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Abstract. This paper investigates the option pricing under the FMLS (finite moment

log stable) model, which can effectively capture the leptokurtic feature observed in many

financial markets. However, under the FMLS model, the option price is governed by a

modified Black-Scholes equation with a spatial-fractional derivative. In comparison with

standard derivatives of integer order, the fractional-order derivatives are characterized

by their “globalness”, i.e., the rate of change of a function near a point is affected by the

property of the function defined in the entire domain of definition rather than just near

the point itself. This has added an additional degree of difficulty not only when a purely

numerical solution is sought but also when an analytical method is attempted. Despite

this difficulty, we have managed to find an explicit closed-form analytical solution for

European-style options after successfully solving the FPDE (fractional partial differential

equation) derived from the FMLS model. After the validity of the put-call parity under

the FMLS model is verified both financially and mathematically, we have also proposed

an efficient numerical evaluation technique to facilitate the implementation of our formula

so that it can be easily used in trading practice.
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1. Introduction. It is well documented in the literature that the BS (Black-Scholes)

model usually underestimates the probability of underlying price moving significantly

over small time steps [3]. For example, when analyzing the S&P 500 data, a “leptokurtic

distribution” is observed, which has a higher peak and two heavier tails than those

of the normal distribution. Numerous efforts have been made to develop alternative

asset return models capable of capturing the leptokurtic feature observed in financial

market data. Those models have either allowed the volatility to evolve stochastically,

such as the Heston model [8], or added jumps to the process of underlying price, such

as the Press model [18], Merton’s jump diffusion model [16], and so on. One of the

most popular approaches in the latter category is to assume that under an equivalent

martingale measure, the underlying price stays within a family of Lévy processes, which

include the standard Brownian motion, Poisson process and compound Poisson processes

as the simplest form. In addition to the fat tails they have, Lévy distributions allow for

long jumps as well, which are frequently observed in real markets.

Among all the Lévy processes, the maximally skewed LS (Lévy stable) process intro-

duced in [3] has been studied by a number of authors. This special Lévy process gives rise

to an interesting financial model known as the FMLS (finite moment log-stable) model

[3], which can not only successfully capture the high-frequency empirical probability dis-

tribution of the S&P 500 data, but also fit simultaneously volatility smirks at different

maturities. Most importantly, in contrast to many other models driven by different Lévy

processes, the FMLS model guarantees that all moments of the underlying index level are

finite, which ensures the existence of an equivalent martingale measure and the finiteness

of option prices at all maturities. The current work is carried out under the framework

of the FMLS model. The extension of our approach to other models driven by different

Lévy processes (e.g., KoBol and CGMY mentioned in [6]) is quite promising.

Mathematically, to characterize the non-locality induced by the pure jumps under the

FMLS model, the FPDE (fractional partial differential equation), which is a subset of

the class of pseudo-differential equations, needs to be solved. We remark that in the

new FPDE governing the option price under the FMLS model, the second-order spatial

derivative involved in the standard BS equation is replaced by an α-order spatial deriv-

ative, with α being any real number belonging to (1, 2]. Due to its non-local nature, the

fractional operator in fact weights information of the portfolio over a range of underlying

values rather than looking at localized information.

In the quantitative finance area, two types of fractional derivatives are mainly docu-

mented: a time-fractional derivative and (or) a spatial-fractional derivative. Regarding

a fractional derivative in time, Wyss [19] considered the pricing of option derivatives

under the modified BS equation with a time-fractional derivative and derived a closed-

form solution for European vanilla options. However, in his work, no plausible financial

reason is provided to explain why a time-fractional derivative should be adopted. Later

on, Cartea and Meyer-Brandis [7] proposed a model explicitly using information on the

waiting time between trades. It is shown that their model can effectively capture the

empirical waiting-time distribution under the data generating measure. This model was

further investigated by Cartea in [5], where he found that the value of European-style

derivatives satisfies a FPDE containing a non-local operator in time-to-maturity known
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PRICING EUROPEAN-STYLE OPTIONS WITH FRACTIONAL DERIVATIVE 599

as the Caputo fractional derivative. On the other hand, regarding the option pricing

with a spatial-fractional derivative, Carr and Wu [3] introduced the FMLS model to the

literature and showed its superior performance against several widely used alternatives.

