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1 Introduction

The conformal bootstrap has highlighted the power of basic principles to constrain and even

solve quantum field theories. The program combines inequalities obtained from conformal

symmetry, unitarity and crossing symmetry to quantitatively narrow down the possible

values of observables like scaling exponents and operator product expansion (OPE) coeffi-

cients. The modern numerical bootstrap [1] has been applied very successfully to numerous

models in various dimensions (far too many to even attempt to review here) yielding for in-

stance precise critical exponents for the three-dimensional Ising model [2, 3]. Of course, the

same principles constrain non-conformal theories as well [4], although it remains challenging

at the moment to use them as a quantitative solution method (see [5] for encouraging steps).

In parallel to numerical advances, an analytic approach has been developed which

implements constraints that are more readily visible in Lorentzian rather then Euclidean

signature. Namely, by focusing on a Lorentzian limit which selects the contribution from

operators with large spin, crossing symmetry predicts weighted averages over their OPE

data. Assuming that individual contributions are sufficiently regular and close to the

average, this then provides an asymptotic 1/J expansion of this data [6–9]. This assumption

has been confirmed in explicit examples, for instance in the three-dimensional Ising model

again, where the resulting expansion appears to remain accurate all the way down to spin

two [10, 11]! Gaining control over the errors in this expansion will be crucial to mesh it

with numerical approaches.

Another important application of the analytic bootstrap is to large-N theories with

a so-called sparse spectrum, which are famously conjectured to be dual to weakly cou-

pled theories of gravity in Anti-de-Sitter space [12]. The large-N crossing equation then

admit homogeneous solutions which are in one-to-one correspondence with possible higher-

derivative bulk interactions, and whose coefficients need to be small for the bulk theory

to admit a local interpretation. It has been recognized that this smallness is tied to the

good high-energy (Regge) behavior of the theory, a feature which is particularly apparent

in Mellin space [13–16]. Physically, a peculiar feature of these higher-derivative solutions

is that they have a bounded spin, which clashes with the experience, reviewed below, that

physics should be analytic in spin.

The goal of this paper is to establish the phenomenon of analyticity in spin in conformal

field theories, and to quantify its implications by means of an inversion formula. In the

context of the large spin bootstrap, this formula will explain why the spectrum organizes

into analytic families and provide control over individual OPE coefficients as opposed to

averages. At the same time, by upgrading the asymptotic expansion to a convergent one, it

will clarify the sense in which spin two is “large enough”. In the context of large-N theories

with sparse spectrum, the same formula will bound the strength of higher-derivative bulk

interactions. In both cases, the validity of the formula will be tied to the good behavior of

correlation functions in the high-energy Regge limit.

– 2 –
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1.1 Why good behavior in the Regge limit is constraining

Physically, analyticity in spin reflects the fact that not any low-energy expansion can resum

into something that is sensible at high energies.

Mathematically, this can be illustrated by a simple single-variable model. Consider an

“amplitude” which admits a low-energy Taylor series:

f(E) =
∞∑
J=0

fJE
J . (1.1)

We suppose that we are given the following information: f(E) is analytic except for branch

cuts at real energies |E| > 1, and |f(E)/E| is bounded at infinity. (In the physical applica-

tion below, f(E) will represent the four-point correlator and its low-energy expansion will

be provided by the Euclidean OPE; at the thresholds E = ±1 some distances become time-

like.) With the stated assumptions, an elementary contour deformation argument relates

the series coefficients to the discontinuity of the amplitude, as shown in figure 1:

fJ ≡
1

2πi

∮
|E|<1

dE

E
E−Jf(E) (1.2)

=
1

2π

∫ ∞
1

dE

E
E−J

(
Disc f(E) + (−1)JDisc f(−E)

)
(J > 1), (1.3)

where Disc f = −i
[
f(E(1 + i0)) − f(E(1 − i0))

]
. The second line follows from the first

using the assumed high-energy behavior to drop large arcs at infinity.

As a concrete example, one may take the function f(E) = − log(1−E2): upon inserting

its discontinuity Disc f = 2π, the integral indeed produces fJ = (1+(−1)J)/J , as expected.

Now let us focus on a single coefficient, say f2. It may seem paradoxical that it can be

recovered from the discontinuity of f(E), given that varying f2 alone in eq. (1.1) clearly

leaves Disc f(E) unchanged. The point is that given the constraint that |f(E)/E| is bounded

at infinity, the coefficient f2 (or any finite number of coefficients) cannot be varied indepen-

dently of all the others. Rather the coefficients form a much more rigid structure, that is an

analytic function of spin, as explicited by the integral in eq. (1.3). (More precisely, there are

two analytic functions, for even and odd spins, reflecting that there are two branch cuts.)

