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Abstract

Circulating tumor DNA (ctDNA) analysis is being incorporated into cancer care; notably in

profiling patients to guide treatment decisions. Responses to targeted therapies have been

observed in patients with actionable mutations detected in plasma DNA at variant allele frac-

tions (VAFs) below 0.5%. Highly sensitive methods are therefore required for optimal clinical

use. To enable objective assessment of assay performance, detailed analytical validation is

required. We developed the InVisionFirst™ assay, an assay based on enhanced tagged

amplicon sequencing (eTAm-Seq™) technology to profile 36 genes commonly mutated in

non-small cell lung cancer (NSCLC) and other cancer types for actionable genomic alter-

ations in cell-free DNA. The assay has been developed to detect point mutations, indels,

amplifications and gene fusions that commonly occur in NSCLC. For analytical validation,

two 10mL blood tubes were collected from NSCLC patients and healthy volunteer donors. In

addition, contrived samples were used to represent a wide spectrum of genetic aberrations

and VAFs. Samples were analyzed by multiple operators, at different times and using differ-

ent reagent Lots. Results were compared with digital PCR (dPCR). The InVisionFirst assay

demonstrated an excellent limit of detection, with 99.48% sensitivity for SNVs present at

VAF range 0.25%-0.33%, 92.46% sensitivity for indels at 0.25% VAF and a high rate of

detection at lower frequencies while retaining high specificity (99.9997% per base). The

assay also detected ALK and ROS1 gene fusions, and DNA amplifications in ERBB2,

FGFR1,MET and EGFR with high sensitivity and specificity. Comparison between the InVi-

sionFirst assay and dPCR in a series of cancer patients showed high concordance. This

analytical validation demonstrated that the InVisionFirst assay is highly sensitive, specific

and robust, and meets analytical requirements for clinical applications.
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Introduction

It has been shown more than 20 years ago that some cancer mutations can be detected non-

invasively through analysis of samples including blood plasma, urine, stool and sputum [1–6].

Circulating tumor DNA (ctDNA) is believed to enter a patient’s blood plasma largely through

turnover of cancer cells and subsequent release of the resultant fragmented DNA into circula-

tion. Early attempts to analyze this ctDNA were restricted to methods that focused on a small

number of genomic changes with relatively limited sensitivity. It is now known that a signifi-

cant fraction of mutations, especially in earlier stage cancer are present at extremely low vari-

ant allele fractions (VAF) in the blood.

The development of methods including digital PCR (dPCR) and its derivatives such as

droplet-based digital PCR (ddPCR) subsequently enabled the sensitive and quantitative analy-

sis of ‘hotspot’ mutations or individual mutant alleles [7–9]. These more sensitive methods

demonstrated the potential of using ctDNA for a range of applications including cancer prog-

nostication, treatment selection, monitoring and even early detection [9–11]. They were still

however limited to assessing just a small number of changes.

We demonstrated for the first time in 2012 the ability to use next generation sequencing

(NGS) of gene panels to detect solid tumor mutations through sequencing a patient’s cell free

DNA (cfDNA) and to monitor the VAF of multiple mutations in serially collected plasma sam-

ples over time [12]. The initial version of our assay using TAm-Seq1 technology covered 6

genes and had 97% sensitivity and specificity for detecting single nucleotide variants (SNVs)

and indels at 2% VAF and above and reported mutations down to 0.14% VAF. This demon-

stration was rapidly followed by examples of a range of different NGS approaches including

hybrid capture and molecular barcoding that could be applied to broadly analyze ctDNA with

varying performance characteristics [13–15].

The area where ctDNA analysis is most rapidly entering clinical use is in the molecular

stratification of patients for treatment where tissue is limited, unavailable or of insufficient

quality; most notably for non-small cell lung cancer (NSCLC) patients. This is due to the com-

plexity of a lung biopsy, the risk and associated costs and the availability of appropriate effec-

tive targeted agents for treatment of NSCLC patients. The first assays to gain regulatory

approval for testing in this setting were the therascreen1 EGFR RGQ PCR kit and cobas1

EGFRMutation Test v2 assays which use real-time PCR for the qualitative detection of EGFR

exon 19 deletions, L858R, T790M and other mutations in EGFR. Positive ctDNA results can be

used to determine which NSCLC patients are eligible for treatment with 1st- or 3rd-generation

EGFR inhibitors [16]. Due to the technology used however, these assays are less sensitive than

dPCR and can only assess a limited number of mutations, reducing the number of patients

these assays will successfully stratify to treatment.

To enable broad and highly sensitive ctDNA analysis we have developed eTAm-Seq tech-

nology, a significantly enhanced version of our original TAm-Seq technology (Fig 1). We pre-

viously described the development of an earlier version of this enhanced assay, which covered

35 genes and could detect SNVs, indels and copy number variations (CNVs) [17]. Here we

describe the analytical validation of the InVisionFirst assay which utilizes this technology and

has been updated to cover 36 genes for a range of SNVs, indels, CNVs and gene fusion events

including the key mutations in EGFR and ALK and ROS1 fusions (S1 Table). InVisionFirst is

an NGS assay designed to detect the key actionable somatic NSCLC mutations in ctDNA,

released into the blood stream of NSCLC patients which, when combined with standard clini-

cal observations, can be used by the clinician to guide a patient to therapy. Based on the previ-

ously published NSCLC mutation spectrum, 94% of patients contain at least one mutation

within the 36 genes targeted [18].
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There are a growing number of ctDNA assays being developed based on different technolo-

gies, with different performance characteristics and differing levels of concordance with tissue

[15,19]. It is therefore critical that analytical validation studies are executed and performance

testing schemes developed to determine the functional characteristics of each assay to enable

clinicians to select the most suitable assay for their patient. In the current study, we first

describe the assessment of the InVisionFirst assay’s ability to call SNVs, indels, amplifications

and gene fusions using contrived material and blood from donors not known to have cancer.

