
 Open access Journal Article DOI:10.1109/TCOMM.2008.060401

Analytical tools for optimizing the error correction performance of arithmetic codes
— Source link

S. Ben-Jamaa, Claudio Weidmann, Michel Kieffer

Institutions: Centre national de la recherche scientifique

Published on: 01 Sep 2008 - IEEE Transactions on Communications (IEEE)

Topics: Arithmetic coding, Arbitrary-precision arithmetic, Constant-weight code, Affine arithmetic and
Variable-length code

Related papers:

 Integrating error detection into arithmetic coding

 Arithmetic coding for data compression

 Joint source/channel coding and MAP decoding of arithmetic codes

 Soft decoding and synchronization of arithmetic codes: application to image transmission over noisy channels

 State machine interpretation of arithmetic codes for joint source and channel coding

Share this paper:

View more about this paper here: https://typeset.io/papers/analytical-tools-for-optimizing-the-error-correction-
3oz5ezfzvq

https://typeset.io/
https://www.doi.org/10.1109/TCOMM.2008.060401
https://typeset.io/papers/analytical-tools-for-optimizing-the-error-correction-3oz5ezfzvq
https://typeset.io/authors/s-ben-jamaa-3f07unqy7p
https://typeset.io/authors/claudio-weidmann-12rxglpmt6
https://typeset.io/authors/michel-kieffer-7rcako6xcb
https://typeset.io/institutions/centre-national-de-la-recherche-scientifique-2ew2zhz4
https://typeset.io/journals/ieee-transactions-on-communications-r4vy07z3
https://typeset.io/topics/arithmetic-coding-1bwdtfyq
https://typeset.io/topics/arbitrary-precision-arithmetic-3iw63mad
https://typeset.io/topics/constant-weight-code-2n6hw1fs
https://typeset.io/topics/affine-arithmetic-1goxlr9e
https://typeset.io/topics/variable-length-code-cfg66xwf
https://typeset.io/papers/integrating-error-detection-into-arithmetic-coding-3p358fdd9i
https://typeset.io/papers/arithmetic-coding-for-data-compression-3eqc4smaaa
https://typeset.io/papers/joint-source-channel-coding-and-map-decoding-of-arithmetic-1ptn2jh2bw
https://typeset.io/papers/soft-decoding-and-synchronization-of-arithmetic-codes-7dxuexrw8h
https://typeset.io/papers/state-machine-interpretation-of-arithmetic-codes-for-joint-2gq8c1muo6
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/analytical-tools-for-optimizing-the-error-correction-3oz5ezfzvq
https://twitter.com/intent/tweet?text=Analytical%20tools%20for%20optimizing%20the%20error%20correction%20performance%20of%20arithmetic%20codes&url=https://typeset.io/papers/analytical-tools-for-optimizing-the-error-correction-3oz5ezfzvq
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/analytical-tools-for-optimizing-the-error-correction-3oz5ezfzvq
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/analytical-tools-for-optimizing-the-error-correction-3oz5ezfzvq
https://typeset.io/papers/analytical-tools-for-optimizing-the-error-correction-3oz5ezfzvq

HAL Id: hal-00549145
https://hal.archives-ouvertes.fr/hal-00549145

Submitted on 21 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analytical tools for optimizing the error correction
performance of arithmetic codes

Salma Ben–Jamaa, Michel Kieffer, Claudio Weidmann

To cite this version:
Salma Ben–Jamaa, Michel Kieffer, Claudio Weidmann. Analytical tools for optimizing the error
correction performance of arithmetic codes. IEEE Transactions on Communications, Institute of
Electrical and Electronics Engineers, 2008, 56 (9), pp.1458-1468. ฀hal-00549145฀

https://hal.archives-ouvertes.fr/hal-00549145
https://hal.archives-ouvertes.fr

1

Analytical Tools for Optimizing the Error

Correction Performance of Arithmetic Codes

Salma Ben Jamaa∗, Claudio Weidmann∗∗, and Michel Kieffer∗

* LSS – CNRS – Supélec – Université Paris-Sud, 11,

3 rue Joliot-Curie - 91192 Gif-sur-Yvette cedex, France

** ftw. Telecommunications Research Center Vienna

Donau-City-Strasse 1, A-1220 Vienna, Austria

Abstract

In joint source-channel arithmetic coding (JSCAC) schemes, additional redundancy may be

introduced into an arithmetic source code in order to be more robust against transmission errors.

The purpose of this work is to provide analytical tools to predict and evaluate the effectiveness of

that redundancy. Integer binary Arithmetic Coding (AC) is modeled by a reduced-state automaton

in order to obtain a bit-clock trellis describing the encoding process. Considering AC as a trellis

code, distance spectra are then derived. In particular, an algorithm to compute the free distance

of an arithmetic code is proposed. The obtained code properties allow to compute upper bounds

on both bit error and symbol error probabilities and thus provide an objective criterion to analyze

the behavior of JSCAC schemes when used on noisy channels. This criterion is then exploited to

design efficient error-correcting arithmetic codes. Simulation results highlight the validity of the

theoretical error bounds and show that for equivalent rate and complexity, a simple optimization

yields JSCACs that outperform classical tandem schemes at low to medium SNR.

Keywords: Arithmetic codes, Source coding, Error correction coding, Communication

system performance

I. INTRODUCTION

Arithmetic Coding (AC) [1] is currently being deployed in a growing number of com-

pression standards, e.g., H.264 and JPEG2000, as it yields higher compression performance

Parts of this paper have been presented at the IEEE MMSP Workshop, Victoria, Canada, 2006 and at the Joint NEWCOM

/ ACoRN Workshop, Vienna, Austria, 2006

July 18, 2007 DRAFT

2

when compared to other compression methods. However, its efficiency makes AC particularly

vulnerable to transmission errors. This issue has motivated the recent development of joint

source-channel techniques for AC-encoded data [2]–[7].

Improving the robustness of AC against transmission errors is usually achieved by intro-

ducing redundancy in the compressed bitstream. In [2], Boyd et al. introduced a forbidden

symbol (FS) in the source alphabet and used it as an error detection device at the decoder

side. The effectiveness of this technique was analyzed by Chou et al. in [4], where the FS

was used for error detection and an ARQ protocol was implemented for error correction.

In [3], Sayir considered the arithmetic encoder as a channel encoder and added redundancy

in the transmitted bitstream by introducing gaps in the coding space; he also proposed to

use the stack sequential decoding algorithm. In [5], Pettijohn et al. used both depth-first and

breadth-first sequential decoding, where error detection was again achieved by testing the

presence of a FS in the decoded bitstream. Grangetto et al. [7] proposed a MAP decoder

for AC using the FS. In [8], Demiroglu et al. used Trellis Coded Modulation jointly with

AC; the FS was exploited to discard erroneous paths during a Viterbi decoding process. In

[6], Guionnet et al. used a finite state machine (FSM) inspired from [9]–[11] to represent

a quasi-arithmetic encoder [11], and modeled the transitions between states by a Markov

process. Two types of three-dimensional trellises were proposed, using either a symbol clock

or a bit clock, and redundancy was added by limiting the number of states and introducing

synchronization markers. Another three-dimensional bit-clock trellis for soft decoding of AC

was proposed by Dongsheng et al. [12].

