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. . L Radial Positi
Abstract—A small-signal equivalent circuit model and FEM adil Zosion

often guide CMUT design. The small-signal model is usually — > Radius
derived using a combination of numerical and FEM analysis. A d
strictly analytical approach to CMUT design is desired because ﬁ I Plate IPlate Deflection E

it provides design intuition and efficient numerical analysis. In Thickness Wk

this paper, we show that the mass-spring-damper model used 0 Plate/

for many MEMS structures accurately captures the behavior Top Electrode

of a CMUT with a circular plate. We provide equations for Gap
the CMUT’s equivalent mass-spring-damper parameters, pull- &0
in point, and equivalent circuit parameters. Comparison with
FEM shows that the model accurately captures the CMUT’s
behavior for a wide range of designs. Using this model, we can
derive simple design equations, calculate the small-signal model
for frequency response simulations, and simulate the CMUT’s Fig. 1. An ideal circular-plate CMUT.
large-signal transient behavior.

Bottom Electrode

I. DERIVING THE SMALL -SIGNAL EQUIVALENT CIRCUIT From (2), we see that the maximum plate deﬂecti%k,

MODEL which occurs at the plate’s center+£r0), is given by (4).
For a CMUT with a circular plate (Fig. 1), we can calculate Pyat
an equivalent spring constant, mass, and damping coefficient Yok = 1D (4)

that accurately capture the plate’'s mechanical properties O%\%reraging the deflection over the entire plate area shows that

its entire range of stable detection. To calculate these parag: average plate deflection equals of the peak deflection
eters, we assume a uniform pressuredeflects the plate. '

The pressure® given by (1) includes the electrical forcg,, J"O“ 2rrw(r)dr  Pya®  wp
resulting from a voltage applied to the CMUT and the force Wavg = a2 ~ 192D 3 ®)
from atmospheric pressur®,;,,.

Lohfink and Eccardt [2] refer to the equation for the plate’s

p_p F, 1 deflection as the shape function. We assume that the shape
0= Fatm + ) @ function given by (2) for a uniform pressute holds for all
stable deflections despite the nonuniformity of the electrical

For a uniform pressure and the assumed membrane geom(?trly : : ,
. . ) : orce—the electrical force is strongest at the plate’'s center,
basic plate theory gives (2) for the plate’s deflection as

! . . : vﬁwere the top and bottom electrodes are closest. This assump-
function of radial position;, plate radiusa, and the plate . o - . .

o o tion simplifies deriving equivalent mechanical parameters and
material’s flexural rigidity,D [1]. ) : )

accurately predicts the plate displacement due to an applied
Pyat r2 2 voltage.
2 2

w(r) = 64D (1= —5)" = wp(1 - ﬁ) @ From the shape function and the CMUT gap, we can

-
e . . find the CMUT'’s electrical capacitancé€], as a function of

Flexural rigidity is given by (3), whereis the plate thickness, late displacement P

and £ and v are the plate material’s Young’s modulus ang '

Poisson ratio, respectively. u 2mreq coma®arctanh(, /228)
Et3 ¢= / 1 r2\2 dr = W
D=—_"" 3) 0 9o — wpr(l = &) VIO Wpl:
12(1 — 12) (6)
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The force produced by the equivalent spring acts on an
equivalent massp. We can calculate the equivalent mass from
the resonance frequency [3].

k1 10.22

wo=4\/—= ———— 12

s (12)

m = k—12 = 1.847wa’tp (23)
W

The final component of the mass-spring-damper system is
the damping constank,;. The damping constant represents a
force that is proportional to velocity; in addition it represents
energy loss and mechanical noise. For this paper, we assume
the damping resistance is equal to the plane-wave radiation
impedance which assumes the transducer is large relative to
a wavelength. For a smaller transducer, a complex radiation

0 T T T T T T
0 4 8 12 16 20
Normalized Pressure

(b) Rb = Zmdmz2 (14)