Under this model, many techniques have been developed to compute option values, as

summarized in [14]. Substantial progress has been made by Cartea and del-Castillo-

Negrete [6] who successfully connected the FMLS process (as well as KoBol or CGMY

processes) with the spatial-fractional derivatives. They considered the pricing of barrier

options under the FMLS (as well as KoBol or CGMY) model purely numerically by us-

ing a finite difference method. Cartea [4] also showed that the hedging strategies can be

substantially improved once fractional derivatives are adopted.

In this paper, we consider systematically the pricing of option derivatives under the

FMLS model. Despite a number of difficulties such as the non-local nature of the spatial-

fractional derivative that prevents efficient numerical valuation for the option price, we

have successfully derived an explicit closed-form analytical solution for European-style

vanilla options under the FMLS model.1 Upon using the newly derived analytical so-

lution, the asymptotic behavior of the solution can be well examined, which provides

further justification for adopting the FMLS model to price options. Moreover, we have

also verified, from both financial and mathematical points of view, the validity of the

put-call parity under the FMLS model. Another important point is that the implemen-

tation of our solution is not as straightforward as the case of the BS formula because of

the appearance of the Fox functions in the kernel of integration in the current solution.

However, we have proposed an efficient and accurate numerical evaluation technique to

significantly facilitate the implementation of our formula so that the FMLS model can

be easily used in trading practice.

The paper is organized as follows: In Section 2, we introduce the FPDE system that

the price of European-style options must satisfy under the FMLS model. In Section 3, we

derive a closed-form analytical solution from the established FPDE system and examine

the asymptotic behavior of the solution. We also prove the validity of the put-call parity

under the FMLS model. In Section 4, numerical examples and some quantitative analyses

are presented. Concluding remarks are given in the last section.

2. FMLS model. Under the risk neutral measure Q, the FMLS model assumes that

the log value of the underlying i.e., xt = lnSt, with dividend yield D follows a stochastic

differential equation of the maximally skewed LS process:

dxt = (r −D − ν)dt+ σdLα,−1
t , (2.1)

where r and D are the risk free interest rate and the dividend yield, respectively. t is

the current time, and ν = −1

2
σα sec

απ

2
is a convexity adjustment. Lα,−1

t denotes the

maximally skewed LS process, which is a special case of the Lévy-α-stable process Lα,β
t ,

where α ∈ (0, 2] is the tail index describing the deviation of the LS process from the

1A solution written in terms of the inverse Fourier transform without the inversion being carried
out analytically is still of closed form. However, since numerical inversion of Fourier transform should
be handled carefully, such kinds of solutions are not truly “explicit” as far as the computation of the
numerical values of an option is concerned.
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Brownian motion, and β ∈ [−1, 1] is the skew parameter. To ensure that the underlying

return has the support on the whole real line, the tail index α needs to be restricted

to (1,2], as demonstrated in [3]. We remark that in the maximally skewed LS process

(β = −1), the random variable xt is maximally skewed to the left, meaning that the

right tail of the distribution is fast decaying so that exponential moments exit. This

setting of parameters implies that the FMLS only exhibits downward jumps while its

upward movements have continuous paths [6], a feature that might not agree well with

the empirical evidence. However, it should be pointed out that although this model is

not perfect in modeling option prices, it can still be regarded as a springboard for future

extensions which can capture finer properties of the option market, as suggested in [3].

In the following, we shall consider the pricing of European-style vanilla options under

this model.

Let V (x, t;α) be the price of European-style options, with x being the log underlying

price defined as x = lnS and α being the tail index. Cartea and del-Castillo-Negrete [6]

showed that under the FMLS model, V (x, t;α) satisfies the following FPDE:

⎧⎨
⎩

∂V

∂t
+ (r +

1

2
σα sec

απ

2
)
∂V

∂x
− 1

2
σα sec

απ

2
−∞Dα

xV − rV = 0,

V (x, T ;α) = Π(x),
(2.2)

where Π(x) is the payoff function, which is defined as max(ex−K, 0) and max(K−ex, 0)

for European calls and puts, respectively, with K being the strike price. −∞Dα
x here is

the one-dimensional Weyl fractional operator, which is defined as

−∞Dα
x f(x) =

1

Γ(n− α)

∂n

∂xn

∫ x

−∞

f(y)

(x− y)α+1−n
dy, n− 1 ≤ �(α) < n.