The comparison between the previously mentioned JSCAC approaches is usually experi-

mental and is restricted to the simulation context. The main purpose of the present paper is to

develop analytical tools that allow characterizing and objectively comparing these techniques.

Our approach has been inspired, first, by classic results on the error correction properties of

convolutional codes, and more generally of linear codes [13], and second, by the extension

of these results to Variable-Length Codes (VLC) and Variable-Length Error-correcting Codes

(VLEC) [14]. To the best of our knowledge, no similar approach has been carried out for

arithmetic codes. In [13]–[15], the codes under study are represented by trellises from which

asymptotic characterizations of the decoding error rates are deduced. Here, we consider a

practical integer-based implementation of AC for a memoryless source. Then, we develop

a specific FSM and trellis representation which is suited to efficient asymptotic error rate

evaluation, unlike the trellis representations of [6] and [12], which serve other purposes. The

July 18, 2007 DRAFT

3

code distance properties involved in this asymptotic evaluation are then exploited to design

efficient error-correcting arithmetic codes.

Section II introduces the basic principles of AC and its integer implementation. Section III

explains how AC can be viewed as a FSM, and presents different versions of the derived

trellis. Section IV recalls different ways of introducing redundancy proposed in the literature,

and explains the trellis-based encoding and decoding process. In Section V, distance properties

and error bounds are derived and a practical algorithm allowing to compute the free distance

of non-adaptive AC is proposed. These tools are exploited in Section VI to design efficient

JSCAC. Simulation results are presented in Section VII, before drawing some conclusions.

II. INTEGER ARITHMETIC CODING

This section recalls the basic principles of binary arithmetic coding. Although this work

only deals with binary memoryless sources and binary AC, the derivations and results may

be generalized to Markov sources as well as non-binary source alphabets. In the remainder

of this paper, symbols will stand for the binary inputs of the encoder and bits for its outputs.

A. Binary arithmetic coding

Arithmetic coding is based on recursive partitioning of the interval [0, 1) according to the

source symbol probabilities. In the case of binary AC, the current source interval [low , high)

is partitioned into two subintervals I0 and I1, the widths of which are proportional to the

probabilities P0 and P1 of the source symbols 0 and 1, respectively. One of these intervals is

selected as the new source interval, according to the value of the current symbol. Once the last

symbol is encoded, the encoder computes the code interval [α2−ℓ, (α+1)2−ℓ) ⊂ [low , high),

such that α is an integer from {0, 1, . . . , 2ℓ − 1}, and ℓ is the minimum number of bits

needed to identify the final interval [low , high). For sources with skewed probabilities and

for long source sequences, subintervals may get too small to be accurately handled by a

finite-precision computer. This problem is solved by integer binary AC.

B. Integer binary AC

Finite precision arithmetic coding was first introduced by Pasco [9] and Rissanen [10] in

1976. Howard et al. proved in [11] that a slight modification of the symbol probabilities such

that interval bounds become rational numbers decreases the computational cost of AC without

significantly degrading compression performance. Therefore, integer AC works like the ideal

July 18, 2007 DRAFT

4

AC presented above, but using the interval [0, T) of integers, where T = 2p, p ≥ 2 being

the bit-size of the initial interval, and rounding all interval boundaries to integers. Partition

and selection are carried out every time a source symbol is encoded. Renormalization by

doubling the size of the source interval is performed if one of the following conditions holds

1) If high 6 T/2, low and high are doubled.

2) If T/2 6 low , low and high are doubled after subtracting T/2.

3) If T/4 6 low and high 6 3T/4, low and high are doubled after subtracting T/2.

If the current interval (before renormalization) overlaps the midpoint of [0, T), no bit is

output. The number of consecutive times this occurs is stored in a variable called follow . If

the current interval (before renormalization) lies entirely in the upper or lower half of [0, T),

the encoder emits the leading bit of low (0 or 1) and follow opposite bits (1 or 0). This is

called the follow-on procedure [1].

At the decoder side, a sliding buffer of size p is initially formed by the first p bits of the

code stream. The interval [low , high) is initialized to [0, T) and then partitioned into I0 and

I1 according to the source probabilities. Let V be the integer whose binary representation

is given by the p bits in the buffer. If V ∈ I0, the symbol 0 is emitted by the decoder,

and if V ∈ I1, the symbol 1 is decoded. The decoder then performs the same selection and

renormalization steps as the encoder. Whenever a renormalization of [low , high) occurs, the

next code bit is shifted into the buffer (becoming the new least significant bit) and V is

updated accordingly.

III. TRELLIS-BASED ARITHMETIC CODING

Integer binary AC can be considered as an automaton represented by a finite number

of states and transitions, except for the possibly unbounded follow counter. This approach

was proposed by Howard et al. in [11], where arithmetic operations were replaced by table

lookups. In [6], the table-lookup representation was used in order to derive a stochastic

automaton which was then concatenated with a convolutional code. Iterative decoding was

used at the receiver side. Recently, integer arithmetic decoding was represented by a three-

dimensional trellis taking into account the presence of a FS in the source alphabet [12].

A. AC interpreted as a FSM

When performing integer AC, the number of possible subintervals of [0, T) is finite.

Considering that after normalization, range = high − low is always greater than T/4 and

July 18, 2007 DRAFT

5

that [low , high) cannot be a proper subinterval of [T/4, 3T/4), the number of possible

intervals [low , high) is 3T 2/16. This can be shown by considering that the number of possible

intervals after normalization is the number of pairs of positive integers (i, j), such that

[T/2 − i, T/2 + j) ⊆ [0, T) and [T/2 − i, T/2 + j) * [T/4, 3T/4). The number of such

pairs is T 2/4 − T 2/16 = 3T 2/16.

For a memoryless source and known symbol probabilities, the encoder is entirely charac-

terized by the current interval [low , low +range) and the value of follow . Hence, the encoder

state can be represented by (low , range, follow) as defined in [6]. For an order M Markov

source, the encoder state has to be extended to include the last M encoded symbols, in order

to properly take into account the memory of the source. For the sake of simplicity, only

memoryless sources will be considered in the following.

The idea is thus to precompute all possible states of the arithmetic encoder such that any

source stream may be encoded using table lookups rather than arithmetic operations. However,

as the variable follow might grow without bound, the number of states (low , high, follow)

could be infinite. In [6], follow was considered as an output variable and only the update of

this variable was taken into account in the lookup table. In this work, the value of follow is

a part of the encoder state.

In order to cope with the uncontrolled growth of follow , we choose to keep it bounded by

a given threshold Fmax as in [12]. To this end, renormalizations incrementing follow are only

performed as long as follow < Fmax. Whenever follow = Fmax and the current source interval

is such that follow could be further incremented, the symbol probabilities are modified in

order to force a follow-on procedure after encoding the current symbol. Let [low f , highf) be

the current interval, such that T/4 6 low f < T/2 and T/2 < highf 6 3T/4. This interval

is subdivided into [low f , T/2) and [T/2, highf). The first subinterval is selected if the next

symbol is 0, the second is selected if the next symbol is 1.