Fig. 2. plate displacement and resonance frequency for different applied
uniform pressuresKy = 101 kPa). (a) When midplane stretching is ignored, Il. QUALITY FACTOR AND RESONANCEFREQUENCY

the plate displacement increellses linearly vr\]/ith tge applife;j pressufrle. AnonlineafFrom a design perspective, we often specify transducer re-
spring consanty, sccuratey captures the cfects of e defctons. Ghirements in terms of center frequency and bandwidth. Frorm
for large deflections, the effective mass changes resulting in some error in the expressions fdr, m, and Ry, we can derive expressions for
resonance frequency prediction. the CMUT’s natural resonance frequency, damped resonance
frequency, and quality factor. The natural resonance frequency,
given by (12), equals the plate’'s resonance frequency in the
The first and second derivatives Gfwith respect tow.., are gpsence of damping. When the quality factor, given by (15),
given by (7) and (8). is greater than 0.5, we use the damped resonance frequency,
given by (16). If the quality factor is less than 0.5, the system

impedance must be considered [2].

dC , goma’ C : . .
o~ ' = Swmay 9w (7) is overdamped and the resonance frequency is undefined.
“vg 290Wauvg (1 — =5) avg For those designs, we can use the quality factor and natural
resonance frequency as starting points and use the small-signal
d2c . 3eoma’ eoma? equivalent circuit model to evaluate the frequency response.
2 - = 3Wavg\2 3Wavg
e 206wavg (1 = =55)? - 200w, (1 — =) Q="10 _ 180 1Py, (15)
C 1 dC Rb Rmed
to5 — 8
2wavg 2Wqvg AWavg =
. . . _ b
Because the plate’s average displacement varies linearly Wg = woi /1 — Akym (16)

with applied force, we can write the average plate displace-

bandwidth. In the frequency domaih/Q, gives the CMUT’s
) fractional bandwidth, which equals the 3-dB bandwidth di-
vided by the center frequency.

a* a? 1

192D~ '™ T02:D ~ L

wavg:PO Fm

- 192D I1l. V OLTAGE ACTUATION AND PuULL-IN

ki = a2 (10) A voltage applied between the CMUT’s top and bottom

For deflecti I relati he plate’s thick electrodes, regardless of its polarity, deflects the plate towards

| o,r 3. 8(|3tIOI’lS small re ative .to tle pa:]es t |c|_n§sfs, tr{ﬁe bottom electrode. If the applied voltage is less than the
plate’s displacement is proportional to the applied forcg, ), i, voltage, the plate deflects to a stable position. Applying

However, for larger deflections, stretching of the plate’s mid- voltage greater than the pull-in voltage causes the plate to

plane results in a nonlinear relgtionghip between d_isplace_mgﬂhp in contact with the bottom electrode. For CMUTSs, the
anq force. We ca;]n capture th'_s mlldplarrl]e stritchl?ghusml fil-in voltage is often referred to as the collapse voltage.
zprlrllg constanit at Is proportional to the cube of the p owever, for consistency with general MEMS literature, this
isplacement [1]. paper uses the term pull-in.
—247(—896585 — 5296100 + 342831v2) Using the principal of virtual work, we can calculate the
ks =D 20645022 (11) force on the plate created by an applied voltage. This electrical
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force, F,, is given by (17) where (7) givegff—ug for a circular
plate.

From the deflection that satisfies (23)p;, we use (25) to
find the pull-in voltage Vpr.

du, 1 dcC
€ —_y? 17
2 dwaug (17)

e p—
dwaug

25
The applied voltage usually consists of a dc bias voltage added (25)

to an ac excitation voltage. The dc bias voltage increases

the CMUT’s transmit and receive sensitivity, as described By numerically solving (24) and (25), we can find the pull-

in Section IV, and results in static plate deflection. An ag, yoltage and the plate deflection at the pull-in voltage. With

excitation voltage creates plate motion. some simplifying assumptions, we can also find closed-form
To calculate the plate’s static deﬂection, we find the deﬂeﬁna|ytica| solutions for the pu”_point_ For examp|e, for h|gh_

tion for which the electrical force equals the mechanical forcgequency immersion devices we can neglégtand wayp, .

If the CMUT'’s cavity is vacuum sealed, then finding the statiyith these assumptions, we find that at the pull-in point the

plate deflection first requires numerically solving (18) for thgeak plate deflection equals 46% of the gap and that (29) gives
atmospheric plate deflectioni,,. the pull-in voltage.