These are the key features of the classic Froissart-Gribov formula [17–19], which is

conceptually the same but with Legendre functions instead of power laws. Historically,

the Froissart-Gribov formula established the analyticity in spin of partial amplitudes in

relativistic S-matrix theory, thus paving the way for phenomelogical applications of Regge

theory.

We will show that OPE coefficients in unitary conformal field theories are of a similar

type: they are not independent from each other, but rather organize into rigid analytic

functions. Furthermore, they can be extracted from a “discontinuity” which would naively

seem to annihilate each individual contribution.

That this has quantitative implications can be illustrated in large-N theories with a

sparse spectrum, where we will see that the discontinuity is negligible below a gap ∆2
gap.

– 3 –
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E

1−1
⇒

Figure 1. Relation between low-energy coefficients and discontinuity. Analyticity in spin holds if

the arcs at infinity (the Regge limit) can be dropped.

The preceding formula then gives a result which decays rapidly with spin,

fJ ∼
∫ ∞

∆2
gap

dE

E
E−JDisc f(E) ∼ (∆gap)−2J , (1.4)

which in the context of gauge-gravity duality will be interpreted as the expected suppression

of higher-derivative corrections, if the bulk theory is local to distances of order 1/∆gap times

the AdS curvature radius. Notice the essential role of the Regge limit: nothing would

be learnt from this argument for a given J if we didn’t know that |f(E)/EJ | vanishes at

infinity. Physically, eq. (1.3) and the Froissart-Gribov formula can be regarded as dispersion

relations for partial waves, since their input are discontinuities of amplitudes (this is further

discussed in section 2.5).

The goal of this paper to obtain similar dispersive representations but which extract the

OPE coefficients in unitary CFTs (projecting out descendants and extracting only primary

operators). Convergence will be established for all spins higher than one, by borrowing

ideas from the recent “bound on chaos” as well as from the recent proof of the averaged

null energy condition (ANEC) [20, 21], which are reviewed in the next section.

This paper is organized as follows. In section 2 we review the main ingredients re-

garding the operator product expansion, its convergence, and the ensuing positivity and

boundedness properties of discontinuities in Lorentzian signature; we also present a sim-

plified dispersion relation, valid in the Regge limit, and discuss its relationship to the just

mentioned recent work. Section 3 is purely mathematical and is devoted to deriving our

main result, the inversion formula in eq. (3.20). The starting point will be the partial wave

expansion in [22], in which scaling dimensions are continuous, and a corresponding not-so-

well-known Euclidean inverse to this formula, which exploits the orthonormality of blocks.

In section 4 we analyze the formula in the limit of large spin in a general conformal

field theory, substituting in the convergent OPE expansion in a cross-channel to re-derive

and extend a number of results from the analytic boostrap. Section 5 discusses the sim-

plifications in large-N theories with a large gap, and novel bounds on the contributions

of “heavy” operators to the crossing relation, with a brief discussion of loops in the bulk

gravity theory. Section 6 contains concluding remarks. A lengthy appendix A details for-

– 4 –



J
H
E
P
0
9
(
2
0
1
7
)
0
7
8

mulas for handling conformal blocks in various dimensions, while appendix B details tests

in the 2D Ising model.

2 Review and main ingredients

2.1 Four-point correlator and conformal blocks

We will be interested in the correlator of four conformal primary operators (which we will

take to be scalars). Up to an overall factor, it is a function of cross-ratios only:

〈O4(x4) · · · O1(x1)〉 =
1

(x2
12)

1
2

(∆1+∆2)(x2
34)

1
2

(∆3+∆4)

(
x2

14

x2
24

)a(
x2

14

x2
13

)b
G(z, z̄) (2.1)

where here and below a = 1
2(∆2−∆1), b = 1

2(∆3−∆4), and z, z̄ are conformal cross-ratios

zz̄ =
x2

12x
2
34

x2
13x

2
24

, (1− z)(1− z̄) =
x2

23x
2
14

x2
13x

2
24

. (2.2)

