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Abstract

Comprehensive and simultaneous analysis of all genes in a biological sample is a capability of 

RNA-Seq technology. Analysis of the entire transcriptome benefits from summarization of genes 

at the functional level. As a cellular response of interest not previously explored with RNA-Seq, 

peritoneal macrophages from mice under two conditions (control and immunologically 

challenged) were analyzed for gene expression differences. Quantification of individual transcripts 

modeled RNA-Seq read distribution and uncertainty (using a Beta Negative Binomial 

distribution), then tested for differential transcript expression (False Discovery Rate-adjusted p-

value < 0.05). Enrichment of functional categories utilized the list of differentially expressed 

genes. A total of 2079 differentially expressed transcripts representing 1884 genes were detected. 

Enrichment of 92 categories from Gene Ontology Biological Processes and Molecular Functions, 

and KEGG pathways were grouped into 6 clusters. Clusters included defense and inflammatory 

response (Enrichment Score = 11.24) and ribosomal activity (Enrichment Score = 17.89). Our 

work provides a context to the fine detail of individual gene expression differences in murine 

peritoneal macrophages during immunological challenge with high throughput RNA-Seq.

Correspondence to: Sandra L. Rodriguez-Zas, rodrgzzs@illinois.edu.

HHS Public Access
Author manuscript
J Bioinform Comput Biol. Author manuscript; available in PMC 2016 April 01.

Published in final edited form as:
J Bioinform Comput Biol. 2015 April ; 13(2): 1550010. doi:10.1142/S0219720015500109.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

RNA-Seq; functional analysis; transcriptome; macrophage

1. Introduction

Identification and analysis of an individual gene may offer limited insights. While genes 

serve as one of the smallest units by which biological change can be measured, critical 

information comes from considering the sum of their individual effects. Expanding the 

“snapshot view” available for differential expression motivates a drive towards the 

enlargement of analyses from single gene studies with quantitative real-time PCR to 

microarrays, and more recently RNA-Seq.1

The range of tools available for RNA-Seq analysis, as well as the tools themselves, 

undergoes a rapid pace of modification. These changes demand a thorough understanding of 

how the tools operate to choose appropriate settings for a particular experiment. Without a 

singular accepted method or settings to address all applications, transcriptomics relies upon 

the validation of data quality and controls.2 TopHat, Cufflinks, and Cuffdiff comprise a set 

of tools for analyzing RNA-Seq datasets.3 These tools have gained popularity for the 

capability to handle intron-spanning reads, and options to address various biological- and 

technical-biases that are of concern during analysis.4

Mapping RNA reads to an annotated genome is one of the popular and well-established 

methods for differential expression testing between treatments in model organisms.5 With 

the potential to detect thousands of differentially expressed genes, organizing these 

differences into more interpretable groups becomes the purpose of downstream tools. One 

possibility that is explored here involves grouping the gene information into groups based 

upon their functional actions, a form of gene set enrichment.6 This study examines the 

capability of a RNA-Seq-based workflow to evaluate transcriptomic changes. Efficient 

identification of differentially expressed genes and the functions they impact elucidates their 

modification of the biological state between treatments. The novelty of this experiment is in 

the application of RNA-Seq and the associated algorithms to a particular biological model, 

the analysis of peritoneal macrophages from Bacille Calmette–Guérin (BCG)-challenged 

mice compared to those receiving a saline control.7 This challenge has been associated with 

substantial changes in sickness and depression-like indicators.8 The characterization of the 

transcriptome during immunological resolution and behavioral transition seven days after 

initial challenge is of interest. RNA-Seq has yet to be applied to characterize the 

transcriptome at this time point.9–11 The application of RNA-Seq and downstream methods 

to analyze changes in transcriptomics in this model has not been reported, providing a new 

level of capability in constructing an inflammation-induced immunological response profile. 