We then compare our ability to call changes in NSCLC patients’ blood with that of digital

PCR. Finally, we demonstrate that the InVisionFirst assay gives concordant results whether

blood is drawn in Streck Cell-Free DNA Blood collection tubes (Streck BCT) or EDTA tubes

and we show, concordant with previously published results, that when DNA containing muta-

tions was spiked into blood drawn into Streck BCT then the mutant allele fraction stayed stable

for at least 10 days.

Results

SNV detection sensitivity, repeatability and reproducibility

To determine the ability of the InVisionFirst assay to call mutations at different allele fractions

and thus its limit of detection (LoD) which we have defined as the point where we would detect

a mutation�90% of the time (LoD90), a dilution series was created of sheared Tru-Q7 refer-

ence DNA in Tru-Q0 (both obtained from Horizon Discovery). Details of this and subsequent

contrived materials are described in detail in the Materials and Methods section. Tru-Q7 con-

tains 39 validated mutations that are covered in our targeted sequencing region, and 32 of

these are SNVs present at low VAF, predominantly between 1%-1.3% (S2 Table). The dilution

series created 5 different samples, containing respectively the majority of mutations at the fol-

lowing VAF levels: 1%-1.3%, 0.5%-0.65%, 0.25%-0.33%, 0.13%-0.16% and 0.06%-0.08%. Sam-

ples from this dilution series was analyzed multiple times by three operators, each using two

different Lots of reagents. Full details of this and subsequent designs are available in S3 Table.

Fig 1. Overview of the InVisionFirst workflow.

https://doi.org/10.1371/journal.pone.0193802.g001
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100% of SNVs with an expected VAF of 0.5% and above were detected across all runs, all

operators and all reagent Lots. For SNVs at VAF in the range 0.25%-0.33%, 99.48% were

detected. 88.93% of SNVs were detected at the VAF range of 0.13%-0.16%, and 56.25% were

detected at the VAF range 0.06%-0.08% (Fig 2A, S4 Table). This confirmed the LoD of our

assay to be 0.25% VAF. A complete table describing all expected calls and whether they were

Fig 2. Sensitivity for SNVs (A, C) and indels (B, D). A and B show the sensitivity as a function of the allele fraction of
the reference mutations. Each line represents a different operator/Lot combination. C andD show the full set of calls
for all combinations of dilution/variant (vertical) and repeat/operator/lot (horizontal). Blue rectangles represent
mutations that were detected and grey represents those missed. Panel E shows for SNVs the estimated allele fraction
compared between InVisionFirst (blue box-plots) and the reference as estimated by Horizon using ddPCR (red
crosses).

https://doi.org/10.1371/journal.pone.0193802.g002
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made, along with depth of coverage is available (S5 Table). In total, there were 3,498 mutation

calls made at low VAF (�1.3%) in this SNV section of the study. The median depth of

sequencing for all the detected mutations was 69,061x and the lowest depth at which any of the

3,498 mutation calls were made was 10,223x. Coverage was extremely even, with 95% of calls

having a depth no less than half the median and 99.9% of calls having a depth no less than 0.2x

of the median.

Mutation calls between replicates, operators and reagent Lots showed high repeatability

and reproducibility with all 32 mutations detected in all replicates at 0.5% VAF and above and

no noticeable difference within or between operators or Lots at 0.25%-0.33% VAF (Fig 2C). To

extend our analysis across a broader set of mutations we assessed a total of 43 unique samples

containing a total of 605 unique variants at or above the LoD (S6 Table). We detected all SNVs

giving a Positive percentage agreement (PPA) of 100.0% at�0.25% VAF.

Combining the replicates of the InVisionFirst assay, the average estimated VAF for the 36

validated SNVs closely correlated with the expected frequencies as stated by Horizon for the

undiluted Tru-Q7 DNA (Pearson squared correlation coefficient R2 = 0.9987) (Fig 2E).

Indel detection sensitivity, repeatability and reproducibility

To assess the InVisionFirst assay’s ability to call indels, a custom reference material was created

by SeraCare containing eighteen indels targeted by our panel ranging from -24bp to +12bp (S7

Table). Five separate samples were produced by SeraCare with all eighteen indels present at

one of five different levels; 2%, 1%, 0.5%, 0.25% or 0.1% VAF. All five of these samples were

analyzed multiple times by three operators each using two different Lots of reagents (S3 and S7

Tables).

For the 2%, 1% and 0.5% VAF all but 3 of the 1188 expected indels were detected (99.7%).