The operator product expansion (OPE) produces a series expansion around the limit where

two points coincide. The expansion in the s-channel (between 1 and 2) reads

G(z, z̄) =
∑
J,∆

f12Of43OGJ,∆(z, z̄) (2.3)

where the sum runs over the spin J and dimension ∆ of the exchanged primary operator

O. The conformal blocks G are special functions which resum derivatives (“descendants”)

of O. They are eigenfunctions of the quadratic and quartic Casimir invariants (A.2) of the

conformal group. It will be useful to use blocks normalized so that, at small z � z̄:

GJ,∆(z, z̄)→ z
∆−J

2 z̄
∆+J

2 (0� z � z̄ � 1) . (2.4)

The same normalization was used in [11]. The angular dependence when z and z̄ are both

small but of comparable magnitude can be expressed in terms of Gegenbauer polynomi-

als, see eq. (A.8). In even spacetime dimensions, the conformal blocks admit closed-form

expressions in terms of hypergeometric functions, for example

GJ,∆(z, z̄) =
k∆−J(z)k∆+J(z̄) + k∆+J(z)k∆−J(z̄)

1 + δJ,0
(d = 2) , (2.5)

GJ,∆(z, z̄) =
zz̄

z̄ − z
[
k∆−J−2(z)k∆+J(z̄)− k∆+J(z)k∆−J−2(z̄)

]
(d = 4) . (2.6)

In both expressions, kβ denotes the hypergeometric function

kβ(z) = zβ/2 2F1(β/2 + a, β/2 + b, β, z) . (2.7)

Since four points can always be mapped to a plane via a conformal transformation, z

and z̄ can be viewed as coordinates on a two-dimensional plane. In fact it will be convenient

to parametrize the four points in a more symmetrical way, following [23]. Since we’ll be

– 5 –
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ρ

ρ̄x4 = ρ

x1 = 1x2 = −1

x3 = −ρ

ρ̄ > 1

ρ, ρ̄

ρ ρ̄1−1

(a) (b)

Figure 2. (a) Four points in Lorentzian signature, with time running upward. The pairs x4−x1 and

x2 − x3 are timelike separated for ρ̄ > 1. (b) Corresponding configuration of cross-ratios ρ and ρ̄.

interested in Lorentzian kinematics, we distribute the points symmetrically in two Rindler

wedges. In terms of lightcone coordinates ρ, ρ̄ = x1 ∓ x0, we let, as shown in figure 2:

x4 = (ρ, ρ̄) = −x3 , x1 = (1, 1) = −x2 . (2.8)

Their cross-ratio evaluates to z = 4ρ
(1+ρ)2 , or, equivalently:

ρ =
1−
√

1− z
1 +
√

1− z
, ρ̄ =

1−
√

1− z̄
1 +
√

1− z̄
. (2.9)

For convergence purposes, in the ρ-variables the blocks behave essentially like power-laws:

GJ,∆(z, z̄) ≈ ρ
∆±J

2 ρ̄
∆∓J

2 . In particular, the first singularities being at ρ = ±1, the OPE

converges whenever ρ, ρ̄ are both within the unit disc; for rigorous estimates we refer to [24].

Note that this holds whether or not ρ and ρ̄ are complex conjugate of each other, which

will be important below.

The unit ρ-disc covers the full complex z-plane, as can be seen from the fact that ρ

and 1/ρ project onto the same value of z. They represent, however, physically distinct

Lorentzian configurations as we now discuss.

2.2 Positivity and analyticity properties of Rindler wedge correlator

We will be interested in Lorentzian kinematics where the lightcone coordinates ρ and ρ̄

are independent real variables. As long as both are positive, the four points lie within two

disjoint Rindler (spacelike) wedges. When both ρ and ρ̄ are small, all points are spacelike

separated and the physics is essentially Euclidean. We will be more interested in the case

0 < ρ < 1 < ρ̄, where, as depicted in figure 2(a), the distances x4 − x1 and x2 − x3 both

become timelike. According to the standard Feynman’s i0 prescription (x0 → x0(1− i0)),

ρ̄ should then be slightly below the cut if we are computing the time-ordered correlator,

and above the cut for its complex conjugate.

These kinematics do not lie within the radius of convergence of the s-channel sum (2.3).