Transcript profiles were further studied and interpreted using functional enrichment analyses 

to uncover categories that may be over-represented among particular profiles.
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2. Materials and Methods

RNA-Seq technology was used to study changes in gene expression in macrophages taken 

from mice following a previously established immune-challenge model.10 Male adult (~ 22 

weeks of age; n = 6/group) C57BL/6J mice were injected into the peritoneum with TICE 

strain BCG (Organon USA Inc., USA) or equal volume (10 mg) physiological saline 

(Control). Utilizing the same inbred strain as used for the Mouse Genome Project minimizes 

genetic variations that could hinder mapping.12 RNA was isolated from macrophages 

collected from the peritoneal cavity seven days post-challenge.13,14 This timing of collection 

was selected to capture transcriptome changes during a period of immunological and 

behavioral transitions.8,11

The workflow of RNA-Seq data analysis is presented in Fig. 1. Transcriptomic analysis with 

RNA-Seq involves producing libraries of reads that represent gene transcripts from the 

samples for quantitative comparison. Individual mouse RNA-Seq libraries were sequenced 

using Illumina HiSeq2000 (Illumina, San Diego, CA) to produce paired-end 100-bp reads, 

summarized as “left” and “right” reads. One library of reads per biological sample was 

examined for sequencing errors prior to mapping to genome and transcriptome features. 

Quality control of sequence reads used FastQC (Fig. 2).15 Quality was determined by the 

reported score at each base position (> 30), a Qphred quality value which is the negative 

logarithmic transformation of the estimated probability of error (Eq. (1)).16

(1)

Reads were mapped to the mouse genome (GRCm38) and assembled using TopHat2 

(TopHat v2.0.9) and Cufflinks and analyzed using Cuffmerge, and Cuffdiff 2 (v2.1.1, Fig. 

1).3 TopHat2 maps reads via the use of Bowtie2, the core read-alignment program, while 

TopHat2 deals with splicing concerns from mapping intron-spanning RNA reads to a DNA 

genome.3 Due to the computational scale of mapping millions of reads to large genomes, 

Bowtie2 implements Burrows–Wheeler transformation to efficiently scan the genome during 

mapping.17 TopHat2 was chosen for its two-step method to deal with spliced alignments and 

preferential alignment of reads onto real genes from an annotation.18

Reads were assembled based upon mapping information into gene transcripts, with 

transcripts quantified by condition for differential comparison as elaborated in Ref. 3. The 

Cufflinks program (http://cufflinks.cbcb.umd.edu/) takes the mapping information from 

TopHat2, and assembles the reads back into the biologically relevant transcripts that would 

have produced them. Cufflinks offers optional assembly methods that correct for biological 

and technical biases, including biases in Illumina’s read-creation process.19 Options to 

correct for fragment bias during transcription priming with random hexamers and estimation 

of appropriate counting for those reads that can map to multiple sites were used.20,21 Upper 

Quartile normalization was enabled for its superior performance compared to the default 

Total Count method available in Cufflinks.22

Cuffdiff 2 (referred to from here on simply as “Cuffdiff”) performs differential expression 

testing between conditions by checking if each gene follows a beta negative binomial 

Nixon et al. Page 3

J Bioinform Comput Biol. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cufflinks.cbcb.umd.edu/


distribution. The beta negative binomial distribution can account for potential overdispersion 

between groups or uncertainty in read counts that may otherwise be ignored by simpler 

models.4 Before any testing for significance, all loci in the genome first needed a minimum 

number of fragment alignments (10 fragments; Test Status “OK”). Genes within a locus 

could be analyzed for significance after this minimum alignment (MA) within Cuffdiff was 

satisfied. Of those genes in locations with > 10 fragment alignments, a list of genes 

exhibiting significant differential expression between conditions (False Discovery Rate or 

FDR-adjusted p-value < 0.05) was obtained. The genes were named based upon annotation 

available from the UCSC database (see Ref. 23, www.genome.ucsc.edu).