At a VAF of 0.25%, 92.46% of indels were detected, whilst at 0.1% VAF, 234 out of an expected

324 indels (72.22%) were detected (Fig 2B and S8 Table). A complete table of all expected

indels and whether they were detected are available in S9 Table.

As with the SNV calling, the sensitivity of the assay did not vary within runs, between oper-

ators or between reagent Lots demonstrating high assay sensitivity, repeatability and reproduc-

ibility (Fig 2D).

To extend indel analysis across a broader set of unique samples and mutations we assessed

a total of 31 unique samples containing a total of 115 variants at or above our LoD (�0.25%

VAF) demonstrating a PPA of 97.4% (S6 Table).

Fusion gene detection sensitivity, repeatability and reproducibility

The InVisionFirst assay detects the DNA breakpoints that create the common EML4-ALK and

ROS1 gene fusions. Due to the scarcity of DNA samples with such breaks, three separate

approaches were used to assess our sensitivity to detect these fusions. Fragmented cell line

DNA was created (Horizon Discovery) with one EML4-ALK and one SLC34A2-ROS1 fusion.

Dilutions with these fusions at five different levels were created (VAF of 1%, 0.5%, 0.25%,

0.13% and 0.06%) and a similar replication strategy as used for SNVs and indels was under-

taken (S3 Table).

For each dilution level, other than the lowest, 36 fusions were tested. At all levels, down to

0.13% VAF, all 36 fusions were detected (Fig 3A). At the lowest level of 0.06% VAF, 90% (27/

30) were detected.

To test the assay performance across a broader spectrum of fusions an additional 44

breakpoints were synthesized then spiked into fragmented genomic DNA. 18 of these were

designed according to breakpoints previously reported in NSCLC cases [20]. A further 26 were
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generated through random joining of fusion partners (S10 Table). The 18 published break-

points where diluted to 1% and 0.5% in fragmented DNA and analyzed across multiple opera-

tors whilst the random breakpoints were diluted to 1% VAF and analyzed a single time.

Of the 44 unique synthetic fusions analyzed, 43 were detected in all repeats at 1% VAF (the

remaining fusion was detected in 1 of 4 repeats) (Fig 3B, 3C & 3D). With the inclusion of Hori-

zon cell line DNA, 97.8% (45/46) of the gene fusions were detected in all repeats at 1% VAF.

At 0.5% VAF just one additional fusion was not detected in 2 of 4 repeats. All other fusions

were called in all repeats at this level (Fig 3A, 3B & 3C) resulting in a total of 90% (18/20) of

gene fusions that were detected at 0.5% VAF.

To extend the assessment of fusion detection sensitivity, the 2.5% VAF Horizon cell line

fusion DNA was spiked into blood from 19 different donors (collected into both Streck BCT

and EDTA tubes) at levels close to our LoD as described below. All fusions were detected in

these samples (S11 Table). Collectively 54 unique samples with fusions and 104 variants at or

above our LoD were analyzed. All but 3 were detected giving a PPA of 97.1% (�0.5% VAF).

Amplification detection sensitivity, repeatability and reproducibility

To determine the sensitivity of the InVisionFirst assay to EGFR, FGFR1, ERBB2 andMET

amplifications, double stranded DNAmatching the parts of these genes targeted by the assay

was manufactured, quantified by dPCR, then spiked into a background of sheared wild type

DNA creating samples with copy number amplification ratios (CNAR) of 1.25x, 1.5x and 2x.

Fig 3. Fusion sensitivity analysis. Blue rectangles represent fusions that were detected and grey represents those missed. (A) Dilution of Horizon
reference material containing 2 fusions (ALK and ROS1) across dilution levels (vertical) and operator/lot (horizontal), (B) Set 1 of contrived material
based on published DNA breakpoints (AF 1% and 0.5%, 2 operators), (C) Set 2 of contrived material based on published DNA breakpoints (AF 1% and
0.5%, 2 operators, 2 reagent lots) and (D) Contrived material based on randomly generated fusion breakpoints. Different operators performed different
parts of this fusion study.

https://doi.org/10.1371/journal.pone.0193802.g003
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Each synthetic amplification was analyzed multiple times by three operators using two differ-

ent Lots of reagents (S3 Table).

In total, each gene amplification was assessed at each dilution level between 22 and 24 times

across the 3 operators. All amplifications for all four genes were detected at 2x CNAR, while 86

out of 88 amplifications were detected at 1.5x (97.7%). Detection at 1.25x CNAR ranged from

59% for FGFR1 to 90.91% for EGFR (Table 1).

An additional series of samples were created with amplifications of all four genes between

2x and 50x to assess our reportable range and extend our assessment of PPA. A total of 49

unique samples were analyzed with 52 variants at or above our LoD of 1.5x CNAR and 51 vari-

ants were detected giving a PPA of 98.1% (S6 Table).

Specificity of the InVisionFirst assay

To determine assay specificity, blood was drawn into Streck BCT or EDTA tubes from donors

not known to have cancer. 95 samples were analyzed for gene fusions and no calls were made.