They lie, however, within the radius of convergence of the t-channel sum, which is based

– 6 –
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around the limit x2→x3 corresponding to ρ, ρ̄ = 1. This expansion is obtained by inter-

changing z and 1− z, which using (2.9) gives a somewhat nontrivial transformation for ρ:

G(ρ, ρ̄) =
(zz̄)

∆1+∆2
2(

(1−z)(1−z̄)
)∆2+∆3

2

∑
J ′,∆′

f̃23Of̃14O

(
1−√ρ
1 +
√
ρ

)∆′+J ′ (1−
√
ρ̄

1 +
√
ρ̄

)∆′−J ′

. (2.10)

We put the primes to remind ourselves that these quantum numbers are exchanged in the

t-channel. In this subsection, to simplify the argument (and with no loss of generality) we

will not use the full conformal blocks but rather just power laws, that is we include both

primaries and descendants independently; the notation f̃ reminds us of that. The sum

converges provided that the parentheses are within the unit disc, which is the case for ρ

and ρ̄ within the complex plane minus the negative axis: ρ, ρ̄ ∈ C \ (−∞, 0].

Let us first consider the case where operators 1 and 2 are identical, and also 3 and

4. The OPE coefficients f̃23Of̃14O, as squares of real numbers, are then positive. What

happens in the Lorentzian region 0<ρ<1<ρ̄ is that the scaling blocks acquire a phase:

G(ρ, ρ̄) =
∣∣ · · · ∣∣ ∑

J ′,∆′

f̃23Of̃14O

∣∣∣∣1−√ρ1 +
√
ρ

∣∣∣∣∆′+J ′ ∣∣∣∣1− 1/
√
ρ̄

1 + 1/
√
ρ̄

∣∣∣∣∆′−J ′ eiπ(∆′−J ′−∆2−∆3), (2.11)

where the dots stand for the prefactor in (2.10). Since the absolute value of each term is

the same as for the positive sum corresponding to the Euclidean point ρ̄ → 1/ρ̄, one thus

find the following inequality:∣∣G(ρ, ρ̄)
∣∣ ≤ G(ρ, 1/ρ̄) ≡ GEucl(ρ, ρ̄) (0 < ρ < 1 < ρ̄) . (2.12)

Intuitively, this states simply that the amplitude for a projectile crossing a target is smaller

than the amplitude for them to propagate independently. This is analogous to flat space

scattering, where S-matrix elements between normalized states satisfy |S| ≤ 1. In this

context, it is conventional to subtract off the free propagation by writing S = 1 + iM, and

the imaginary part of the amplitude then satisfies ImM≥ 0. The above inequality means

that we can similarly define a CFT “amplitude” with a positive imaginary part:

iM≡ G(ρ, ρ̄)− GEucl(ρ, ρ̄) ⇒ ImM≥ 0 . (2.13)

This imaginary part is equal to a double discontinuity of the correlator:

ImM≡ dDiscG(ρ, ρ̄) ≡ GEucl(ρ, ρ̄)− 1

2
G(ρ, ρ̄− i0)− 1

2
G(ρ, ρ̄+ i0)

≥ 0 (0 < ρ < 1 < ρ̄).
(2.14)

We will find below that ImM is the argument of the CFT Froissart-Gribov formula.

It may seem unfamiliar that the imaginary part is equal to a double discontinuity (as

opposed to a single discontinuity for the usual S-matrix) but intuitively the role of the

extra discontinuity is to subtract the “1” part of the S-matrix from the correlator. This

fact will be crucial below when we discuss large-N theories.

– 7 –
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ρ

ρ̄

x4

x1

x2

x3

ρ, ρ̄

ρ ρ̄1−1

(a) (b)

Figure 3. (a) Correlator in the Regge limit ρ ∝ 1/E → 0, ρ̄ ∝ E → ∞ (with an overall

boost applied to figure 2 to make the figure more symmetrical). (b) The crossing symmetry path

E → Ee−iπ, which interchanges points 3 and 4.

Since the i0 prescription on the time argument encodes the operator ordering, the

double discontinuity can also be written as a commutator squared:

dDiscG(ρ, ρ̄) = −1

2
〈0|[O2(−1),O3(−ρ)][O1(1),O4(ρ)]|0〉 ≥ 0 . (2.15)

Indeed one can check that for the two terms with “non-scattering” operator ordering, like

〈O2(−1)O3(−ρ)O4(ρ)O1(1)〉, the continuation path for the cross-ratios z, z̄ is equivalent to

staying within the Euclidean region, thereby reproducing the GEucl(ρ, ρ̄) term in eq. (2.14).