From this definition, it can be observed that when α→2, the above one-dimensional

Weyl fractional operator becomes the second-order differentiation, and consequently,

(2.2) degenerates to the classical BS system for European options.

It should be remarked that (2.2) is fundamentally different from the FPDE system in

[19], where the fractional derivative appears in the time direction and can be eliminated

by the Laplace transform, whereas in our case, the Laplace transform would not help.

Despite those difficulties, we have managed to derive an explicit closed-form analytical

solution from (2.2), as will be shown in the next section.

3. Closed-form analytical solution. In this section, we derive a closed-form ana-

lytical solution for European-style options under the FMLS model. This section is further

divided into three subsections, according to three important issues to be addressed. In

the first subsection, the detailed derivation of our formula is provided, whereas in the

second and last subsections, the asymptotic behavior of our solution and the put-call

parity under the FMLS model are examined, respectively.

3.1. Solution procedure. To make analysis convenient, we shall first change the back-

ward problem into a forward problem by introducing τ = −1

2
σα(sec

απ

2
)(T − t). The
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FPDE system (2.2) then becomes⎧⎨
⎩

∂V

∂τ
= (γ − 1)

∂V

∂x
+ −∞Dα

xV − γV = 0,

V (x, 0;α) = Π(x),
(3.1)

where γ =
−2r

σα sec(απ2 )
is the relative interest rate of the volatility with fractional order

α to the risk-free interest rate. One can observe that if α = 2, γ becomes
2r

σ2
, a quantity

identical to the relative interest rate of the BS model; while if α is smaller than 2,

an additional factor − sec(
απ

2
) appears, which eliminates the arbitrage opportunities

introduced by σα.

To solve (3.1) analytically, we shall start from the expression of V in the Fourier space,

i.e., Ṽ (ξ, τ, α) = F [V (x, τ ;α)]. It is shown in [6] that Ṽ (ξ, τ, α) satisfies⎧⎪⎨
⎪⎩

∂Ṽ

∂τ
= (γ − 1)iξṼ − |ξ|αṼ − γṼ = 0,

Ṽ (ξ, 0;α) = Π̃(ξ),
(3.2)

where Π̃(ξ) = F [Π(x)]. From a FPDE point of view, (3.2) can in fact be straightforwardly

obtained after the Fourier transform is applied on (3.1). Upon solving (3.2), the option

price in the Fourier space can be written as

Ṽ (ξ, τ ;α) = e−γτ Π̃(ξ)e−(1−γ)τiξ−|ξ|ατ . (3.3)

To obtain the option price V (x, τ ;α) in the original x−space, one still needs to carry out

the Fourier inversion either numerically or analytically, a formidable process that often

prevents this great technique being widely used to solve PDEs. In the following, we shall

concentrate on carrying out (3.3) purely analytically.

According to the convolution theorem of the Fourier transform, it is clear that

V (x, τ ;α) = e−γτV (x, 0;α) ∗ F−1[e−(1−γ)τiξ−|ξ|ατ ], which can be further reduced to

V (x, τ ;α) = e−γτV (x, 0;α) ∗ P (x− (1− γ)τ ;α) (3.4)

after the shift theorem is applied, where P (x;α) = F−1[e−|ξ|ατ ].

Upon realizing that e−|ξ|α is nothing but the characteristic function of a centered and

symmetric Lévy distribution [17], as well as the relationship between Fourier transform

and the characteristic function of a probability density function, one can deduce that the

Fourier inversion of e−|ξ|ατ is equal to multiples of the closed-form representation of the

Lévy stable density fα,0 [17], which is usually expressed in terms of the Fox function,

i.e.,

P (x;α) =
1

τ1/α
fα,0(

|x|
τ1/α

) =
1

ατ1/α
H1,1

2,2

[
|x|
τ1/α

∣∣∣∣ (1− 1
α ,

1
α ) ( 12 ,

1
2 )

(0, 1) ( 12 ,
1
2 )

]
. (3.5)