109 samples (70 in Streck BCT and 39 in EDTA tubes) were analyzed for SNVs, indels and

amplifications. No CNVs were detected in these 109 individuals. A total of 3 coding or splice

altering variants were called at a VAF of between 0.13% and 1.57% (TP53 L369X, a TP53 splice

alteration at chr17:7673838 and EGFR T790M, S12 Table). Digital PCR analysis was per-

formed targeting all changes. The TP53mutation (g.chr17:7673838 C>A) at 1.57% was con-

firmed by dPCR. The mutations at 0.13% and 0.29% were not detected by dPCR. To

determine the frequency with which we call these changes, we analyzed the presence of these

changes in a further 92 samples from donors not known to have cancer and 242 samples from

untreated NSCLC patients. None of these alterations were detected in this extended cohort.

Comparison of the InVisionFirst assay with dPCR

To compare InVisionFirst with an orthogonal method, blood from 20 NSCLC patients was

assessed with both the InVisionFirst assay and dPCR. Twenty patients were first identified

with either a KRAS (p.G12C or p.G12D) or EGFR (p.L858R or p.E745_A750del/K) mutation

above 0.25% VAF by the InVisionFirst assay (0.27%-65.55% VAF). In this cohort 40% of

patients had a VAF<0.75% (S13 Table). cfDNA from a second tube of blood was then

extracted from all 20 donors and shipped to an independent site (LGC, Teddington, UK) for

blinded analysis. LGC analyzed all samples for all 4 mutations. Using dPCR they detected 19 of

the 20 expected changes while not identifying any unexpected changes giving a PPA of 100%

and a Positive Predictive Value (PPV) of 95% (Fig 4). The one change not detected by dPCR

was a change identified at 0.3% by the InVisionFirst assay and was in a sample with compara-

tively low DNA input levels (an estimated 646 molecules were read by dPCR, implying 1–2

mutant molecules were to be expected in the sample). Comparison of VAF between dPCR and

InVisionFirst showed excellent concordance (R-squared = 0.965) (Fig 4).

Table 1. Amplification sensitivity analysis for FGFR1, EGFR, ERBB2 andMET.

Gene 1.25X (%) 1.5X (%) 2X (%)

MET 81.82 95.45 100

FGFR1 59.09 100 100

ERBB2 68.18 100 100

EGFR 90.91 95.45 100

Combined 75 97.73 100

https://doi.org/10.1371/journal.pone.0193802.t001
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Streck BCT and EDTA tube comparison

To demonstrate that the InVisionFirst assay can be used to analyze blood collected in either

Streck BCT or EDTA tubes, reference DNA with SNVs, indels and fusions were spiked into

the blood of donors not known to have cancer. 16,000 amplifiable copies of either sheared

Tru-Q2, Tru-Q3 or the custom 2.5% VAF fusion cell line DNA (Horizon Discovery) were

spiked into either blood tube type. Following extraction and successful sequencing of 36 spiked

samples, all expected mutations were detected in both tube types (S11 Table).

Effect of delayed processing on mutant allele fraction

To assess the impact of delayed processing on mutant VAF for blood drawn into Streck BCT,

Horizon 5%Multiplex I cfDNA Reference Standard DNA was spiked into whole blood from 4

donors then processed at 2, 3, 5, 7 or 10 days post blood draw. Variant allele fractions were

assessed by the InVisionFirst assay and were shown to be stable following room temperature

storage for up to 10 days (Fig 5).

Discussion

A number of assays with varying performance characteristics are available for molecular strati-

fication of patients with NSCLC. In a recent study of patients treated with osimertinib follow-

ing detection of an EGFR T790Mmutation through ctDNA sequencing, 3 of the 7 best

responders had the T790Mmutation detected at VAF<0.25%, highlighting the potential bene-

fit to patients of more sensitive assays [21].

Most assays have either high sensitivity for one or a limited number of mutations, such as

assays based on dPCR, or a low sensitivity for a broader spectrum of changes. Recently, a lim-

ited number of assays that aim for both broad coverage and high sensitivity were introduced

such as the InVisionFirst assay. In order for clinicians to differentiate assays and determine the

one most suitable for their patient, detailed analytical validation, clinical validation and clinical

utility studies will be needed in combination with factors such as turnaround time, cost and

reproducibility.

Here we have demonstrated that the InVisionFirst assay has exceptionally high sensitivity

for detecting SNVs, indels, amplifications and gene fusions. We have also shown high SNV

and indel detection concordance between the InVisionFirst assay and dPCR in blood samples

from NSCLC patients. Out of 80 possible changes assessed by both methods, 79 were

Fig 4. Comparison between InVisionFirst assay and orthogonal dPCR generated by an independent laboratory. Four common cancer mutations
were tested by dPCR in 20 samples selected to have one of these four mutations based on the InVisionFirst assay. The allele fraction of the mutation not
detected by the orthogonal method is estimated by the InVisionFirst assay at 0.3%.

https://doi.org/10.1371/journal.pone.0193802.g004
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concordant. A single KRAS p.G12C change that was detected by the InVisionFirst assay at

VAF of 0.3% was not observed by dPCR. Multiplexing by dPCR is typically not practical and

therefore all samples in this study had to be split 4 ways to analyse the 4 mutations by dPCR.

The discordant KRAS change was found in a sample with low concentration of DNA and due

to both this splitting of material and to sample loss (dead volume) common in dPCR (~39%);

we therefore only expected to see ~ 1 to 2 mutant molecules in dPCR analysis, and the proba-

bility of allelic loss (zero representative molecules in the assay) was substantial (estimated

probability of at least 14.4% to have no mutant copies present according to Poisson statistics).