Positivity of the commutator squared (2.15) has appeared in several recent works. It

holds, in any QFT (not necessarily conformal), due to the Cauchy-Schwartz inequality

together with the property of so-called Rindler positivity (see refs. [20, 21] and section 3

of [25]). The argument here (similar to [26, 27]), valid in conformal field theories, relied

only on the usual positivity of Euclidean (t-channel) OPE coefficients.

For unequal operators, the more precise definition of the double discontinuity is that

it should be taken with respect to the two time-like invariants x2
14 and x2

23 successively, at

the level of the unstripped correlator on the left-hand-side of (2.1). That is, one should

take the difference between the two different ways of making these invariants timelike,

x2
jk → −|x2

jk| ± i0. This gives, when translated to the stripped correlator,

dDiscG(ρ, ρ̄) ≡ cos(π(a+ b))GEucl(ρ, ρ̄)

− 1

2
eiπ(a+b)G(ρ, ρ̄− i0)− 1

2
e−iπ(a+b)G(ρ, ρ̄+ i0) ,

(2.16)

again in the range 0<ρ<1<ρ̄<∞. As a function of the four operators, dDisc G1234 defines a

positive-definite matrix with respect to the two pairs 12 and 34 (e.g., it is a positive number

whenever 1 and 2 stand for the same linear combination of operators, and similarly for 3

and 4).

Convergence of the t-channel OPE (2.10) within the mentioned cut plane also im-

plies an important analyticity property, representing crossing symmetry. Namely, starting

from the timelike region 0<ρ<1<ρ̄, one can rotate ρ and ρ̄ by opposite phases as shown

– 8 –
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in figure 3(b) and reach the region ρ̄<−1<ρ<0. This represents crossing, since, in the

parametrization (2.9), ρ→ −ρ is the same as interchanging operators 3 and 4. This cross-

ing path is reminiscent of the Epstein-Glaser-Bros path in axiomatic S-matrix theory [28],

and, just like in that context, it lands us on the “wrong” side of the cut, e.g. on the com-

plex conjugate (anti-time-ordered) amplitude. Note that for this crossing path ρ and ρ̄

must be rotated in opposite directions, because the Euclidean correlator near ρ, ρ̄ = 0 is

single-valued only when ρ and ρ̄ are complex conjugate of each other.

If one were to rotate ρ and ρ̄ in the same direction, one would land in a physically com-

pletely different kinematics, where the four points are inside timelike Milne wedges instead

of the spacelike Rindler wedges. This region is relevant to bulk high-energy scattering in

AdS/CFT and contains the so-called “bulk point” limit in two dimensions (see [12, 27]).

Although this region is interesting, we will not directly use it in this paper.

2.3 Toy dispersion relation, ANEC and the bound on chaos

The above analyticity and boundedness properties immediately imply a simple-minded

dispersion relation, whose integrand is positive definite at least in the Regge limit (large

boost acting on 1 and 2). In this subsection we will parametrize this limit as E →∞ with

ρ = σ/E, ρ̄ = E . (2.17)

With no loss of generality (because of the symmetry between z and z̄) we will assume that

σ < 1.

A key fact is that the correlator is bounded and approaches a limit as E →∞ (with σ

fixed): this is because the t-channel OPE (2.10) is dominated by its Euclidean counterpart

which converges to G(0, 0) = 1. For operators that are not identical, the correlator is also

bounded since the individual OPE coefficients satisfy
∣∣f̃23Of̃14O

∣∣ < max(f̃ 2
23O, f̃

2
14O).

In fact, the correlator approaches a finite constant as |E| → ∞ along any complex

direction in the lower-half plane. This can be shown by combining the t-channel and u-

channel OPE. By itself, the t-channel OPE only gives a numerically weaker bound |G| <
1/ cos((argE)/2)∆1+∆2 since only the real part of

√
ρ damps the exponent for each term.

This bound becomes poor near argE = −π, but in this case one can use the u-channel

OPE instead, which converges nicely. Being bounded like this, analyticity then implies that

it approaches the same constant not only along the real axis, but also along any complex

direction −π ≤ argE ≤ 0:

lim
|E|→∞

M(σ,E) = C. (2.18)

This can be proved easily by taking a derivative of the contour integral (2.19) below,

dropping the arc at infinity, and integrating back. Under crossing t↔ u, C goes to −C∗.1

To obtain a dispersion relation forM(σ,E), we simply write down the contour integral

M(σ,E) =
1

2πi

∮
C

dE′M(σ,E′)

E − E′
, (2.19)

1The statement that ImC is crossing symmetric is essentially Pomeranchuk’s theorem, which states that

proton-proton and proton-antiproton total cross-sections are asymptotically equal if they grow with energy.