In the remainder of this section, three FSMs describing the AC operations with a bound

on follow are proposed, namely a symbol-clock FSM, which is well suited for encoding, a

reduced FSM leading to a compact trellis better suited for decoding, and a bit-clock FSM

suited for distance evaluation.

B. Symbol-clock FSM

The first proposed FSM is such that each transition corresponds to a single encoded symbol;

hence it is called symbol-clock FSM. Starting at the initial state (0, T, 0), the encoder is fed

July 18, 2007 DRAFT

6

by the two possible input symbols, and may either reach a new state or return to (0, T, 0).

This defines the two starting transitions of the FSM describing the AC. Every arrival state

is then considered as a starting state of two new transitions leading either to new states or

to already known ones. This exhaustive search stops when no new states are found. The set

of states and the set of transitions between states of this symbol-clock FSM are denoted by

Ss
FSM and T s

FSM, respectively.

Figure 1 shows the symbol-clock FSM representing an integer AC with p = 4, P0 = 0.2

and Fmax = 1. The transitions are labeled with input symbol / output bits. When no bits are

output by the encoder, the transition label is 1/− or 0/−. These are called mute transitions.

C. Reduced FSM

When dealing with noisy transmissions, a trellis-based soft-input decoder may be imple-

mented as in [6], [12]. In this work, we use a Viterbi decoder which keeps only the best path

among all those converging in the same state at a given depth of the trellis. The saved path

is called survivor (see Section IV). If the decoder uses a likelihood-based metric to compare

converging paths, the associated bit sequences must be of equal length. Therefore, the symbol-

clock trellis derived from the FSM described in Section III-B will not be appropriate for such

a decoder, as merging paths would have equal length in symbols, but variable length in bits.

A bit-clock trellis is needed instead.

One possible representation of a bit-clock trellis is the three-dimensional trellis proposed in

[12], where the third dimension keeps track of mute transitions. Running a Viterbi Algorithm

(VA) on such a trellis requires processing the states in a particular order. For example, if

there is a mute transition from state x to state y, the survivor at state x has to be computed

before the one at y, otherwise the decoder becomes suboptimal.

The trellis adopted in this work is derived from the FSM proposed in Section III-B, which

is modified in order to have no mute transitions. This allows not only to have a two- instead

of three-dimensional trellis, but also to reduce the number of states and thus to reduce the

memory required by the VA, which will work without any constraint on the evaluation order

of survivors. To obtain a reduced FSM, we allow transitions to have more than one input

symbol. In fact, every mute transition is extended until at least one bit is output. The transition

extension algorithm is explained below.

Let Txy be the set of transitions from state x to state y of a FSM. The input symbols

associated to txy ∈ Txy are denoted by in(txy) and its output bits by out(txy). If txy is extended

July 18, 2007 DRAFT

7

with a transition tyz, the resulting transition txz = txy ◦ tyz has in(txz) = in(txy) ◦ in(tyz) and

out(txz) = out(txy) ◦ out(tyz), respectively (◦ denotes concatenation).

Let Tmute be the subset of T s
FSM containing all the mute transitions. Algorithm 1 describes

how the mute transitions may be removed from a FSM to obtain an equivalent reduced FSM,

whose sets of states and transitions will be denoted by SFSM and TFSM, respectively.

Algorithm 1 (Removing the mute transitions from the FSM):

0. Find all mute transitions in T s
FSM. Save them in Tmute

TFSM = T s
FSM; SFSM = Ss

FSM

1 For all txy ∈ Tmute:

a For all tyz ∈ TFSM:

a.1 Create a new transition txz = txy ◦ tyz.

a.2 If txz is mute, add it to Tmute, else add it to TFSM.

b Delete txy from Tmute and from TFSM.

2 If Tmute is not empty, go to 1.

3 Remove all states having no incoming transitions from SFSM.

If a state has a single incoming mute transition, after extension of that transition it will

have no incoming connections and can therefore be removed from the set of states (see,

e.g., state 5 in Figure 1). Hence, this procedure allows to reduce the number of states in the

FSM. Moreover, in some cases SFSM may contain states with a single incoming transition

or a single outgoing transition. Algorithm 1 may also be applied in order to remove such

states from the FSM. The reduced FSM obtained from the symbol-clock FSM of Figure 1

is depicted in Figure 2.

The trellis resulting from the reduced FSM will have transitions with variable-length inputs

and outputs, and it may be represented both as a bit-clock or as a symbol-clock trellis. The

bit-clock trellis generated from the reduced FSM of Figure 2 is represented in Figure 3.

Every path starting at depth 0 and reaching a given depth n is associated to a code sequence

of length n bits and a variable-length source sequence. The encoder and the decoder in this

work have been implemented with this type of trellis (see Section IV).

D. Bit-clock FSM

As will become clear in Section V-A, an efficient recursive evaluation of the distance

properties of trellis-based AC is possible if transitions have exactly one output bit. Such a

July 18, 2007 DRAFT

8

trellis may be obtained from the reduced FSM of Section III-C by introducing additional

intermediate states, such that every state transition outputs exactly one bit. When a given

transition outputs two bits, it is split into two transitions, the first of which inherits the

input symbols and the first output bit, while the second has no input symbol and outputs the

second bit. Introducing these states does not increase the total number of paths through the

trellis, since the intermediate states have a single incoming transition and a single outgoing

transition. The set of states in the bit-clock FSM is denoted by Sb
FSM, and the set of transitions

by T b
FSM. Notice that a bit-clock FSM could also be obtained from the AC decoding automaton,

although it would not necessarily be the same as the one derived here, due to the prior removal

of states with a single incoming transition. In any case, the analysis in Section V applies

unchanged.

IV. JOINT SOURCE-CHANNEL ARITHMETIC CODES

In joint source-channel coding schemes, redundancy is introduced in order to allow error

detection and/or correction at the decoder side. According to [11], when considering integer

probability spaces in [0, T), the additional redundancy due to the integer approximation is

at most 0.497/T + O(1/T 2) bits/symbol if correct probability estimates are used by the

encoder. Limiting the value of follow may be another source of redundancy. Nevertheless, as

the probability of having follow = Fmax decreases exponentially with Fmax, this additional

redundancy remains small, see Table I in Section VII.

Section I mentioned that a well-known JSC technique for AC is based on the introduction

of a forbidden symbol (FS) in the source alphabet. The FS is never emitted by the source,

although a positive probability Pε is assigned to it. In that way, decoding the FS indicates

the occurrence of a transmission error. It can be shown that introducing a FS of probability

Pε adds a redundancy of − log(1− Pε) bits/symbol to the coded bitstream [4]. All the cited

techniques for adding redundancy may be applied to integer AC jointly with a bound on

follow . The resulting operations will thus be described by a FSM. Consequently, JSCAC

operations may entirely rely on the trellis representation of AC.