Separately a blinded study comparing InVsionFirst with both dPCR analysis of cfDNA and

sequencing of tissue has shown high concordance [22].

In the analysis of donors not known to have cancer, no fusion or CNV calls were made.

Three unexpected protein coding alterations were called in analysis of 109 samples (per base

specificity 99.9997%). Through dPCR analysis, one of these alterations was confirmed whilst

the other two were not detected. These calls were made at low VAF (0.13% and 0.29%) and

could represent either false positives or true changes that could not be replicated at such low

levels. We reviewed available data from a further 344 individuals that were either not known to

have cancer or were newly diagnosed, untreated NSCLC patients, and neither change was

detected in these samples, so each was detected only once in>450 samples. These data confirm

the specificity of the assay. While false-positive calls in cfDNA at low VAF can occur, results

from clinical studies have demonstrated that patients treated with osimertinib following detec-

tion of EGFR T790Mmutation in plasma down to 0.06% VAF have achieved high rates of clin-

ical response, demonstrating the importance of detecting mutations at low VAF [21].

Fig 5. Stability of AF over time using Streck blood tubes spiked with Horizon reference material.

https://doi.org/10.1371/journal.pone.0193802.g005
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Additional data is required to confirm that preliminary observation in larger populations.

Based on the data presented here, the clinical specificity would appear to be greater than 99%.

Measures such as setting a hard threshold based on a minimal allele fraction may thus result in

the loss of clinically relevant true positive calls.

In order to attain high sensitivity and specificity in NGS analysis of ctDNA a number of fac-

tors are important. Key amongst these are conversion of sufficient DNA into a sequencing

library and sequencing to sufficient depth to read mutant molecules multiple times and to

have a low chance of missing mutant molecules in the sequencing step. Through the use of an

amplicon based strategy, we previously showed that any molecule spanned by the amplifica-

tion primers should be read [12]. The use of short amplicons results in a high fraction of DNA

being analyzed. Other methods for targeted NGS analysis typically incorporate ligation steps

and cleanup steps prior to amplification which may result in lost mutant molecules before

analysis starts.

A second challenge is sequencing depth. By focusing on a panel of 36 key genes we can

sequence more deeply than is routinely achieved for many larger panels. In this study using

our routine process, the median depth at which an SNV was called was ~69,000x and 95% of

calls had a depth greater than half this (S5 Table). By contrast, the current target depth for

Foundation ACT is>5000x unique median coverage [23] and the target depth for Guardant

360 v2.10 is 15,000x [24]. We have a reportable range down to 0.0125% VAF for indels and

SNVs, and with our high sequencing depth even a mutation at this level would typically result

in 9 mutant reads.

The InVisionFirst assay has been developed to analyze blood drawn into either Streck BCT

or EDTA tubes. Here we have demonstrated that when mutant DNA was spiked into both

tube types at close to our LoD, neither inhibited mutation detection. As we assessed our speci-

ficity using blood drawn into both tube types, we have shown there is not a significant impact

on specificity. The performance of Streck BCT for preventing white blood cell lysis and subse-

quent reduction in mutant allele fraction has already been demonstrated by others both in

pregnant donors and cancer patients [25,26]. Our results support this showing that the mutant

allele fractions of spiked DNA detected by the InVisionFirst assay stayed stable when blood

processing was delayed for up to 10 days.

This study demonstrates that the InVisionFirst assay has high analytical sensitivity, specific-

ity and reproducibility which are appropriate for clinical applications. Separate studies are

ongoing to test clinical validity and utility in a range of settings.

Materials andmethods

Healthy donor and cancer patient blood collection

For analysis of assay specificity, blood was collected from donors not known to have cancer.

Blood was collected by a trained phlebotomist into both Streck BCTs and EDTA tubes by Bior-

eclamationIVT (NY, USA). A minimum of two 10mL tubes were collected from each donor.

For orthogonal assessment comparing the InVisionFirst assay to dPCR, blood was collected

into Streck BCT from a series of NSCLC patients. All were analyzed using the InVisionFirst

assay and the first 20 of those identified as having KRAS (p.G12C or p.G12D) or EGFR

(p.L858R or p.E745_A750del/K) mutations at or above our LoD (0.25% VAF) with a second

tube of blood available were selected for dPCR orthogonal testing. For extended assessment of

2 locations with potential false positives (chr7:55181378 C>T and chr17:7669684 C> -), an

additional group of 242 untreated NSCLC patients from the same series as above and a further

92 individuals not known to have cancer were analysed.

Analytical validation of a highly sensitive liquid biopsy assay
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Institutional Review Board (IRB) approval was obtained from the six centers collecting

samples (Levine Cancer Institute, University of Colorado Lung Cancer Research Center, Holy

Cross Hospital, Mid-Florida Hematology and Oncology, Christiana Care and North Shore

Hematology Oncology). All patients provided written informed consent and data was de-iden-

tified so no patients could be identified by study personnel outside of the clinical trial site

including the study authors.