Two complementary approaches were used to identify functional categories among 

transcript profiles. Enrichment based on the hypergeometric test applied to a list of 

differentially abundant transcript isoforms and gene set enrichment analysis (GSEA) of all 

transcript isoforms based on the Kolmogorov–Smirnov statistics were evaluated.24 Gene 

Ontological (GO, see Ref. 25, www.geneontology.org) terms related to Biological Process 

(BP) and Molecular Function (MF) were tested, along with the Kyoto Encyclopedia of 

Genes and Genomes (KEGG)-Pathway database (see Ref. 26, http://www.genome.jp/kegg). 

For the hypergeometric test, functional category enrichment and functional annotation 

clustering were performed in the Database for Annotation, Visualization, and Integrated 

Discovery (DAVID).6 Specifically the GO FAT categories within DAVID were tested, a 

filter of GO categories to minimize repetition of general categories and to focus on more 

specific term identification. Individual categories in DAVID are deemed enriched by using a 

one-tailed jackknifed Fisher exact test, the EASE score.27 The downstream functional 

annotation clustering of these categories used Enrichment Score (ES), calculated as the −log 

scale geometric mean of the EASE scores of member categories.28

For the purposes of clustering, DAVID by default considers categories individually by their 

EASE score (EASE ≤ 0.1) without concern for experiment-wide false-detection.27 To avoid 

errors related to multiple tests, categories were only considered enriched if they were 

significant at FDR-adjusted EASE score based p-value < 0.1.29 Cluster ES were re-

calculated to reflect the remaining member categories (ES > 4). The GSEA methodology 

was implemented using the software package GSEA-P and enrichment was tested against 

the functional categories present in the Molecular Signature Database (MSigDB).24 The 

recommended GSEA FDR-adjusted p-value < 0.25 threshold was used in agreement with 

the statistical testing implemented.24 Categories consistent between the hypergeometric and 

GSEA approaches are reported and discussed. These results are robust to differences in 

assumptions and methodologies between the approaches.

3. Results

The quality control was evaluated for every sample. No evidence of low quality reads was 

observed within the samples, with quality scores greater than 30 across the entire length of 

the reads. Quality scores were similarly high across both Control and BCG groups (Fig. 2). 

Scores ranged between 30 and 40, indicating accuracies between 99.9% and 99.99% for the 

bases at those positions. Based upon the observed quality of the sample data as well as the 

read filtering internal to TopHat2, trimming was not needed.
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The RNA-Seq reads produced 54 ± 8.5 million reads and 64 ± 6 million paired-end reads of 

100 bp in length per sample for Control and BCG, respectively. On average 91% of total 

reads was mapped to the genome for both Control and BCG. The percentage of reads per 

sample that successfully mapped to the genome ranged from 74% to 95%, the percentage of 

reads that produced aligning pairs was also in the same range (Table 1).

Following evaluation of read quality, their assembly into transcripts produced over 60,000 

transcripts among all samples. Prior to differential testing between the groups, these 

transcripts were filtered based upon sufficient alignment coverage and experiment-wide 

significance cut-offs. The number of differentially expressed transcripts between Control 

and BCG groups was 2079 (Table 2; 1373: FDR p-value < 0.01; 706: 0.01 < FDR p-value < 

0.05), representing 1884 genes.

Among the differentially expressed genes, 802 were under-expressed in BCG vs. Control, 

indicating similar quantity of up- and down-regulated genes post-challenge. However, there 

was a predominance of genes overexpressed in BCG relative to Control among the most 

significant profiles. The most significantly differentially expressed genes (FDR p-value < 

0.01) are listed separately for those over- (Table 3) and underexpressed (Table 4) in BCG vs. 

Control, together with supporting references when previously associated with macrophage 

populations and their immunological response profile.

Functional categorization of the gene list resulted in 92 significantly enriched terms (BP: 69 

terms; MF: 20 terms; KEGG: 3 terms; FDR p-value < 0.1; not listed). Clustering the 

enriched terms further reduced the list to 6 highly enriched clusters (ES > 4), listed by score 

in Table 5. Clusters were dominated by GO BP terms as they were the majority of the 

significantly enriched term list, with terms in the clusters underscoring the activation and 

regulation of the immune system following challenge. These clusters accounted for 24 of the 

significantly enriched terms.