– 9 –
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where E is assumed to be in the lower-half plane and the contour encircles the lower-half

plane clockwise. In fact it doesn’t hurt to add “0” in the form of a similar integral but

encircling the upper-half plane, with the integrand replaced by the analytic function which

is equal to M∗ just above the real axis. The half-circles at infinity then simply add up to

the real part of C:

M(σ,E) = ReC +
1

π

∫ ∞
−∞

dE′ ImM(σ,E′)

E − E′
. (2.20)

(Note that the integral diverges logarithmically if ImC 6= 0, however with opposite signs at

E′ → ±∞ and such that it converges to the correct result if symmetrized under E′ → −E′

under the integration sign.)

The “toy” dispersion relation (2.20) converges to the four-point correlator but a caveat

is that for “low” energies |E′| < 1 one leaves the Lorentzian region and the integrand

switches sign, since going below ρ̄ = 1 interchanges M and M∗ according to the defini-

tion (2.13). Furthermore, when |E′| < σ, one loses control over the sign and even reality of

the integrand. However, for |E| � 1, these region contribute only a subdominant amount.

This is the sense in which the above is only a toy dispersion relation, but for this reason the

subsequent discussion should be understood to hold only for high enough energies |E| � 1.

The toy dispersion relation still contains interesting physics. Separating explicitly the

real and imaginary parts of E: E = x− iy, the following inequalities follow from straight-

forward differentiation, assuming only that ImM > 0 on the real axis as shown above:

ImM(x− iy, σ) =
y

2π

∫ ∞
−∞

dE′ 2ImM(E′, σ)

(E′ − x)2 + y2

≥ 0,

(y∂y − 1) log ImM(x− iy, σ) = −

∫∞
−∞ dE

′ 2ImM(σ,E′) y2

((E′−x)2+y2)2∫∞
−∞ dE

′ 2ImM(σ,E′) 1
(E′−x)2+y2

≤ 0.

(2.21)

The first of these inequality, which essentially states that |S| ≤ 1 holds throughout the

complex lower half-plane and not only the real axis, played an important role in a recent

proof of the averaged null energy condition (ANEC) [21] (see also [29]). There one showed

using the lightcone OPE that there is a regime where the left-hand-side is dominated by

exchange of the stress tensor integrated over a null line, thereby proving positivity of its

matrix elements, and also generalized this argument to the operator of lowest twist for

each even spin ≥ 2.

The second inequality states that, locally, the amplitude cannot grow faster than lin-

early (along the imaginary axis). When expressed in terms of Rindler time t = logE and

temperature T = 1/(2π), this is equivalent to the “bound on chaos” on the Lyapunov

exponent, λ ≤ 2πT , proved in ref. [20]. (As discussed in appendix A of [20], the present

context of high-energy CFT scattering can be viewed as a special case of their general finite-

temperature results applied to Rindler space. Specific properties of CFTs, tied to OPE
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convergence, apparently allowed us here to simplify some steps of the proof, for example

the Phragmen-Lindelof argument used there.)

Although the bound on chaos will not be used directly in this paper, the closely related

dispersion relation (2.20) is conceptually central and our main goal will be to extend it to

OPE coefficients.

2.4 Invitation: theories with large N and large gap

The toy dispersive representation (2.20) tells us more. For example, to leading order in a

large-N theory, the double discontinuity ImM has the neat property that it is insensitive

to double-trace operators exchanged in the cross channels. This can be seen again from

the t-channel OPE (2.11), because double-trace operators have dimensions ∆2 + ∆3 or

∆1 + ∆4 plus integers, and the resulting continuation phases are then killed by the double

discontinuity (2.16) in both cases.

In the case of identical operators, the double-trace OPE coefficients are enhanced

by a factor N2 compared with the connected contribution since they contribute at the

disconnected level. However, the connected contribution, associated with the leading 1/N2

corrections to coefficients and anomalous dimensions, contains at most a single logarithm

of (1− z̄) (see for example [12]). These double-trace contributions are thus again killed by

the double discontinuity.

The fact that the imaginary part (2.16) is sensitive only to single-trace operators

is consistent with intuition from gauge-gravity correspondence: the imaginary part arises

from “on-shell” exchanged states, and in tree-level AdS/CFT these are the elementary bulk

fields dual to single-trace operators. Thus the toy dispersive representation (2.20) tells us

physically that the double-trace information is fully controlled by what the single-traces

do (strictly speaking, at this point, up to the neglected |E′| < σ contributions).