7Ta2patm = k1Watm + k3w2tm (18) WPT ,pk

|k;3:07 PaMnZO - 046 (26)

3 3

9ok1 | 9o Quwo Ry
=0. = (27

AEO 0-39 AEO ( )

Assuming the expressions for the circular plate pull-in
(20) parameters have the same form as the parallel-plate actuator
garameters helps derive expressions for the pull-in deflection

If the applied dc voltage is greater than the pull-in voltage, : .
(20) has ﬁz solution. A%ene?al methodology f‘)or finding i%nd pull-in voltage that account for atmospheric pressure.

Using (19), we can find the mechanical restoring force of the go
displaced plate.

Fon =k (wavg - watm) + k3 (wz?;vg - wztm) (19)

VPr lk3=0, Parm=0 = 0.39
Numerically solving (20) yields the static deflection.

Fn(Wavg) = Fe(Wavg) = 0

pull-in point is given in [4]. Using this methodology, we can Wk Fotm /K1
find the pull-in point using the expression for the total energy E | ka=0 & 0.46(1 + 3.55 90 ) (28)
stored in the CMUT's capacitance and equivalent spring.
Uiot = Ue + Up, 21 2(kywpr — Faim
S @D Vor gm0 = \/ e, = o) (29)
= §CV2 + §k1 (wavg - watm)2 wpr
1 By solving (24) and (25) numerically we can find the
Ly (Wang — watm)* (22) y g (24) (25) y

4

pull-in point considering both atmospheric deflection and the

For a given dc voltageVi., the plate deflects to a Iocalnonlinear spring constant. A nonzekg increases the pull-in

minimum in the energy versus deflection curve defined t%;aflectmn and the pul-in voltage.
(21). We can find this minimum energy point by finding th
local minimum where the first derivative of (21) with respec
to wqvg €quals zero—note that finding this energy minimum
is equivalent to finding the deflection at which the electrical From equations for the mechanical enetgy and electrical
and mechanical forces are equal. For voltages greater thandhergylU,., we can derive an equivalent linearized small-signal
pull-in voltage, no stable solution exists and the first derivativguivalent circuit model of the CMUT. A small-signal circuit
of Uit nNever equals zero. As described in [4], when theodel provides useful insight about the CMUTSs transmit and
applied voltage equals the pull-in voltage the energy curveceive sensitivity and its frequency response. In addition,
has an inflection point rather than a local energy minimurit. provides a convenient way of simulating the small-signal
We can find the deflection at the pull-in point by solving (23)esponse with tools such as SPICE.

for wavg, which can rewritten in terms of mass-spring-damper To derive the model, we define the standard two-port model
parameters as given by (24). [5]. For small linear variations, the two ports are related as

dU,, &2C _dQUm qc described by (30).

V. DERIVING THE SMALL -SIGNAL EQUIVALENT CIRCUIT
MODEL

~0 (23)

dwavg d’LU?“Jg dw?zug dwaug
5V %, % 5Q
d2C c — AB = 9=0  *91Q=0 30
—Fm—2 + keff - O (24) |: (SF :| 5_F [ 59 ( )
dwavg dwavg 0Q g=0 g Q=0
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Fig. 4. Equivalent circuit of an electrostatic transducer.

The equivalent circuit in Fig. 4 captures the same behavior
as (30). The circuit elements are defined by (34)-(38).

Co=C (34)

_ App v

= A (35)

A? n2
k2=—4 =__— 36
¢ AppAp  CAxp (36)

= keq = Aga(1 — K2) (37)

1
Con

L,=m

(38)

Note that the capacitancg,, in the equivalent circuit model
captures the spring-softening effect; as the applied voltage
approachespr, the equivalent spring constant approaches
zero.

V. CONCLUSION

The spring-mass-damper model accurately predicts the
CMUT’s behavior for a wide range of designs. We can use
the model to develop a set of simple hand calculations that
can guide transducer design. In addition, we can use it to
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derive the small-signal equivalent circuit which is useful for
simulating the transducer’s frequency response and interaction
with electronics. With tools such as Matlab Simulink, we can
also use the model to make large-signal transient simulations.
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Fig. 3. Comparison of FEM (circles) and spring-mass-damper (dots) model
results.

(1]

We can write each element of the matrix in terms of thg]
equations for the CMUT's capacitance and spring constant.

VI od Q. 1 3
11 30 , dQ(C) C (31) M
dV dF [5]
Ao = Aoy = T dQ CQQC/ (32)
oF dF. 1 202 c”
gy = 2| k- e g1 .
2= Sglome " 29 (o~ @)
(33)
2114
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