4. Discussion

Quality control of the input reads is an important step to successful downstream mapping. 

Once the reads were determined to be of high quality, the filtering controls implemented by 

TopHat2 prior to mapping made additional trimming of the reads unnecessary (Table 1).54 

Percentages of mapped reads were similar to those reported in previous high-stringency 

methods, and approached the percentages seen when previously tested on simulated error-

free data.18,55 The mapping capability of aligners like TopHat2 is dependent upon the 

genome and annotation, meaning unmapped reads may include those associated with 

transcripts not yet represented in the annotation. Findings from these RNA-Seq confirmed 

several results from previous studies that used similar models and quantitative real-time 

PCR or microarray technologies and uncovered additional profiles and enriched categories. 

This study centered on one type of peripheral macrophage, collected at one time point and 

using a specific collection method on macrophage activation status. A longitudinal study of 

additional macrophage populations using alternative collection methods is necessary for 

extrapolation of our findings to wider conditions.
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The workflow described here effectively identifies genes that are differentially expressed 

during an immunological challenge and clusters these results based upon functionality. 

Significantly differentially expressed genes illustrated the extended expression response 

after BCG-challenge. Among the overexpressed genes, the most overexpressed gene S100a9 

works as a heterodimer with S100a8, also found to be in the overexpressed list (Table 3). As 

both are associated with inflammatory events and are inducible in mature macrophages, their 

presence after BCG-challenge is expected.56 The overexpression of CCL5 and CXCL10 

(Table 3) was also unsurprising, considering the inhibitory action of IL-10 upon both, and 

that reduced IL-10 levels were associated with increased resistance to intracellular 

pathogens49 such as BCG (Il10, Table 4). The overexpression of Arg1 in the BCG group is 

consistent with previous work studying the effect of this challenge in macrophages.57 Along 

with the most underexpressed gene in BCG compared to Control, Retnla, these indicate 

underexpression of Th2-associated genes due to the classic Th1-response to BCG.45,58 It is 

interesting to find Mt1 and Il10 together in the underexpressed category. Although studies 

were previously performed in T cells, Mt1/Mt2-deficient mice were found to produce 

increased levels of Il10 following an immune challenge with anti-CD3/CD28.59 Still, the 

role of metallothionein genes during immune challenges and inflammation are not fully 

elucidated, and low expression of Mt1 supports the proinflammatory nature of the response 

at the measured time-point.60 Direct association in the literature between macrophages and 

the underexpressed gene Ptprcap was less clear, although it has been found in the monocyte 

precursors to macrophages.61 However, Ptprcap is known as a CD45-associate, regulating 

the interaction of CD45 with other proteins. As CD45 regulates apoptosis, this may explain 

the relationship to immune-challenge.62 Although the number of differentially expressed 

genes were similarly split between overexpressed and underexpressed in the BCG relative to 

the control group, a more stringent significance cutoff found a predominance of genes 

overexpressed in the BCG group. These results are consistent with other reports of 

overexpression in the microglia of genes associated with inflammation response in response 

to an inflammatory challenge.63,64

Table 5 summarizes the enriched functional categories consistently detected by the 

hypergeometric test and GSEA approaches. Enrichment analysis highlighted the biological 

response of macrophages to an immunological challenge (inflammation-based defense 

responses; clusters 2 and 3 in Table 5). Clustering was effective at identifying cytokine and 

chemokine activity in immune cells that are typically associated with activation of 

macrophages.65 Categories previously associated with similar immune challenges66 were 

clustered to better clarify the transcriptomic differences between experimental groups. 