Consider specifically the case where the single-trace spectrum is sparse, in the sense

that the lowest twist operator of spin higher than 2 has a large twist ∆gap � 1. The

spectral density will then be suppressed, as the contribution of heavy operators to the

t-channel OPE has the form

dDiscG(z, z̄) ∼
∑

∆≥∆gap

(
(1−√ρ)(1− 1/

√
ρ̄)

(1 +
√
ρ)(1 + 1/

√
ρ̄)

)∆

∝ e−2∆gap(
√
z+
√
z̄) ∼ e−∆gap/

√
E . (2.22)

Thus the “energy” variable E introduced above is indeed essentially equivalent to CFT

energies, e.g. scaling dimensions (squared), and heavy operators produce an imaginary

part only at high energies, again in line with AdS/CFT intuition.

Plugging this into the second inequality (2.21) one immediately sees that any theory

with a sparse spectrum will nearly saturate the bound on chaos within at least the energy

range 1� E � ∆2
gap (provided only that the light operator contribution to the dispersive

relation is not enhanced by a power of ∆2
gap, which would preclude the heavy operators

from dominating it.) Conversely, the bound on chaos can only be saturated, locally for

some value of energy, if most of the spectral density is concentrated at a much higher

energy, which is a weak statement of a “gap.” Also, since ImM is locally bounded, the
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gap certainly can’t be larger than the inverse coefficient of the linear growth, which is

essentially the stress tensor two-point function cT ; this reflects the familiar observation

that in weakly coupled gravity theories, the string scale never exceeds the Planck scale.

These are all moral implications of the dispersion relation, but to make them (and

others) fully quantitative one would like to have a dispersion relation whose integrand

remains physically sensible and positive even away from the Regge limit. We were not

able to derive one. However, in the next section we will short-circuit this technical issue

by switching our focus to the OPE data instead of the correlator itself, and deriving a

Froissart-Gribov formula.

2.5 From dispersion relation to Froissart-Gribov formula

The importance of the concept of analyticity in spin was emphasized already in the intro-

duction, for example in the two contexts of large spin expansions and also bulk locality.

Being related to analyticity in energy, itself tied to causality, in a sense it is a physical

reflection of causality. The Froissart-Gribov formula is an integral representation for par-

tial wave coefficients which makes analyticity manifest and quantitative. Here we briefly

review its connection to dispersion relation in the context of the flat-space S-matrix. One

considers 2 → 2 scattering, and define as usual the projection of the amplitude into the

partial wave of angular momentum J :

aJ(s) =

∫ 1

−1
d(cos θ)(sin θ)d−4CJ(cos θ)M(s, t(θ)), t(θ) = −s− 4m2

2
(1− cos θ), (2.23)

where CJ(cos θ) are Gegenbauer polynomials (Legendre polynomials PJ in four spacetime

dimensions). Here s, t, u are the usual Mandelstam variables for 2 → 2 scattering. The

Froissart-Gribov formula follows from using a fixed-s dispersive representation of the am-

plitude, in terms of t- and u-channel cuts:

M(s, t) =

∫ ∞
t0

dt′

t′ − t− i0
DisctM(s, t′) + (t↔ u) . (2.24)

The integration threshold t0 will not be important, and convergence and subtractions will

be discussed shortly. To see analyticity in spin, one simply plugs eq. (2.24) into (2.23);

changing variable to t′ = s−4m2

2 (cosh η − 1) this gives:

aJ(s) =

∫ 1

−1
dx′(1− x′2)

d−4
2 CJ(x′)

∫ ∞
η0

d(cosh η)

cosh η − x′
DisctM(s, t′) + (t↔ u) . (2.25)

Interchanging the order of integrations, the x′-integral can be done once and for all. Defin-

ing

QJ(x) ≡
∫ 1

−1

dx′Cj(x
′)

x− x′

(
1− x′2

1− x2

) d−4
2

, (2.26)

one thus find:

aJ(s) = atJ(s) + (−1)JauJ(s), (2.27)
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where

aJ(s) =

∫ ∞
1

d(cosh η) (sinh η)d−4QJ(cosh η) DisctM(s, t), t =
s− 4m2

2
(cosh η − 1) .