The notation for the transmission scheme under study is as follows. The sequence of binary

source symbols is denoted by u1:K . After encoding, one gets a sequence of bits b1:N , which

after modulation becomes m1:N . The sequences of channel outputs and decoded symbols

are denoted by y1:N and û1:K̂ , respectively. Encoded bits are assumed to be mapped onto

symmetric BPSK signals mi = m (bi) = (−1)bi
√

Eb and sent over an AWGN channel.

July 18, 2007 DRAFT

9

Various estimation criteria may be used by the decoder. Here, we use a ML Viterbi

algorithm (VA) to maximize the likelihood P (y1:N |b1:N) such that the best estimate of the

symbol sequence is û1:K̂ associated to b̂1:N , expressed by

b̂1:N = arg max
b1:N

P (y1:N |b1:N)

= arg min
b1:N

N∑

i=1

(m (bi) − yi)
2. (1)

where N is supposed to be known. As consequence of this latter assumption, the decoder

has to search b̂1:N among a set of equal-length code sequences associated to variable-length

source sequences. The soft-input decoder is thus implemented using the bit-clock trellis

derived from the reduced FSM described in Section III-C.

Encoding and decoding using this trellis are now described. The encoder always starts

from (0, T, 0). From any given state, the set of input sequences labeling the transitions to

the next states is prefix-free, thus the encoding process is instantaneous. However, decoding

is not instantaneous, since the set of output bit sequences of a state is not prefix-free in

general. Nevertheless the VA can be applied on the reduced bit-clock trellis, as it will only

compare equal-length paths. Since the cost function to minimize in (1) is additive, at every

trellis depth n, the VA evaluates the best estimate b̂1:n among all paths of length n reaching

a given state. Unlike the trellis proposed in [12], which needs a third dimension to keep track

of mute transitions, here the constructed two-dimensional trellis is sufficient to run the VA.

When encoding the last symbols of the source sequence, the encoder may have the choice

between several transitions beginning with these symbols and thus possibly several final

states. There are different strategies to cope with this termination problem in practical AC.

For our analysis and simulations, we will simply assume that the source sequence corresponds

to an integer number of FSM transitions, since for long sequences this will have a negligible

impact on the decoder error rate. The terminating state is assumed unknown to the decoder.

In JSCAC schemes, the effects of the additional redundancy in terms of error detection

and correction capability appear in the trellis representation of the associated FSM. The

effectiveness of this redundancy may be characterized by the distance properties derived

from the trellis, as explained in the next section.

V. PERFORMANCE ANALYSIS OF TRELLIS-BASED AC

As shown in Section III, the FSM interpretation naturally leads to consider the integer

arithmetic code as a trellis code. The performance of trellis codes on channels with moderate

July 18, 2007 DRAFT

10

to large signal-to-noise ratios (SNR) can be predicted from their distance properties [13].

A. Free distance

At the decoder side, when a trellis-based VA is used, any two distinct equal-length paths

that start at a common state and end in a common state may be confused by the decoder

due to channel noise. The closest paths in terms of decoding metric determine the worst case

for error detection; the distance between them is called the free distance dfree. Thus dfree

is defined as the minimum Hamming distance between all paths of the same length in bits

diverging at some state and converging in the same or another state. If the encoded messages

are long enough to avoid boundary effects, dfree plays a similar role as the minimum distance

for a block code, in that all error patterns of weight t can be corrected if dfree > 2t.

For convolutional codes, which are linear codes, dfree is equal to the smallest Hamming

weight over all paths diverging at and then converging in the all-zero path [13]. In the case of

non-linear codes (such as VLEC and arithmetic codes), comparing paths to the all-zero path

may not be sufficient to determine dfree, since such codes are generally not geometrically

uniform [16]. In [14], Buttigieg deduced a lower bound on dfree from the distance between

all possible pairs of unequal-length VLEC codewords. Extending this technique to AC is

not possible, as the transition outputs do not satisfy the prefix condition in general (see

Figure 3), reducing Buttigieg’s lower bound to zero. Therefore, we propose an algorithm for

computing dfree for trellis-based AC. This algorithm relies on an iterative computation of the

smallest distances between all different paths of equal length starting from a common state.

Its iterative structure allows an evaluation of dfree with polynomial complexity in the number

of states of Sb
FSM and in the number of transitions between these states.

The iterations for computing dfree will be performed on the length in bits of the paths

on the trellis, it is thus advantageous to use the bit-clock trellis of Section III-D. Before

presenting the algorithm for computing dfree, some notations have to be introduced.

A path of n bits on a bit-clock trellis (see Figure 3), starting from state x and ending in

y is denoted by pn
xy. The Hamming distance between the output bits of two paths pn and

qn of the same output length n is denoted by dout
H (pn,qn). When a path pn

xy is extended by

a transition tyz, one obtains a new path pn′

xz = pn
xy ◦ tyz of length n′ = n + ℓ(out(tyz)), ℓ

being the length function. The set of all pairs of paths diverging at the same starting state

x and converging for the first time n bits later in state y is denoted by Cn (x, y). The set of

all pairs of paths of length n bits, diverging at the starting state x and never converging is

July 18, 2007 DRAFT

11

Dn(x). Finally, let T b
xy ⊂ T b

FSM be the set of transitions starting from x and ending in y in

the bit-clock FSM.

To evaluate dfree, we build a three-dimensional array ∆n defined as follows: for y 6= z,

∆n(x, y, z) is the minimum distance between all pairs of paths of length n, starting from

x, ending respectively in y and z, and never converging. For z = y, ∆n(x, y, y) is defined

as the minimum distance between pairs of paths of at most n bits, diverging at state x and

converging for the first time in state y. Using these notations, one may write

∆n(x, y, z) = min
(pn

xy ,qn
xz)∈Dn(x)

dout
H (pn

xy,q
n
xz), if y 6= z (2)

∆n(x, y, y) = min
n′6n

min
(pn′

xy ,qn′

xy)∈Cn′ (x,y)
dout

H (pn′

xy,q
n′

xy), (3)

and

dfree = min
n,x,y

∆n(x, y, y). (4)

The evaluation of ∆n(x, y, z) seems to require the evaluation of distances between an

exponentially growing number of paths pairs. The following proposition provides an iterative

technique for the evaluation of ∆n(x, y, z) with polynomial complexity.

Proposition 1: For any initial state x ∈ SFSM, (2) and (3) can be evaluated recursively

starting from

∆1(x, y, z) = min
txy∈T

b
xy,txz∈T

b
xz

txy 6=txz

dout
H (txy, txz), (5)

with y, z ∈ Sb
FSM, using

∆n(x, y, z) = min
y′ 6=z′

min
ty′y∈T

b
y′y

,tz′z∈T
b

z′z

{∆n−1(x, y′, z′) + dout
H (ty′y, tz′z)} , if y 6= z (6)

∆n(x, y, y) = min

{
∆n−1(x, y, y), min

y′ 6=z′
min

ty′y∈T
b

y′y
,tz′y∈T

b
z′y

(∆n−1(x, y′, z′) + dout
H (ty′y, tz′y))

}
,(7)

where the minimization is intended over all distinct y ′, z′ ∈ Sb
FSM. ♦

By convention, if one of the sets T b
xy or T b

xz is empty, then dout
H (txy, txz) = +∞. Note that

x can only be a state of the original reduced FSM (x ∈ SFSM ⊂ Sb
FSM), since intermediate

states in Sb
FSM have a single outgoing transition and thus no pair of paths can diverge at such

a state.