Several genes that were overexpressed in BCG relative to Control (Table 3) are affiliated to 

regulation of locomotion (Table 5) including Xcl1, Cxcl13, Cxcr2, Cxcl10, and Ccl5. These 

associations could be related to the typical amelioration of sickness behaviors and higher 

activity observed in mice seven days post-challenge.8,10 A ribosomal cluster (cluster 1) 

dominating the list is expected, as protein regulation is at the core of immunological 

response.65 The gene lists and resulting clusters from RNA-Seq technology allows for 

analysis based upon the shared and unique genes. In future studies, this response profile of 

immunologically challenged peritoneal macrophages can be compared to similar constructed 
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profiles of other cell populations or challenges to identify profile characteristics unique to 

each combination.
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Fig. 1. 
RNA-Seq workflow, showing the analysis of each sample individually by Tophat and 

Cufflinks (inset) before the collective analysis of all samples in Cuffdiff to test for 

differential expression (?) between conditions (BCG and Control or Ctrl groups).
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Fig. 2. 
Quality box-and-whisker graphs via FastQC illustrating quality scores across the read length 

in the left and right reads from BCG and Control (Ctrl) samples.
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Table 2

Transcript and gene counts within Cuffdiff.

Total tested MA > 10a Significant (FDR p-value < 0.05) Named genesb

Transcript 62,490 29,844 2258 2079

Gene 23,274 12,009 1885 1884

a
MA: Minimum alignment; a locus (i.e. transcript) needs at least this many fragments aligned before significance testing will be performed.

b
Named genes were determined using the UCSC database (http://genome.ucsc.edu).
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Table 3

Twenty five genes showing the greatest differential overexpression in BCG relative to Control (FDR p-value < 

0.01).

Gene namea Gene ID Log2 (BCG/Control) Referenceb

S100a9 20202 10.08 30

Ly6i 57248 9.50 31

Asprv1 67855 9.44 32, 33

Il1f9 215257 8.19 33, 34

Spon1 233744 8.02 35

Nos2 18126 8.01 36, 37

S100a8 20201 7.69 30, 36

Ccl8 20307 7.58 30, 38

Cxcr2 12765 7.50 30

Fcgr1 14129 6.03 30

Xcl1 16963 5.49 33, 39

AW112010 107350 4.98 40

Lst1 16988 4.80 41

Oas3 246727 4.77 67

Rsad2 58185 4.72 35

Smpdl3b 100340 4.52 42

Gbp2 14469 4.38 68

AA467197 433470 4.26 43

Ccl5 20304 3.99 33, 38

Cxcl10 15945 3.81 30

Chi3l3 12655 3.81 30

Acsl1 14081 3.59 35

Isg15 100038882 3.38 35

Ifi27l2a 76933 2.65 44

Arg1 11846 3.35 30, 33

a
AA467197: expressed sequence AA467197; Acsl1: Acyl-CoA synthetase long-chain family member 1; Arg1: Arginase 1; Asprv1: Aspartic 

peptidase, retroviral-like 1; AW112010: Expressed sequence AW112010; Ccl5: Chemo-kine (C-C motif) ligand 5; Ccl8: Chemokine (C-C motif) 
ligand 8; Chi3l3: Chitinase-like 3; Cxcr2: Chemokine (C-X-C motif) receptor 2; Cxcl10: Che-mokine (C-X-C motif) ligand 10; Fcgr1: Fc receptor, 
IgG, high affinity I; Gbp2: Guanylate binding protein 2; Ifi27l2a: Interferon, alpha-inducible protein 27 like 2A; Il1f9: Interleukin 1 family, 
member 9; Isg15: ISG15 ubi-quitin-like modifier; Lst1: Leukocyte specific transcript 1; Ly6i: Lymphocyte antigen 6 complex, locus I; Nos2: Nitric 
oxide synthase 2, inducible; Oas3: 2′-5′ oligoadenylate synthetase 3; Rsad2: Radical S-adenosyl methionine domain containing 2; Smpdl3b: 
Sphingomyelin phosphodiesterase, acid-like 3B; Spon1: Spondin 1; S100a8: S100 calcium binding protein 8; S100a9: S100 calcium binding 
protein 9; Xcl1: Chemokine (C motif) ligand 1.

b
Literature associating the listed gene with a macrophage population.
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Table 4

Twenty five genes showing the greatest differential underexpression in the BCG relative to the control group 

(FDR p-value < 0.01).