Now, combining (3.4) and (3.5), we obtain

V (x, τ ;α) =

∫ +∞

−∞
e−γτΠ(ξ)

1

τ
1
α

fα,0(
|x− ξ − (1− γ)τ |

τ
1
α

)dξ,
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which can be written as

V (x, τ ;α) =

∫ +∞

−∞
e−γτΠ(x− (1− γ)τ − τ

1
αm)fα,0(|m|)dm,

after the changing of integral variable technique is applied. Therefore, for European put

options, we have

Vp(x, τ ;α) = Ke−γτ

∫ +∞

d1

fα,0(|m|)dm− ex
∫ +∞

d1

e−τ−τ
1
α mfα,0(|m|)dm, (3.6)

where d1 =
x− lnK − (1− γ)τ

τ
1
α

.

It should be remarked that our solution procedure may not be as versatile as the

approach proposed by Carr and Madan [2]. Since analytical inversion of the Fourier

transform is not always possible (performing Fourier inversion purely analytically is usu-

ally a very difficult task and may be limited to special forms of payoff functions), our

approach may not work for other financial derivatives. Indeed, whether our solution

procedure can be extended should be considered case by case, depending on the specific

option taken into consideration.

On the other hand, one can never overlook the advantages if the Fourier inversion can

be worked out analytically for some special cases like the one presented here. Firstly,

the explicit closed-form solution clearly exhibits the relationship between the parameters

and variables in the original underlying space, which may pave the way for further quan-

titative analysis of the FMLS model. Secondly, it is much easier to deal with the explicit

closed-form analytical solution than those semi-analytical formulae (without the Fourier

inversion being analytically carried out). It is found that the Fourier integrands may

have poles in the complex plane for some cases, resulting in the value of corresponding

Fourier integrals varying with the choice of contour [11]. Furthermore, those integrands

may also exhibit oscillations, which pose considerable difficulties in numerical implemen-

tation [14]. Lastly, with the explicit closed-form analytical solutions, important hedging

parameters (e.g., the Greeks) can be easily calculated, whereas approximation methods,

such as the purely numerical schemes, sometime exhibit problems that greatly affect

the accuracy, especially when they are adopted to determine those parameters [13]. Of

course, one could also use an option pricing formula left in the integral form as a result

of Fourier inversion to calculate the Greeks. But, the resulting Greeks are in the Fourier

space, which may cause difficulties in numerical realization, as already stated.

3.2. Asymptotic behavior of the closed-form solution. One of the most efficient ways

to check the validity of our closed-form solution (3.6) is to investigate its asymptotic

behavior with parameters involved taken on some extreme values. Whether the observed

asymptotic behavior agrees with the financial terms set for the corresponding option

could be a necessary condition to verify the solution. Moreover, the examination of the

asymptotic behavior of the option price will also reveal some essential properties of the

pricing model used. In view of this, we shall conduct some asymptotic analyses on (3.6)

in this section.
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As pointed out previously, (3.1) becomes the classical BS system for European options

as α→2. Therefore, it is expected that (3.6) will approach the price of a European put

option asymptotically as α→2. This is indeed so as shown in the following theorem.

Theorem 3.1. As α→2, (3.6) degenerates to the BS formula for European puts, i.e.,

lim
α→2

Vp(x, τ ;α) = Ke−γτN(−d2)− exN(−d1),

where d1 =
x− lnK + (γ − 1)τ√

2τ
, d2 = d1 −

√
2τ , and N(x) is the standard normal

distribution function defined as N(x) =
1√
2π

∫ x

−∞
e−

z2

2 dx.

Proof. According to the definition of fα,0, it is known that

lim
α→2

fα,0(|m|) = 1

2
H1,1

2,2

[
|m|

∣∣∣∣ ( 12 ,
1
2 ) ( 12 ,

1
2 )

(0, 1) ( 12 ,
1
2 )

]
,

which can be simplified as

f2,0(|m|) = 1

2
H1,0

1,1

[
|m|

∣∣∣∣ ( 12 ,
1
2 )

(0, 1)

]
, (3.7)

whose Mellin transform admits M[f2,0(|m|)] = 1

2

Γ(s)

Γ( 12 + 1
2s)