The proof of Proposition 1 may be found in Appendix A.

Corollary 1: The complexity for evaluating any ∆n(x, y, z) is O
(
M2

T ·
∣∣Sb

FSM

∣∣2
)

, with

MT = maxy,z∈Sb
FSM

∣∣T b
yz

∣∣. ♦

July 18, 2007 DRAFT

12

Proof: ∆n(x, y, z) is evaluated from ∆n(x, y′, z′), which is a matrix of
∣∣Sb

FSM

∣∣2 entries.

From (6) and the definition of MT, the number of operations to evaluate ∆n(x, y, z) is then

O
(
M2

T ·
∣∣Sb

FSM

∣∣2
)

. ♦
For a given x ∈ SFSM, assume that there exists some Nx such that

min
y′,z′∈Sb

FSM

∆Nx
(x, y′, z′) > min

y∈SFSM

∆Nx
(x, y, y). (8)

The recursion (7) can then be stopped, since it will be no longer possible to reduce ∆n(x, y, y)

by merging pairs of paths ending in states y ′ and z′, respectively and (8) will be satisfied for

all n > Nx. Moreover, let N = maxx∈SFSM
Nx. Then dfree may be evaluated as

dfree = min
n6N,x,y

∆n(x, y, y).

If the AC is non-catastrophic1, N will be finite and Corollary 1 implies that also the

evaluation of dfree is of polynomial complexity.

B. Distance spectra and error bounds

While the free distance dominates the error correction capability of a code, a finer error

analysis is possible by using the distance spectrum to evaluate an upper bound on error

probability. The distance spectrum of a code is the sequence {Ad} that counts the average

number of paths at distance d > dfree from the correct path. For a convolutional code, this is

identical to its weight spectrum (i.e., Ad is the number of paths of weight d for d > dfree),

due to linearity.

Let P b
er be the bit error probability at any position in the code. Then the following union

upper bound holds [13, Chap. 11]

P b
er 6

∞∑

d=dfree

dAdPd, (9)

where Pd is the probability that the decoder selects an erroneous path at Hamming distance

d instead of the correct path. For BPSK signaling used over an AWGN channel,

Pd =
1

2
erfc

√
d
Eb

N0

, (10)

where N0/2 is the variance of the zero-mean Gaussian channel noise [17].

1An encoder is catastrophic if there exist two semi-infinite input sequences differing in infinitely many positions that are

encoded into two output sequences differing only in a finite number of positions.

July 18, 2007 DRAFT

13

The bound (9) characterizes the decoder bit error probability in the code domain. In

practice, an equally important figure of merit is the symbol error probability in the information

domain. For convolutional encoders, this probability can be bounded using another spectrum,

{Bd} that counts the average number of nonzero information bits on paths of weight d. Then

P s
er, the symbol error probability at any source symbol position, is bounded by

P s
er 6

∞∑

d=dfree

BdPd. (11)

The two distance spectra {Ad} and {Bd} and the resulting bounds (9) and (11) may be

extended to a (non-linear) time-invariant trellis code driven by a memoryless source. Buttigieg

[14], [15] carried this out for non-linear VLEC trellises. The most important difference to

convolutional codes is that it is no longer sufficient to consider path weights alone, hence Ad

has to be defined as the average number of converging path pairs at Hamming distance d,

which can be computed assuming a stationary probability distribution on the trellis. Another

difficulty arises from the fact that although the decoder compares converging code paths of

equal length, these may be associated to source sequences of different lengths. Therefore

the spectrum {Bd} must be defined in terms of a distance measure that allows comparing

unequal-length sequences; the most common choice is the Levenshtein distance dL [18],

which is defined as the minimum number of deletions, insertions, or substitutions required

to transform one sequence into the other. Hence Bd is defined as the average Levenshtein

distance between the input sequences of all converging pairs of paths whose output sequences

are at Hamming distance d.

Extending the results for VLEC trellises to AC trellises is straightforward, the proofs for

the bounds (9) and (11) follow along the same lines as in [14], [15], so that the only major

difference is the computation of the distance spectra. Define din
L (p,q) = dL(in(p), in(q)),

where p,q are paths formed by concatenating one or more FSM transitions. The spectral

components Ad and Bd may then be expressed as

Ad =

∞∑

n=d

∑

(pn,qn)∈Cn:

dout
H (pn,qn)=d

P (pn), (12)

Bd =
∞∑

n=d

∑

(pn,qn)∈Cn:

dout
H (pn,qn)=d

P (pn) din
L (pn,qn) , (13)

where P (pn) denotes the a priori probability of the path pn of output length n bits, and Cn

July 18, 2007 DRAFT

14

is the set of all path pairs on the reduced FSM trellis diverging at the same starting state and

converging for the first time n bits later (thus Cn =
⋃

x,y∈SFSM
Cn (x, y)).

For the evaluation of {Ad} and {Bd} for VLECs in [14], only paths beginning at a single

initial state (corresponding to depth n = 0) had to be considered. In our case, two paths may

diverge at any state of the reduced trellis. Assuming that the encoder has already encoded a

large number of symbols from a memoryless source before the first error event occurs, the

stationary probability P (x) of being in a given state x can be evaluated using the Markov

transition matrix Π of the reduced FSM. Π(x, y) is the probability that the next state will be

y, knowing that the current one is x:

Π(x, y) =
∑

txy∈Txy

P (txy|x) =
∑

txy∈Txy

P (in(txy)). (14)

Then P (x) is the stationary distribution of the Markov chain defined by Π, if the FSM is

ergodic (i.e., a forward path with positive probability exists between any two states). Now

the a priori probability of a given path P (pn
xy) starting in x and ending in y, which is needed

in (12) and (13), can be computed using P (x) and the a priori source probabilities, yielding

P (pn
xy) = P (x)P

(
in

(
pn

xy

))
. (15)

The evaluation of distance spectra is carried out by an exhaustive enumeration of the

path pairs in Cn. This may be done using one of the two algorithms proposed in [14]. Both

algorithms perform an exhaustive search over all paths on the trellis. The first algorithm

is fast, but requires a lot of memory, as all paths that have not converged are stored and

compared. The search is stopped when some pre-determined depth is reached. In the second

algorithm, the required memory is limited, but the computations are slow. In that algorithm,

only two paths are stored at a given time, but the same paths are repeatedly constructed,

stored and erased. In this work, as in Buttigieg’s first algorithm, an exhaustive search is

performed and all paths that have not converged are stored. To reduce memory requirements

and increase speed, we limit the value of d for which Ad and Bd are computed, since the first

few non-zero spectral components (with small d) dominate in the error bounds. In practice,

also the depth n will be limited, so only lower bounds on Ad and Bd are obtained. We

observed that this is more problematic with low-redundancy codes, which tend to have a

huge number of short paths at dfree = 1. For higher redundancy, the first spectral components

quickly approach their true value with growing n.