Upon collection, the Streck BCTs were gently inverted 8–10 times before being shipped

immediately to Inivata Inc (North Carolina) where they were processed within 7 days of collec-

tion. Here they were centrifuged at 1600 x g for 10 minutes at room temperature, plasma was

removed, transferred to a new tube and a 2nd centrifugation step was performed at 20,000 x g

for 10 minutes to pellet any remaining cellular debris before transferring the plasma to a new

tube.

EDTA samples collected by BioreclamationIVT were processed immediately following col-

lection before shipping to Inivata. The one significant modification from the Streck SOP was

that the second spin was performed at 6500 x g as a faster centrifuge was not available. Upon

completion of processing all cfDNA samples were frozen at -80 ˚C until ready for analysis.

Contrived ctDNA samples

SNVs. To assess SNV detection performance the Horizon Tru-Q reference material was

used. Tru-Q7 and Tru-Q0 DNA were both sheared to ~200bp (Covaris) and quantified by

Horizon Discovery. Tru-Q7 contains 39 validated mutations targeted by the InVisonFirst

assay. 32 of these are at low allele fractions with the majority between ~1%-1.3% VAF (range:

<1%-30% VAF). A full list of all mutations is available in S2 Table. All genomic changes

described in this and subsequent tables use the hg38 human genome build. Two-fold dilutions

were performed four times using Horizon Tru-Q 0 wild-type DNA as diluent to create the fol-

lowing mixes: 1%-1.3%, 0.5%-0.65%, 0.25%-0.33%, 0.13%-0.16% and 0.06%-0.08% VAF.

Indels. The Horizon Tru-Q7 reference DNA contains just a single indel (EGFR del746-

A750). To assess the InVisionFirst assay’s indel calling performance, SeraCare manufactured a

custom indel reference material. 9 common insertions (+1 to +12bp) and 9 common deletions

(-1 to -24bp) targeted by the InVisionFirst assay were synthesized by SeraCare. An additional

2 indels not currently covered by the InVisionFirst assay were also created in the mix. These

mutations were mixed against “Genome in a Bottle” (GM24385) wild-type genomic DNA to

produce mixes where the 18 targeted indels were present at approximately 2%, 1%, 0.5%,

0.25% or 0.1% VAF. The DNA was then sheared to ~150bp (Covaris) and the top three dilu-

tion levels were assessed by dPCR by SeraCare in order to confirm each indels VAF as com-

pared to wild type background DNA (S7 Table). The lowest two dilutions were not tested by

dPCR due to the expected low VAF of the indels.

Fusions. The InVisionFirst assay identifies ALK and ROS1 gene fusions by detecting the

genomic breakpoint junctions that bring the relevant genes together. As relatively few fusion-

associated DNA breakpoints have been published to date and as there are only a small number

of reference materials and cell lines with published ALK and ROS1DNA breakpoints, three dif-

ferent contrived materials were used.

A custom cell line mix was generated by Horizon Discovery. The resultant mix contained 1

ROS1 and 1 ALK fusion (S10 Table). Following shearing by Horizon Discovery, they demon-

strated with dPCR that the two fusions were present at ~2.5% VAF. These were subsequently

diluted to 1%, 0.5%, 0.25%, 0.12% and 0.06% VAF.

To further assess the performance of the assay over a broad spectrum of breakpoints, the

DNA junctions from 8 published ROS1 gene fusions and 10 published EML4-ALK gene fusions
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were identified [20]. A further 26 synthetic fusions were then designed by computationally

joining a 5’ and 3’ partner anywhere randomly within the common introns and exons targeted

by the InVisionFirst assay (S10 Table).

A 500 bp sequence was designed for all fusions with the DNA breakpoint in the center. Syn-

thetic fusions were manufactured as double stranded DNA fragments (IDT) then diluted and

sheared (Covaris) to ~160 bp before dPCR quantification. Genomic DNA (Bioline) was also

sheared to 160 bp and quantified using dPCR targeting a 108 bp region of the RPP30 gene. The

patient specific fusion DNA fragments were then spiked into genomic DNA at two different

levels (1% VAF and at 0.5% VAF). Eight samples were created with both an ALK and a ROS1

fusion and a further two were created with just a single ALK fusion. Thirteen samples were cre-

ated containing one of the randomly generated ALK fusion sequences and one of the ROS1

fusion sequences. All were present at 1% VAF (S10 Table).

CNVs. In order to assess the InVisionFirst assay’s performance for CNV detection, a simi-

lar approach was taken to our analysis of fusions. Firstly, the amplicons we use for targeting

the 4 genes currently assessed for amplification by the InVisionFirst assay were identified

(EGFR, FGFR1, ERBB2 andMET). 160 bp fragments of DNA were then selected encompassing

these regions. These were synthesized as double stranded DNA fragments (IDT) then quanti-

fied by dPCR. Genomic DNA (Bioline) was then sheared and quantified as above to use for

dilutions.

Each quantified double stranded DNA fragment was pooled by gene such that each targeted

region was equally represented (for example EGFR had 11 targeted regions synthesized).

Sheared background DNA and CNV pools were then combined to give the relevant amplified

amounts.

Extended assessment of PPA and PPV. To further assess the InVisionFirst assay’s ability

to call a broad spectrum of SNVs, indels, fusions and CNVs across a large range of allele frac-

tions above our LoD, an additional series of undiluted and diluted samples were created using

DNA from the Horizon Tru-Q reference material series and SeraCare reference DNA (Sera-

CareTriLevel and SeraSeq). An extended set of CNV samples were created with CNAR of

between 2-50x using the same method outlined above and mutant DNA was also spiked into a

range of healthy donor samples as described below. Each of these samples was run just once. A

full table of the different samples and their detected mutations is available in S6 Table.

