

where C is an undetermined constant. Here we give the explicit expression of C. From Eq. (51), we have

C = lim
ω→0

W (y0(ω), y1(ω), . . . , yL(ω))ω
µ1+···+µL+

L(L−1)
2 . (52)

It is clear that y0(ω) → 1 as ω → 0. For any n ≥ 1, it is easy to see that y(n)0 (ω) → Cn as ω → 0 for some
constant Cn. For any i ≥ 1 we write yi(ω) = ω1−µiYi(ω), where Yi(ω) is a hypergeometric function which
satisfies Yi(ω)→ 1 as ω → 0. Note that

y
(n)
i (ω) =

n∑
k=0

(
n

k

)
(µi − 1)k(−1)kω1−µi−kY

(n−k)
i (ω), i ≥ 1.
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Thus for each n ≥ 0, we have

lim
ω→0

y
(n)
i (ω)

(µi − 1)nω1−µi−n(−1)n
= 1, i = 1, . . . , L.

Using the above limit, we obtain

1 = lim
ω→0

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ω1−µ1 ω1−µ2 . . . ω1−µL

C1 −(µ1 − 1)1ω
−µ1 −(µ2 − 1)1ω

−µ2 . . . −(µL − 1)1ω
−µL

C2 (−1)2(µ1 − 1)2ω
−µ1−1 (−1)2(µ2 − 1)2ω

−µ2−1 . . . (−1)2(µL − 1)2ω
−µL−1

...
...

...
. . .

...
CL (−1)L(µ1 − 1)Lω

1−µ1−L (−1)L(µ2 − 1)Lω
1−µ2−L . . . (−1)L(µL − 1)Lω

1−µL−L

∣∣∣∣∣∣∣∣∣∣∣∣∣
W (y0(ω), y1(ω), . . . , yL(ω))

= lim
ω→0

(−1)
L(L+1)

2

∣∣∣∣∣∣∣∣∣∣
(µ1 − 1)1 (µ2 − 1)1 . . . (µL − 1)1

(µ1 − 1)2 (µ2 − 1)2 . . . (µL − 1)2
...

...
. . .

...
(µ1 − 1)L (µ2 − 1)L . . . (µL − 1)L

∣∣∣∣∣∣∣∣∣∣
W (y0(ω), y1(ω), . . . , yL(ω))ωµ1+···+µL+

L(L−1)
2

= lim
ω→0

(−1)
L(L+1)

2

∣∣∣∣∣∣∣∣∣∣
µ1 − 1 µ2 − 1 . . . µL − 1

(µ1 − 1)2 (µ2 − 1)2 . . . (µL − 1)2

...
...

. . .
...

(µ1 − 1)L (µ2 − 1)L . . . (µL − 1)L

∣∣∣∣∣∣∣∣∣∣
W (y0(ω), y1(ω), . . . , yL(ω))ωµ1+···+µL+

L(L−1)
2

=
(−1)

L(L+1)
2

∏L
i=1(µi − 1)

∏
1≤j<i≤L(µi − µj)

W (y0(ω), y1(ω), . . . , yL(ω))ωµ1+···+µL+
L(L−1)

2

,

where the second equality follows from the expansion of the determinant with respect to the first row, the third
equality follows from the fact that (µi − 1)k =

∑k
j=1 Cj(µi − 1)j for some constants Cj that are independent

of i, and the fourth equality follows from the expression of the Vandermonde determinant. Combining the above
equation with Eq. (52) yields

C = (−1)
L(L+1)

2

L∏
i=1

(µi − 1)
∏

1≤j<i≤L

(µi − µj) =
L∏
i=1

(1− µi)
∏

1≤i<j≤L

(µi − µj).

Inserting the above equation into Eq. (51), we finally obtain Eq. (50).

By using Lemma 1, we immediately see that for L = 2,

det(A(ω)) =
(1− ω)2ω
k20ρ2

W (y0(ω), y1(ω), y2(ω)) = (1− µ1)(1− µ2)(µ1 − µ2)
(1− ω)−ρ

k20ρ2ωµ1+µ2
.

If the initial protein number is zero and the promoter is in state G0, then the initial conditions are given by

g1(0, ω) = g2(0, ω) = 0, g0(0, ω) = (1− ω)ρ1 .

It then follows from Eq. (49) and Cramer’s rule that

φ0(ω) =

[
ϑy1(ω)ϑ

2y2(ω)− ϑy2(ω)ϑ2y1(ω)
]
(1− ω)ρ0+2

(1− µ1)(1− µ2)(µ1 − µ2)ω2−µ1−µ2
+
k20ρ

2[y2(ω)h1(ω)− y1(ω)h2(ω)](1− ω)ρ0
(1− µ1)(1− µ2)(µ1 − µ2)ω−µ1−µ2

,

φ1(ω) =

[
ϑy2(ω)ϑ

2y0(ω)− ϑy0(ω)ϑ2y2(ω)
]
(1− ω)ρ0+2

(1− µ1)(1− µ2)(µ1 − µ2)ω2−µ1−µ2
+
k20ρ

2[y0(ω)h2(ω)− y2(ω)h0(ω)](1− ω)ρ0
(1− µ1)(1− µ2)(µ1 − µ2)ω−µ1−µ2

,

φ2(ω) =

[
ϑy0(ω)ϑ

2y1(ω)− ϑy1(ω)ϑ2y0(ω)
]
(1− ω)ρ0+2

(1− µ1)(1− µ2)(µ1 − µ2)ω2−µ1−µ2
+
k20ρ

2[y1(ω)h0(ω)− y2(ω)h0(ω)](1− ω)ρ0
(1− µ1)(1− µ2)(µ1 − µ2)ω−µ1−µ2

.
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Inserting these equations into Eq. (47), we obtain the explicit expression g(t, ω). Finally, in terms of the original
variables, the generating function f(t, z) is given by Eq. (18).
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