July 18, 2007 DRAFT

15

A polynomial-time evaluation of Ad is possible using an iterative matrix-based algorithm

not presented here due to lack of space. Also that algorithm evaluates a lower bound Anmax

d ≤
Ad by considering only path pairs of less than nmax bits. An upper bound on the approximation

error could likely be obtained in similar fashion as for convolutional codes [19].

C. Extension to context-adaptive AC

Many practical AC schemes are adaptive and context-based. The extension of the presented

approach to an adaptive scheme is possible: this would require a FSM with more more states,

and thus larger trellises. The situation is more complicated for context-based arithmetic codes.

Taking into account contexts, which may depend on previously decoded data, would result in

an unmanageable increase of the complexity of the encoder FSM. Nevertheless, if the context

is provided as an external variable, context-based arithmetic codes may be represented with

several FSM working in parallel, the selection of the active FSM being determined by the

context. Under that hypothesis, an extension of the proposed analysis techniques appears

possible, provided that the number of contexts remains small.

VI. DESIGN OF ROBUST AC USING DISTANCE PROPERTIES

This section presents a design method for robust JSC arithmetic codes based on optimizing

the distance properties of integer binary AC with a forbidden symbol (FSAC). As mentioned

in Section IV, introducing a FS of probability Pε adds − log(1−Pε) bits/symbol of redundancy

to the code bitstream. This holds for high-precision AC (with p ≫ 1); in the more interesting

case of low-precision AC with few states, despite a constant Pε the actual redundancy will

vary considerably with the placement of the FS, due to rounding effects. In order to account

for this changing code rate, we chose to ignore spectral efficiency and compare codes at

equal SNR per source symbol, Es/N0 = rEb/N0, where r is the code rate in bits/symbol.

Inserting this into (11) through (10), one sees that for large SNR the bound is dominated by

the first term, which can be approximated as Bdfree
exp(−dfree

r
Es

N0
). Therefore we say that a

code is asymptotically better if it has larger dfree/r; in case of equality, the code with smaller

Bdfree
will be better. This establishes a criterion for optimizing FSAC codes based on their

distance spectrum.

At each iteration in binary FSAC, the current interval is split into three parts: I0 and I1, for

the source symbols 0 and 1, respectively, and IFS for the FS. Note that IFS may be composed

of disjoint subintervals (alternatively, these subintervals might be seen as corresponding to

July 18, 2007 DRAFT

16

distinct forbidden symbols). This is not the case for I0 and I1, which have to be connected

intervals. In [3], it is shown that by adapting the configuration of I0, I1, and IFS, one may

in principle implement any block or convolutional code with an arithmetic code.

Here, the following simple FS configuration scheme is considered. Let sFS be the current

total size of the intervals allocated to the FS, and s0 = (1−Pε)P0×range the range allocated

to the source symbol 0. Then IFS may be written as

IFS = [low , low + ⌊q1sFS⌋)

∪ [low + ⌊q1sFS⌋ + s0, low + ⌊q1sFS⌋ + s0 + ⌊q3sFS⌋)

∪ [high − ⌊q2sFS⌋ , high) , (16)

where q1, q2 and q3 are such that q1 + q2 + q3 = 1, and ⌊·⌋ stands for rounding towards −∞.

Thus, for given Pε only two parameters q1 and q2 have to be adjusted in order to find the best

FS configuration according to the previously defined criterion. As neither dfree/r nor Bdfree

are smooth functions of (q1, q2), the optimization of q1 and q2 is performed on a grid with

resolution δ, satisfying the constraints q1 > 0, q2 > 0, and q1 + q2 6 1. Since the maximum

value of sFS is smax
FS = Pε × 2p, there is no need to consider values of δ less than 1/smax

FS .

VII. EXPERIMENTAL RESULTS AND DISCUSSION

The encoder used for testing the error correction performance is characterized by four

parameters: p, the bit size of the initial interval [0, T), P0, the probability of source symbol

0, Fmax, the chosen upper limit of follow , and Pε, the probability assigned to the FS.

For a binary memoryless source with P0 = 1/8, Table I shows the additional redundancy

due to the limitation of follow , computed as
(
ℓ − h (P0)

)
/h (P0) (in percent), where ℓ is

the average number of bits per symbol in the code bitstream, and h (P0) = −P0 log2 P0 −
(1−P0) log2(1−P0) is the entropy of the source. Similar behavior occurred for other values

of P0. We also observed that the redundancy due to Fmax tends to get larger with p (likely

because higher-precision AC has more interval configurations leading to increment follow).

Table I also compares the number of states |S s
FSM| of the symbol-clock FSM described in

Section III-B with the number of states |SFSM| of the reduced FSM of Section III-C. Using

the reduced FSM significantly reduces the number of states without loss of compression

performance, except for a slightly longer termination.

July 18, 2007 DRAFT

17

Figure 4 compares the distance-spectra upper bounds2 on BER and SER to simulations

obtained for different values of Pε, and a fixed configuration of the intervals allocated to

the FS: [low , low + range · Pε

2
) ∪ [high − range · Pε

2
, high). Simulation results have been

obtained using source sequences of 1024 symbols, and a ML Viterbi decoder fed with the

noisy modulated bits. The SER is measured with the average Levenshtein distance between

the source sequence and the decoder output. As expected, the bounds become tighter at

medium to high SNR. In particular, the asymptotic behavior of the bounds allows to predict

and compare the code performance at high SNR without needing any simulation.

In the next set of experiments, we use the spectrum to optimize FSAC as explained in

Section VI. Table II shows the properties of encoders designed for different FS probabilities.

For each value of Pε, we compute the pairs (q1, q2)b and (q1, q2)w leading to the best and

to the worst bounds, respectively (worst performance is obtained by minimizing dfree/r and

then maximizing Bdfree
). The binary source has P0 =0.2, the encoder parameters are p=5,

Fmax = 2 and the search step size for (q1, q2) is 0.05. At low redundancy, all codes have

dfree = 1 and thus the one with the lowest rate will be chosen as asymptotically optimal. If

performance at medium SNR is also important, one could use a mixed (Lagrangian) criterion

to jointly minimize the rate and Bdfree
. Table II also shows that the simple approach of

splitting the FS in fixed proportions is not sufficient to obtain strong codes. Increasing the

design freedom, e.g., by adapting characteristics of the forbidden intervals with the state of

the AC may improve its error correction performance.

Figure 5 compares the SER obtained with the best and the worst configurations of the FS

subintervals. For Pε = 0.1 (small redundancy), only a few tenths of dB of coding gain can

be obtained; the asymptotic decay is almost the same for both codes. The picture changes

for Pε = 0.5 (large redundancy), where the gain is already 2 dB at SER 10−4 and rapidly

increasing with SNR, due to the difference in asymptotic decay. The simulations for Pε = 0.5

were carried out with source blocks of 5000 symbols, in order to reduce the incidence of

errors towards the end of the block. This evidences the necessity of a proper termination

strategy for FSAC to maintain its error correction capability over short blocks (by design,

the distance-spectra bounds hold only for semi-infinite sequences, not for short blocks).