Library preparation and analysis with the InVisionFirst assay

An earlier version of this assay based on eTAm-Seq has previously been described [17]. The

InVisionFirst assay is based on the same approach but with the addition of the ability to call

gene fusions. The updated assay also has an updated primer panel adding coverage to key ALK

and ROS1 inhibitor resistance mutations, and an amplicon size distribution of 73bp-155bp

(median = 112bp). The targeted exons and introns targeted for fusion detection are described

in S1 Table. cfDNA was first extracted from plasma using the QIAamp Circulating Nucleic

Acid kit (Qiagen) followed by quantification by dPCR using the BioRad QX200 and an assay

targeting a 108 bp region of the ribonuclease P/MRP subunit p30 (RPP30) gene. Contrived

samples were quantified using the same assay. Yields were expressed as amplifiable copies

(AC) of DNA. Two separate libraries were then setup in parallel from two blood tubes or from

the contrived DNA. Where libraries were prepared using contrived samples, 16,000 amplifi-

able copies of the genome were used except in the amplification study where a mix of 16,000

and 2000 amplifiable copies (minimum input) were used. Both libraries were setup using a

two-step amplification process that first targeted the desired regions then incorporated repli-

cate and patient-specific barcodes and Illumina sequencing adaptors (See Fig 1). The first
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library targets SNVs, indels and CNVs whilst the second library has been designed to target all

introns and exons brought together to create the three major EML4-ALK variants which col-

lectively account for 93% of ALK fusions found in the COSMIC database (COSMIC Version

83). It also targets 92% (COSMIC V83) of the intronic and exonic bases brought together to

create CD74-ROS1, SLC34A2-ROS1, SDC4-ROS1 and EZR-ROS1 fusions in lung carcinomas

(S1 Table).

For both library types up to 48 samples were pooled together including positive and nega-

tive controls before sequencing on the Illumina NextSeq 500 (300 cycle PE) with 5% PhiX to

monitor sequencing performance. Sequencing files were analyzed using the Inivata Somatic

Mutation Analysis (ISoMA) pipeline to identify SNVs, CNVs and indels and the FUSP pipe-

line to call fusions. For the ISoMA pipeline a minimum Phred quality score of 30 for each base

was required for inclusion in the analytics. In each run, in addition to the controls, we used the

non reference allele fraction at common single nucleotide polymorphisms (SNPs) to detect

potential contamination events. In addition, the overall sequencing depth at these common

polymorphisms was used as part of quality control to confirm that sufficient sequencing depth

had been generated.

For SNV and indel analysis, a background model was first established using samples from

presumed healthy donors for each position/base pair change covered by our panel. The final

determination of an SNV call integrated the data across multiple replicates for each sample in

comparison with this background within a maximum likelihood framework. The same statisti-

cal principle was used for indels using samples from the same analytical batch in order to

enable appropriate background calibration. The minimum depth at which any SNV or indel

would be called was 1000x. In order to identify CNVs, a normalized measure of read depth

was generated correcting for sample and amplicon effects in order to infer the copy number

ratio between the 4 assessed genes (ERBB2, FGFR1,MET and EGFR) and the remainder of the

genome.

Fusions were called by identifying the breakpoint sequences created when fusion partners

joined. Patients with sequence reads matching to a 3’ and 5’ fusion partner were identified as

fusion positive (e.g. EML4 intron 13 and ALK intron 19). When the same breakpoint is

detected twice, a fusion call is made. All variants were annotated using the canonical transcript

for each gene. All SNVs and indels that resulted in coding and splice-site mutations were

reported. Finally, a mutation calling report was generated providing a comprehensive sum-

mary of somatic alterations identified.

Orthogonal dPCR analysis

20 patients with NSCLC in whom a KRAS (p.G12C or p.G12D) or EGFR (p.L858R or p.

E745_A750del/K) mutation was detected by the InVisionFirst assay above our LoD (0.25%

VAF), were selected for dPCR orthogonal testing as described above. DNA was extracted from

a second tube of blood from all 20 patients, assessed by dPCR using the RPP30 assay then

shipped on dry ice, anonymized, to LGC.

LGC had previously determined the suitability of the dPCR assays targeting the four muta-

tions on the BioRad QX200 using both commercially available cfDNA standards (Horizon

Diagnostics) and a set of in-house materials (KRASG12C). The LoD for each assay was calcu-

lated at the start of the study using the false positive rate determined from�4 dPCR reaction

per assay using ~116ng wild type gDNA per reaction. (S14 Table). Importantly although this

LOD is achievable in samples with 116ng of DNA or greater, in samples with lower DNA

inputs, sensitivity will be reduced in a predictable fashion based on the stochasticity of small

numbers of mutant molecules.
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LGC then performed a single dPCR with the KRASG12C assay to determine the DNA con-

centration and whether the DNA could be run undiluted or needed to be diluted to be within

the dynamic range of the BioRad QX200 dPCR platform. Finally, DNA from all twenty

patients was assessed in triplicate (7μl per reaction) using the four assays and samples were

called mutant or wild type depending on whether they were above or below the assays LoD