. On the other hand, ac-

cording to the property of the Gamma function, it is known that Γ(
1

2
s)Γ(

1

2
+

1

2
s) =

21−s
√
πΓ(s), and thus

Γ(s)

Γ( 12 + 1
2s)

=
( 12 )

−sΓ( 12s)

2
√
π

. (3.8)

Now, taking the inverse Mellin transform on (3.8), we obtain

M−1[
Γ(s)

Γ( 12 + 1
2s)

] = M−1[
( 12 )

−sΓ( 12s)

2
√
π

] =
e−m2/4

√
π

,

which, combined with (3.7) yields f2,0(|m|) = e−m2/4

2
√
π

, a function identical to the stan-

dard Gaussian density.

Now replacing the Lévy stable density function in (3.6) by the standard Gaussian

density, the BS formula will be obtained after some simple algebraic manipulations, and

Theorem 3.1 is thus proved. �
After investigating the relationship between our solution and the BS formula, we

shall examine the asymptotic behavior of (3.6) for extreme values of the underlying. It

is anticipated that the option price derived from any reasonable pricing model would

certainly have suitable growth conditions at x = ±∞. This is achieved in the following

theorem.

Theorem 3.2. (i) lim
x→−∞

Vp(x, τ ;α) = Ke−γτ ; (ii) lim
x→∞

Vp(x, τ ;α) = 0.
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Proof. Firstly, we shall prove that lim
x→−∞

Vp(x, τ ;α) = Ke−γτ . According to the

definition of d1, it is not difficult to show that d1→−∞ as x→−∞. By realizing that

fα,0 is the Lévy stable density, it is clear that

∫ +∞

−∞
fα,0(x)dx = 1, which, combined with

the fact that fα,0(x) is symmetric in x, yields

∫ +∞

−∞
fα,0(|x|)dx = 1. Consequently, the

first integral of (3.6) will approach Ke−γτ as x→−∞. On the other hand, because of

the appearance of the exponential function ex, the second integral of (3.6) will vanish

as x→ − ∞. Taking both points mentioned above into consideration, it is clear that

lim
x→−∞

Vp(x, τ ;α) = Ke−γτ .

To prove (ii) of Theorem 2, we notice that the first integral of (3.6) will definitely

vanish as x→+∞. Therefore, we shall concentrate on showing that the second integral

will also vanish as x→+∞. For the second integral involved in (3.6), we have

lim
x→+∞

ex
∫ +∞

d1

e−τ−τ
1
α mfα,0(|m|)dm = lim

x→+∞

∫ +∞
d1

e−τ−τ
1
α mfα,0(|m|)dm
e−x

,

which is equal to lim
x→+∞

eγτ τ
1
α fα,0(|d1|), after the L’hospital’s rule is applied. Ac-

cording to the fact that any density function will vanish at infinity, it is clear that

lim
x→+∞

fα,0(|d1|) = 0, because d1→+∞ as x→+∞. Consequently, we obtain

lim
x→+∞

ex
∫ +∞

d1

e−τ−τ
1
α mfα,0(|m|)dm = 0,

which shows that the second integral of (3.6) will vanish as x→+∞. Therefore, we have

lim
x→+∞

Vp(x, τ ;α) = 0. �
According to Theorem 2, it is clear that under the FMLS model, if the underlying

becomes extremely small, a European put option would certainly be exercised at the

expiry, and thus its current value is equal to the discounted strike price. On the other

hand, if the underlying becomes infinitely large, a European put option is worthless now,

because it is impossible for the option to become “in the money” within a finite period

between now and the expiry. Clearly, the above two points agree well with the financial

terms set for a European put option. In this sense, it is reasonable to adopt the FMLS

model for the pricing of option derivatives, at least for European-style options.

3.3. Put-call parity. One of the most important principles in the option pricing field is

the so-called put-call parity, which reveals the relationship between the prices of European

vanilla options when they have the same maturity date and strike price. By using the

put-call parity, the price of a European put or call option can be deduced directly from its

European counterpart. In view of the importance of the put-call parity, in this section,

we shall further verify, financially and mathematically, the validity of the put-call parity

under the FMLS model.