The last series of experiments compare a FSAC joint source-channel scheme to a classical

tandem scheme relying on the concatenation of a source and a channel encoder. FSAC was

2Actually, the plotted bounds are approximations computed with up to 106 pairs of paths of length n ≤ 30 bits.

July 18, 2007 DRAFT

18

most often proposed as a low-redundancy error detection device for use in conjunction with

an ARQ protocol [4]. Here we show that such low amounts of redundancy may even yield

better error correction performance than a tandem system at low to medium SNR.

The reference system consists of a binary source with P0 = 0.1 encoded with a high-

precision arithmetic encoder with p = 16 and Fmax = 231, serially concatenated with a

punctured convolutional code (CC) of rate 7/8, which is truncated (not terminated). Three

different CCs will be considered, with constraint lengths cl = 3, 4 and 5 (thus 4, 8 and 16

states), generators (5, 7)o, (15, 17)o and (23, 35)o, puncturing matrices [1011111; 1100000],

[1000010; 1111101] and [1010011; 1101100], and free distances dfree=2, 2, and 3, respectively.

These CCs have the best free distance for the given rate and constraint lengths [20]. For

blocks of 2048 source symbols, the total rate is 0.545 bits/symbol, including overhead from

AC termination and puncturing. The CC is decoded with a soft-input, hard-output ML Viterbi

decoder and fed into a standard arithmetic decoder. SER is measured in Levenshtein distance.

The joint system is a FSAC with p=5, Fmax =2, Pε =0.16, q1 =0.25, q2 =0.45, dfree =1;

its FSM has 11 states and 103 transitions. The rate is also 0.545 bits/symbol (so the effective

FS probability is Pε,eff =1 − 2h(0.1)−0.545 =0.051), thus both systems have the same spectral

efficiency. Decoding uses a ML or MAP Viterbi algorithm on the reduced FSM trellis.

Figure 6 shows that with ML decoding, the FSAC outperforms comparable tandem sys-

tems up to Es/N0 = 3.5 dB (SER 10−3). MAP decoding, which costs only one additional

multiplication per transition, yields another 0.2–0.3 dB gain compared to ML. The storage

complexity of FSAC and tandem systems is comparable, since it is the product of the channel

block size and the number of states. Precisely assessing the computational complexity of the

FSAC is more difficult, since branch metric calculations could be optimized (many transition

outputs have common suffixes), but it is certainly higher than for the CCs. However, this is

without considering the complexity of the AC decoder in the tandem system.

We observed that the number of states and transitions, and hence decoding complexity,

of FSAC grows mainly with the compression ratio, which is inversely related to source

entropy. This disadvantage is partly compensated by the better MAP decoding performance

for skewed, low-entropy sources.

VIII. CONCLUSIONS

In this paper, we have proposed analytical tools for assessing the effectiveness of the

redundancy introduced into finite-state arithmetic coding schemes. When the redundancy is

July 18, 2007 DRAFT

19

small, the free distance is not a sufficient characterization; therefore, distance spectra have

also been considered. Indeed, the majority of AC-based JSC techniques in the literature can

be evaluated using the proposed tools, since the introduced redundancy directly affects the

distance properties of the derived trellis. We have also shown that these tools may be used to

design efficient AC-based JSC encoders, which at low to medium SNR outperform classical

tandem schemes with equivalent rate and storage complexity.

Ongoing work includes further optimization of the FS placement, efficient recursive eval-

uation of the distance spectra, as well as more advanced methods of introducing redundancy

in arithmetic coding.

ACKNOWLEDGMENTS

This work has been partly supported by the European Network of Excellence NEWCOM.

The authors would like to thank Pierre Duhamel for valuable suggestions and comments.

APPENDIX

A. Proof of Proposition 1

The initialization is a trivial rewriting of (2) and (3) for n = 1. Then, to obtain (6), one

may first use the fact that for any pair of paths (pn
xy,q

n
xz) ∈ Dn(x), for n ≥ 2 there exist

y′, z′ ∈ Sb
FSM with y′ 6= z′ (since pn

xy and qn
xz have not converged) such that T b

y′y and T b
z′z

are not empty and such that pn
xy = pn−1

xy′ ◦ ty′y and qn
xz = qn−1

xz′ ◦ tz′z, with ty′y ∈ T b
y′y and

tz′z ∈ T b
z′z. Thus

(
pn−1

xy′ ,qn−1
xz′

)
∈ Dn−1(x) and (2) may be rewritten as

∆n(x, y, z) = min
y′ 6=z′

min
ty′y∈T

b
y′y

,tz′z∈T
b

z′z

min
(pn

xy′
,qn

xz′
)

∈Dn−1(x)

(
dout

H (pn−1
xy′ ,qn−1

xz′) + dout
H (ty′y, tz′z)

)

= min
y′ 6=z′

min
ty′y∈T

b
y′y

,tz′z∈T
b

z′z








 min
(pn

xy′
,qn

xz′
)

∈Dn−1(x)

dout
H (pn−1

xy′ ,qn−1
xz′)



 + dout
H (ty′y, tz′z)






= min
y′ 6=z′

min
ty′y∈T

b
y′y

,tz′z∈T
b

z′z

{∆n−1(x, y′, z′) + dout
H (ty′y, tz′z)} .

To obtain (7), one first rewrites (3) as

∆n(x, y, y) = min

{

∆n−1(x, y, y), min
(pn

xy,qn

xy
)∈Cn(x,y)

dout
H (pn

xy,q
n
xy)

}

.

Then, observing that the paths in the last term may be decomposed in the same fashion as

above, since pn
xy and qn

xy converge for the first time in y, one easily gets (7).

July 18, 2007 DRAFT

20

REFERENCES

[1] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data compression,” Communications of the ACM,

vol. 30(6), pp. 520–540, 1987.

[2] C. Boyd, J. Cleary, I. Irvine, I. Rinsma-Melchert, and I. Witten, “Integrating error detection into arithmetic coding,”

IEEE Trans. on Comm., vol. 45(1), pp. 1–3, 1997.

[3] J. Sayir, “Arithmetic coding for noisy channels,” Proc. IEEE Information Theory Workshop, pp. 69–71, 1999.

[4] J. Chou and K. Ramchandran, “Arithmetic coding-based continuous error detection for efficient ARQ-based image

transmission,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 6, pp. 861–867, 2000.

[5] B. D. Pettijohn, W. Hoffman, and K. Sayood, “Joint source/channel coding using arithmetic codes,” IEEE Trans. on

Comm., vol. 49(5), pp. 826–836, 2001.

[6] T. Guionnet and C. Guillemot, “Soft decoding and synchronization of arithmetic codes: Application to image

transmission over noisy channels,” IEEE Trans. on Image Processing, vol. 12(12), pp. 1599–1609, 2003.

[7] M. Grangetto, P. Cosman, and G. Olmo, “Joint source/channel coding and MAP decoding of arithmetic codes,” IEEE

Trans. on Comm., vol. 53(6), pp. 1007–1016, 2005.

[8] C. Demiroglu, W. Hoffman, and K. Sayood, “Joint source channel coding using arithmetic codes and trellis coded

modulation,” Proc. of DCC, Snowbird, Utah, USA., pp. 302–311, 2001.