(S13 and S14 Tables).

dPCR assays designed for assessment of unexpected calls (potential false
positives)

In order to validate possible false positive calls made during the analysis of healthy donors, two

digital PCR assays were ordered from BioRad and one was kindly donated by Dr Dana Tsui

(Cancer Research UK Cambridge Institute, University of Cambridge, UK). The assays that

were sourced from BioRad were designed using their online tool (https://www.bio-rad.com/

digital-assays/#/). Synthetic mutant sequence for each assay was also designed using the online

tool, and were ordered as double stranded DNA (IDT) and delivered pre-diluted (to 2000 cop-

ies per ul in 10mM Tris pH 8, 0.1mM EDTA and 0.1mg/mL Poly A). A mix of wild type DNA

(BioLine) and ~5% synthetic mutant DNA was first tested with all 3 assays using a temperature

gradient to determine optimal annealing temperatures. A dilution series of mutant to wild

type DNA was then created then run in duplicate at two different concentrations along with

wild type DNA to determine the background and limit of detection of each dPCR assay.

Finally, each sample was run at least 4 times using 5μl of DNA.

Robustness of the InVisionFirst assay to Streck BCT and EDTA blood tube
collection

To test that the InVisionFirst assay gives comparable results whether blood is collected in

Streck BCT or EDTA blood tubes, blood from multiple donors was drawn into each tube type

then this was processed to plasma as described above.

Both Streck and EDTA plasma was spiked with 16,000 amplifiable copies of either the Hori-

zon fusion cell line reference material at 2.5% VAF or sheared Horizon reference material

Tru-Q2 or Tru-Q3 which contain up to 14 variants (SNVs and indels) at 4 to 30% VAF. All

samples were then mixed, extracted, then analyzed using the InVisionFirst assay.

Effect on mutant allele fraction of delayed Streck BCT processing

Whole blood was collected into five 10mL Streck BCTs from four individual donors as

described above by BioreclamationIVT. This was shipped to Inivata and upon receipt of the

tubes, 4000 copies of sheared (200bp) Horizon 5%Multiplex I cfDNA Reference Standard

(Horizon Discovery) DNA was spiked into each sample. The five tubes from each donor were

then randomized and kept for 2, 3, 5, 7 or 10 days at room temperature (~26˚C) before routine

processing and analysis by the InVisionFirst assay. The allele fraction of each of the detected

mutations from the Horizon reference standard was then compared to the matched sample

from day 2 as a baseline to determine reduction in mutant VAF induced by delayed

processing.

Supporting information

S1 Table. Details of the 36 genes targeted by InVisionFirst and which variant types are

assessed for each gene. All exons covered for SNV, indel and CNV analysis are described. All
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introns and exons covered for fusion gene detection are described.

(XLSX)

S2 Table. Tru-Q7 (Horizon) reference DNAmutations. A full list of validated mutations

covered by the InVisionFirst panel are listed along with Horizon’s validated variant allele frac-

tion. All 39 variants are grouped by type.

(XLSX)

S3 Table. Overview of each study used to assess the four different variant types limit of

detection.

(XLSX)

S4 Table. SNV sensitivity at different dilution levels of Horizon Tru-Q7 DNA.

(XLSX)

S5 Table. Full list of all SNVs in the Tru-Q7 dilution study and whether they were detected.

DNA input (as assessed by dPCR), detected variant allele fraction (VAF) and total sequencing

depth are all described.

(XLSX)

S6 Table. Details of samples used in CNV sensitivity analysis and the extended analysis of

PPA for the four variant types. Section A describes the calculations used to determine PPA

for all 4 variant types. Section B details the cell line mixes created and calls made in the

extended assessment of PPA. Section C describes all contrived CNV samples and whether a

call was made. This includes both the samples used to assess the assays LoD and those used for

the extended assessment of PPA.

(XLSX)

S7 Table. List of all targeted indels in the custom SeraCare indel control material and com-

parison of SeraCare dPCR VAFs with average VAFs determined by InVisionFirst.

(XLSX)

S8 Table. Indel sensitivity at different dilution levels in the custom SeraCare indel control

material.

(XLSX)

S9 Table. Full list of all indels in the custom SeraCare indel control material dilution study

and whether they were detected. DNA input (as assessed by dPCR) and detected variant allele

fraction (VAF) are both described.

(XLSX)

S10 Table. Details of all fusion reference materials. Part A describes the Horizon cell line

mix. Section B describes the full sequence of the published patient specific fusions and section

C describes all the randomly generated fusions.

(XLSX)

S11 Table. List of samples spiked with mutation positive DNA (Tru-Q2, Tru-Q3 or the cus-

tom 2.5% VAF fusion cell line DNA) and whether each mutation was detected. For SNVs

and the one indel a detected VAF is reported.

(XLSX)

S12 Table. List of variants detected in donors not know to have cancer.

(XLSX)
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S13 Table. List of variants detected by both InVisionFirst and blinded dPCR in an orthog-

onal analysis study.

(XLSX)

S14 Table. LoD for the 4 digital PCR assays analyzed by LGC in samples with optimal

DNA input amounts.

(XLSX)
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