Gene namea Gene ID Log2 (BCG/Control) Referenceb

Retnla 57262 −4.90 30, 45

Cxcl13 55985 −4.67 30, 33, 35

Cd209a 170786 −4.42 33

Pf4 56744 −4.07 30, 35

Fcrls 80891 −3.90 30

Adm 11535 −3.51 30, 35

Lyve1 114332 −3.41 46

Vsig4 278180 −3.19 35, 47

Bank1 242248 −3.07 48

Il10 16153 −3.01 30, 33, 35, 49

Cd83 12522 −2.87 35

Faim3 69169 −2.79 50

Blk 12143 −2.79 35

Pou2af1 18985 −2.78 35

Mmd 67468 −2.71 35, 51

Cd79b 15985 −2.66 30

Bcar3 29815 −2.62 42

Cd2 12481 −2.55 35

Fabp4 11770 −2.43 30, 35

Gimap6 231931 −2.36 35

F13a1 74145 −2.35 30

Ptprcap 19265 −2.34 —

Phgdh 236539 −1.94 43

Mt1 17748 −1.70 52

Wfdc17 100034251 −1.22 53

a
Adm: Adrenomedullin; Bank1: B cell scaffold protein with ankyrin repeats 1; Bcar3: Breast cancer anti-estrogen resistance 3; Blk: B lymphoid 

kinase; Cd2: Cd2 antigen; Cd209a: Cd209a antigen; Cd79b: Cd79b antigen; Cd83: CD83 antigen; Cxcl13: Chemokine (C-X-C motif) ligand 13; 
Fabp4: Fatty acid binding protein 4, adipocyte; Faim3: Fas apoptotic inhibitory molecule 3; Fcrls: Fc receptor-like S, scavenger receptor; F13a1: 
Coagulation factor XIII, A1 subunit; Gimap6: GTPase, IMAP family member 6; Il10: Interleukin 10; Lyve1: Lymphatic vessel endothelial 
hyaluronan receptor 1; Mmd: Monocyte to macrophage differentiation-associated; Mt1: Metallothionein 1; Pf4: Platelet factor 4; Phgdh: 3-
phosphoglycerate dehydrogenase; Pou2af1: POU domain, class 2, associating factor 1; Ptprcap: Protein tyrosine phosphatase, receptor type, C 
polypeptide-associated protein; Retnla: Resistin like alpha; Wfdc17: WAP four-disulfide core domain 17; Vsig4: V-set and immunoglobulin 
domain containing 4.

b
Literature associating the listed gene with a macrophage population.
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Table 5

List of member terms for each functional clusters (ES > 4).

Cluster identifier ES (Genes)a Identifier (Genes)b Term name

1 17.89 (98) GO:0006412 (69) Translation

GO:0003735 (59) Structural constituent of ribosome

GO:0005198 (85) Structural molecule activity

Mmu03010 (60) Ribosome

2 11.24 (118) GO:0009611 (80) Response to wounding

GO:0006952 (92) Defense response

GO:0006954 (54) Inflammatory response

3 7.15 (66) GO:0042330 (35) Taxis

GO:0006935 (35) Chemotaxis

GO:0007626 (46) Locomotory behavior

GO:0008009 (17) Chemokine activity

GO:0042379 (17) Chemokine receptor binding

GO:0005125 (38) Cytokine activity

4 5.89 (67) GO:0030246 (67) Carbohydrate binding

GO:0030247 (30) Polysaccharide binding

GO:0001871 (30) Pattern binding

GO:0005539 (27) Glycosaminoglycan binding

5 5.83 (83) GO:0006915 (79) Apoptosis

GO:0012501 (79) Programmed cell death

GO:0008219 (83) Cell death

GO:0016265 (83) Death

6 5.45 (88) GO:0042981 (88) Regulation of apoptosis

GO:0043067 (88) Regulation of programmed cell death

GO:0010941 (88) Regulation of cell death

a
ES: Enrichment Score; Listed in parenthesis, the ES is the number of genes enriching the cluster.

b
Member terms of the cluster, with the number of genes enriching that term in parentheses.
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