[9] R. C. Pasco, Source Coding Algorithms for Fast Data Compression. Stanford University, CA: Ph.D. Thesis Dept. of

EE, 1976.

[10] J. Rissanen, “Generalized Kraft inequality and arithmetic coding,” IBM Journal of Research and Development, vol. 20,

no. 3, p. 198, 1976.

[11] P. G. Howard and J. S. Vitter, “Practical implementations of arithmetic coding,” Image and Text Compression, vol.

13(7), pp. 85–112, 1992.

[12] B. Dongsheng, W. Hoffman, and K. Sayood, “State machine interpretation of arithmetic codes for joint source and

channel coding,” Proc. of DCC, Snowbird, Utah, USA., pp. 143–152, 2006.

[13] S. Lin and D. Costello, “Error control coding: Fundamentals and applications,” Englewood Cliffs, Prentice-Hall, 1983.

[14] V. Buttigieg, “Variable-length error correcting codes,” PhD dissertation, University of Manchester, Univ. Manchester,

Manchester, U.K., 1995. [Online]. Available: http://www.eng.um.edu.mt/ vjbutt/research/thesis.zip

[15] V. Buttigieg and P. Farrell, “Variable-length error-correcting codes,” IEE Proceedings on Communications, vol. 147,

no. 4, pp. 211–215, Aug. 2000.

[16] G. D. Forney, “Geometrically uniform codes,” IEEE Trans. on Information Theory, vol. 37(5), pp. 1241–1260, 1991.

[17] A. J. Viterbi and J. Omura, “Principles of digital communication and coding,” McGraw-Hill, New-York, USA., 1979.

[18] V. Levenshtein, “Binary codes with correction of deletions, insertions and substitution of symbols,” Dokl. Akad. Nank.

SSSR, vol. 163, no. 4, pp. 845–848, 1965.

[19] J. Lassing, T. Ottosson, and E. Strom, “On the union bound applied to convolutional codes,” in Proc. 54th IEEE

Vehicular Technology Conference (VTC 2001 Fall), vol. 4, 7-11 Oct. 2001, pp. 2429–2433.

[20] D. Haccoun and G. Bégin, “High rate punctured convolutional codes for Viterbi and sequential decoding,” IEEE Trans.

on Comm., vol. 37, no. 11, pp. 1113–1125, Nov. 1989.

July 18, 2007 DRAFT

21

0
1

2

3

4

5

6

7

8

0/00
1/-

0/000

1/-

0/0

1/-

0/001

1/-

0/0110

1/-

0/011

1/1

0/010

1/-

0/0111

1/10

0/01 1/-

Fig. 1. Finite state machine obtained for p = 4, P0 = 0.2, Fmax = 1.

0 1

2

0/00

10/0

110/011

111/1
110/010

1110/01

0/000

10/001

11110/0111

11111/10

10/0111

11/10
0/0110

Fig. 2. Reduced state machine obtained for p = 4, P0 = 0.2, Fmax = 1.

0/00

10/0

110/011

111/1

110/010

1110/01

0/000
10/001

11110/0111

11111/10

10/0111
11/10

0/0110

0 1 2 3 4 5 6 depth

Fig. 3. Trellis representation derived from the reduced FSM (p = 4, P0 = 0.2, Fmax = 1)

July 18, 2007 DRAFT

22

Fmax 1 3 6 9

Additional redundancy (bits/symbol) 0.0505 (9.3%) 0.0109 (2.0%) 0.0008 (0.14%) 0.0004 (0.06%)

|S s
FSM| 84 154 207 240

|T s
FSM| 168 308 414 480

|SFSM| for the reduced trellis 19 32 32 32

|TFSM| for the reduced trellis 130 248 364 410

TABLE I

EFFECT OF THE CHOICE OF Fmax ON THE TRELLIS PROPERTIES, p = 6, P0 = 1

8
, Pε = 0, h(P0) = 0.5435 BITS/SYMBOL

-2 0 2 4 6 8 10 12
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

B
it

 e
rr

or
 r

at
e

E Ns 0/ (dB)

BER bound = 0.1P
"

BER bound = 0.2P
"

BER bound = 0.5P
"

Simulation = 0.1P
"

Simulation = 0.2P
"

Simulation = 0.5P
"

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

S
y
m

b
ol

 e
rr

or
 r

at
e

SER bound = 0.2P
"

SER bound = 0.5P
"

SER bound = 0.1P
"

Simulation = 0.1P
"

Simulation = 0.2P
"

Simulation = 0.5P
"

-2 0 2 4 6 8 10 12

E Ns 0/ (dB)

Fig. 4. Bounds on BER and SER compared to simulations for different amounts of additional redundancy

Pε 0.1 0.2 0.3 0.4 0.5

b w b w b w b w b w

q1 0.4 0 0.2 0 0.7 0 0 0.3 0.45 0

q2 0.3 1 0.55 1 0.05 1 0.6 0.7 0.5 1

Rate 0.75 0.90 0.88 1.08 1.12 1.29 1.27 1.57 1.60 1.76

dfree 1 1 1 1 1 1 2 1 3 1

Adfree
0.90 0.31 0.22 0.20 0.004 0.03 0.59 0.02 0.13 0.009

Bdfree
4.75 1.56 0.95 0.87 0.016 0.13 2.66 0.07 0.43 0.009

|SFSM| 17 22 15 9 8 12 2 11 11 4

|TFSM| 101 122 86 55 37 59 9 52 33 21

TABLE II

EFFECT OF Pε ON THE TRELLIS FEATURES, p = 5, Fmax = 2, P0 = 0.2. COLUMNS B AND W DENOTE THE BEST AND

THE WORST CASE, RESPECTIVELY.

July 18, 2007 DRAFT

23

-2 0 2 4 6 8 10 12

Simulations

Simulations

P = 0.1"

E Ns 0/ (dB)

10
-6

10
-4

10
-2

10
0

S
y
m

b
ol

 e
rr

or
 r

at
e

Bound (=0.4, =0.3)q q1 2

Bound (=0.0, =1.0)q q1 2

0 2 4 6 8 10 12
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Simulations

Simulations

P = 0.5"

E Ns 0/ (dB)
S
y
m

b
ol

 e
rr

or
 r

at
e

Bound (=0.45, =0.5)q q1 2

Bound (=0.0, =1.0)q q1 2

Fig. 5. Comparison between best and worst configurations of IFS, for Pε = 0.1 and Pε = 0.5 (codes from Table II)

-3 -2 -1 0 1 2 3 4 5

10
-4

10
-3

10
-2

10
-1

S
y
m

b
o
l
er

ro
r

ra
te

E Ns 0/ (dB)

FSAC joint scheme (ML)

FSAC joint scheme (MAP)
serial scheme, = 3c

l

serial scheme, = 4c
l

serial scheme, = 5c
l

Fig. 6. Comparing the error correcting performance of the proposed joint scheme to a classical tandem scheme (AC +

CC), using rate 7/8 punctured CC with cl = 3, cl = 4, and cl = 5

July 18, 2007 DRAFT