Financially, because of the introduction of a convexity adjustment to the Lévy process,

the risk-neutral measure exists under the FMLS model, as pointed out previously. The

existence of the risk-neutral measure, on the other hand, implies that the “no arbitrage

opportunity” assumption still holds under this particular model. The put-call parity can
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PRICING EUROPEAN-STYLE OPTIONS WITH FRACTIONAL DERIVATIVE 605

then be achieved by using the same portfolio analysis as the one adopted in the BS model

[10].

On the other hand, through rigorous mathematical analysis, one can also show that the

put-call parity holds under the FMLS model, as expected from the financial argument

mentioned above. We conclude the mathematical proof of the put-call parity in the

following theorem.

Theorem 3.3. For any given α ∈ (1, 2], the prices of a European call option and its

European counterpart satisfy the put-call parity, assuming that they have the same

maturity and strike price, i.e.,

Vc(x, τ ;α)− Vp(x, τ ;α) = ex −Ke−γτ .

Proof. Due to the linearity of the governing operator contained in (3.1), it is known

that the value of longing a call while shorting a put satisfies⎧⎨
⎩

∂Vc−p

∂τ
= (γ − 1)

∂Vc−p

∂x
+ −∞Dα

xVc−p − γVc−p = 0,

Vc−p(x, 0;α) = ex −K,

where Vc−p(x, τ ;α) = Vc(x, τ ;α)−Vp(x, τ ;α). By using the approach adopted in section

3.1 in deriving V (x, τ ;α), we obtain

Vc−p(x, τ ;α) = −Ke−γτ

∫ +∞

−∞
fα,0(|m|)dm

︸ ︷︷ ︸
I

+ ex
∫ +∞

−∞
e−τ−τ

1
α mfα,0(|m|)dm

︸ ︷︷ ︸
II

.

From the above expression for Vc−p(x, τ ;α), one can easily deduce that I is equal to

−Ke−γτ , because
∫ +∞
−∞ fα,0(|m|)dm = 1, as pointed out in Section 3.2. On the other

hand, according to the symmetric in the density function fα,0(·), it is not difficult to

show that

II = ex
∫ +∞

−∞
e−τ−τ

1
α mfα,0(m)dm,

= ex−τ

∫ +∞

−∞
e−i(−iτ

1
α )mfα,0(m)dm.

It should be pointed out that II can in fact be viewed as the Fourier transform of fα,0(m)

at the point (−iτ
1
α ). Consequently, by using the fact that fα,0(m) = F−1[e−|ξ|α ](m), we

obtain

II = ex−τF [fα,0(m)](−iτ
1
α ) = ex−τ−|−iτ

1
α |α = ex−τ+[i(−iτ

1
α )]α = ex.

Now, combining the values of the integration I and II, we obtain Vc−p = ex −Ke−γτ ,

and complete the proof of the validity of the put-call parity under the FMLS model. �
We remark that the put-call parity has greatly facilitated the pricing of European

vanilla options under the FMLS model, in the sense that the price of either a European

call or put can be deduced straightforwardly from the parity once the price of its European

counterpart is determined accurately from our closed-form analytical solution. However,

due to the complexity of the Lévy density, the implementation of our solution in terms

of finding specific numerical values from (3.6) may not be as straightforward as the BS
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formula. This issue will be illustrated in detail in the next section, where some numerical

examples and useful discussions are provided.

4. Numerical examples and discussions. Once the closed-form analytical solu-

tion is obtained for the price of a particular option derivative, the main concern of market

practitioners becomes its implementation. Whether the formula can be efficiently com-

puted is one of the main criteria of assessing its practical usefulness. Therefore, in this

section, the implementation of our formula (3.6) will be illustrated, together with some

useful discussions.

Although (3.6) is written in a similar form as the classical BS formula, it is, however,

not so straightforward as the latter, as far as the computing for numerical value is

concerned. The difficulties mainly arise from the fact that the Lévy density fα,0(x) has a

rather slow convergence rate as x→∞, in comparison with the Gaussian density involved

in the BS formula.

To determine fα,0(x), we shall use the series representation, i.e.,

fα,0(x) =
1

π

∞∑
n=1

Γ(1 + n/α)

n!
sin(

πn

2
)(−x)n−1, (4.1)

rather than its usual form expressed in the Mellin space, as the latter will involve an

additional inversion of the Mellin transform in the final calculation of the integral. How-

ever, from our numerical experiment, it is observed that (4.1) converges rather slowly

when x becomes very large. Therefore, in order to speed up the calculation without

unnecessarily sacrificing accuracy, the large asymptotic of fα,0(x),

fα,0(x) ∼
1

π

∞∑
n=1

Γ(1 + n/α)

n!
sin(

πnα

2
)|x|−1−nα,

is adopted when x is beyond a critical value. Numerical experiments show that x ≈ 4.5

is an appropriate critical value for all the numerical examples presented below.

On the other hand, it is not an easy task to deal with the integrals in semi-infinite

domain involved (3.6) either. These integrals cannot be expressed in terms of standard

built-in functions such as the normal distribution function appearing in the BS formula.

Furthermore, the lower convergence rate at x→∞ of the Lévy density fα,0(x), in com-

parison with the Gaussian density, has added the difficulty in numerically carrying out

the quadrature involved in (3.6). In our numerical experiments, we evaluate these inte-

grals by using the generalized Laguerre-Gauss quadrature, which is an efficient way to

calculate integrals in semi-infinite domain. The detailed implementation of this scheme

can be found in many textbooks regrading numerical methods [9] and is thus omitted

here.

Having demonstrated the implementation details of our closed-form analytical solu-

tion, we shall now compare it with those written in terms of Fourier integrals. In partic-

ular, the Bates formula [1] will be adopted for comparison purposes. This is because in

comparison with various semi-infinite Fourier integrals, the Bates formulation requires

only a single integration with an integrand converging faster due to the quadratic term

in the denominator [14]. However, as far as the computation of the numerical values
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Fig. 1. Comparison of decay rates of different integrands. Model
parameters are K = $10, r = 0.1, σ = 0.1929, α = 1.75,
T − t = 1 (year).

of an option is concerned, the Bates solution is not truly “explicit”, although it is also

of closed form. A clear advantage of our formula against the Bates solution or various

semi-infinite Fourier integrals is that ours has no need to work out the expression of the

characteristic function in advance, which is, however, an essential part of the latter.

The computational efficiency of carrying out our formula is demonstrated through

the comparison of the decay rates of the integrand involved in Bates’ formula and those

in our solution, as shown in Fig 1. From this figure, it is clear that our integrands

converge to zero at almost the same rate as the one in Bates’ formula, implying that our

formula can be as efficiently carried out as the Bates solution, once the same quadrature

rule is adopted for the implementation of the semi-infinite domain integrals involved in

both formulae. Indeed, the calculation of our formula (3.6) can be completed within

0.7 seconds on a personal computer, where it takes almost the same amount of time to

compute the Bates formula for a numerical value.

The best way to test the reliability of the proposed numerical evaluation technique for

(3.6) is to calculate our solution at α = 2 and compare it with the standard BS formula

with the same parameter settings. Theoretically, when α = 2, our solution is identical

to the BS formula, if all the other parameters are the same, as shown in Theorem 3.1

already. The comparison is provided in Fig 2(a), where two sets of European put prices

determined respectively from (3.6) with α = 2 and the BS formula are displayed as a

function of the underlying at a given time to maturity. The absolute differences between

the two sets of prices are further shown in Fig 2(b). Furthermore, for α �= 2, we compared
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our solution with those calculated from the Bates formula with the generalized Laguerre-

Gauss quadrature. Also, the comparison of the option prices is provided in Fig 3(a),

whereas the absolute differences between the two sets of prices are shown in Fig 3(b).

From these figures, one can clearly observe that our option prices agree perfectly well

with those listed in the literature, with the maximum absolute error being no more than

1.2% and 3.5% for the case of α = 2 and α = 1.85, respectively.
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Fig. 2. Comparison of our solution at α = 2 with the BS formula.
Model parameters are K = $10, r = 0.1, σ = 0.2, T − t = 1 (year).
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Fig. 3. Comparison of our solution at α = 1.85 with the Bates
formula. Model parameters are K = $10, r = 0.1, σ = 0.2,
T − t = 1 (year).

With confidence in the proposed implementation technique, we shall now investigate

the effect of different tail index α on the prices of European puts. We remark that for

comparison purposes, the volatilities are chosen such that the α−stable distribution has

the same quartiles as the BS distribution with a volatility σBS . Here we set σBS = 0.25,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



PRICING EUROPEAN-STYLE OPTIONS WITH FRACTIONAL DERIVATIVE 609

which corresponds to σ(α=1.55) = 0.2299, σ(α=1.65) = 0.2380, and σ(α=1.75) = 0.2440.

The implied volatilities for these parameter settings are provided in Fig 4(a), where one

can clearly observe that the implied volatilities for those at-the-money options are almost

equal to σBS = 0.25. The implied volatility surface for a particular α value (α = 1.65)

is further shown in Fig 4(b), from which one can observe asymmetry volatility smiles for

short maturities, but volatility skews as the times to maturity become longer.
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(b) Implied volatility surface, with α = 1.65, K =
$10, r = 0.1.

Fig. 4. Volatility smirk under FMLS model.

Depicted in Fig 5 is the comparison among several sets of European put option prices

at different levels of α values, while all the other parameters (except the volatility σ)

are set to be the same. It can be observed from this figure that once α increases up to

2, the option prices are gradually decreasing to the BS price. In other words, the BS

formula tends to underprice European puts with underlying following a Lévy process.

Moreover, the pricing bias of the BS formula gets larger as α becomes smaller. This

is indeed reasonable and could be plausibly explained from a financial point of view as

follows.

Compared to the Gaussian density of the underlying prices under the BS model,

the Lévy density increases the probability of the stock price exhibiting large moments

or jumps over small time steps [3]. Thus, the terminal distribution of the underlying

modeled by the Lévy process would have fatter tails at both ends than the lognormal

distribution of the BS model. Moreover, both tails will become fatter as α gets smaller,

since the Lévy density satisfies the inverse power-law asymptotically at large underlying

values, i.e., fα,0(x) ∼
1

|x|1+α
[17].

Now, consider a European put that is significantly out of the money. It can be shown

that this option will have a positive value only if there is a large decrease in the underlying

price. Its value is therefore dependent only on the left tail of the terminal distribution of

the asset. The fatter the left tail is, the more valuable the option would be. Consequently,

the BS model tends to underprice those out-of-the-money puts, and the pricing bias

becomes larger as the left tail becomes fatter, which corresponds to smaller α values.
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Fig. 5. European puts at different α values. Model parameters are
K = $10, r = 0.1, T − t = 1 (year).

To obtain the pricing biases for those in-the-money puts, we use the put-call parity

verified in Section 3.3. From this parity, it can be identified that if a European call is out

of the money, its European counterpart is in the money, and vise versa. Consequently, an

in-the-money European put must exhibit the same pricing biases as an out-of-the-money

European call. On the other hand, for an out-of-the-money European call, its value

depends only on the right tail of the terminal underlying price, because this option will

have positive value only if there is a large increase in the underlying price. Therefore, the

fatter the right tail is, the more valuable the option becomes. Thanks to the relationship

between in-the-money European puts and out-of-the-money European calls, it is now

clear that the BS model tends to underprice those in-the-money puts as well, and the

pricing bias becomes larger as the right tail becomes fatter.

Taking the above points regarding the pricing biases for out-of-the-money and in-the-

money European puts into consideration, it is clear that the BS model underestimates

the European puts, if the underlying follows a Lévy process. Moreover, the pricing biases

tend to be larger as α becomes smaller. Similarly, it can be shown that the BS model

overprices European calls with underlying subject to Lévy process, and the pricing biases

are larger for smaller α values as well.

5. Conclusion. By solving the FPDE, an explicit closed-form analytical solution for

European-style options under the FMLS model is successfully obtained for the first time.

The asymptotic behavior of our solution is then examined, which confirms the reliability

of the FMLS model. It is also shown, in the current paper, that the put-call parity holds

under the FMLS model, which is of both theoretical and practical importance. On the

other hand, for practical purposes, we propose an efficient numerical evaluation technique

for the current formula as well. Through various numerical experiments, the correctness

of our solution and the good performance of the corresponding evaluation technique are
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clearly presented. Finally, the influence of the tail index on the option prices is also

discussed financially.
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