(2.28)

eq. (2.28) is known as the Froissart-Gribov formula. It shows that, while aJ was a-priori

defined only for integer J , its t- and u-channel contributions at,uj (s) are separately analytic

in spin. They are power-behaved at large imaginary J , as opposed to the direct evalua-

tion of (2.23) which would grow like e±iπJ , and general arguments show that an analytic

continuation with this property is unique.2

The regime of validity of the Froissart-Gribov formula (2.28) is the same as that of

the dispersion relation (2.24) from which is originates. Depending on the high-energy

behavior, this dispersion relations may receive ambiguities, known as subtractions, that

are polynomials in t. These polynomials affect a finite number of the aJ ’s in eq. (2.23).

Thus partial wave coefficients are analytic in spin except for a finite number of low spins,

which cannot be obtained from the Froissart-Gribov integral. The minimum spin starting

from which the formula works is equal to the exponent controlling the power behavior of

the amplitude in the Regge limit (large |s| at fixed t).

In the next section, we will derive using group-theoretic arguments a Froissart-Gribov

formula for OPE data in conformal field theories. The derivation will by-pass the dispersive

representation which we do not have, but to which the formula is morally equivalent. The

good high-energy behavior of CFT correlators discussed above, will imply that the formula

works for all spins except possibly J = 0, 1.

3 Inverting the OPE: the CFT Froissart-Gribov formula

A prerequisite first step to derive integral representations is to get rid of the discreteness

of ∆. This first step was already carried out in ref. [22], where the sum over dimensions

was replaced by an integral over continuous dimensions:

G(z, z̄) = 112134 +

∞∑
J=0

∫ d/2+i∞

d/2−i∞

d∆

2πi
c(J,∆)FJ,∆(z, z̄). (3.1)

The first term is the identity contribution. The goal of this section is to derive a Lorentzian

inverse to this representation, which will express the coefficients c(J,∆) analytically in

J and in terms of positive Lorentzian data, in analogy with the Froissart-Gribov for-

mula (2.28).

This section is exclusively mathematical. After briefly reviewing the expansion (3.1),

we derive an analog to the Euclidean inverse (2.23) and then perform its analytic continu-

ation to Lorentzian signature, obtaining our main result (3.20). Many technical details are

moved to appendix A. Physical implications are discussed in the next sections.

2Because of the (−1)J multiplying the u-channel cut contribution, the even and odd spin partial waves

constitute two independent well-behaved analytic functions.
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3.1 Partial waves: Euclidean case

The idea behind eq. (3.1) is to expand correlators over an orthogonal basis of eigenfunctions

FJ,∆ of the Casimir invariants of the conformal group [22]. These are the quadratic and

quartic differential operators in eqs. (A.2).

These invariants are self-adjoint only when acting on single-valued complex functions

(that is, which do not have branch cuts in Euclidean kinematics z̄ = z∗), otherwise,

integration-by-parts would receive extra boundary terms from the branch cuts. Thus such

an expansion only has a chance to work in the space of single-valued functions. Fortu-

nately, the physical correlator G(z, z̄) is of this type. The individual conformal blocks GJ,∆
entering the OPE sum are not, and to make a basis of eigenfunctions one must use instead

the single-valued combinations [22], also known as harmonic functions:

FJ,∆(z, z̄) =
1

2

(
GJ,∆(z, z̄) +

KJ,d−∆

KJ,∆
GJ,d−∆(z, z̄)

)
, (3.2)

whose coefficients can be expressed using a frequently-recurring products of Γ-function:

KJ,∆ =
Γ(∆− 1)

Γ
(
∆− d

2

)κJ+∆, κβ =
Γ
(β

2 − a
)
Γ
(β

2 + a
)
Γ
(β

2 − b
)
Γ
(β

2 + b
)

2π2Γ(β − 1)Γ(β)
. (3.3)

Single-valuedness of the harmonic functions FJ,∆(z, z̄) can be understood from an integral

representation [30], which involves three-point functions of the exchanged operator and of

its “shadow” related by ∆ → d − ∆. This explains also why the shadow block appears

in eq. (3.2). With no loss of generality we can thus assume that shadow coefficients are

symmetrical:
c(J,∆)

KJ,∆
=
c(J, d−∆)

KJ,d−∆
. (3.4)

For our purposes, single-valuedness of eq. (3.2) can also be verified explicitly using the

analytic continuation formulas in appendix A.2. It requires the spin to be an integer.

Under the assumption that the harmonic functions FJ,∆’s are orthogonal, the expan-

sion (3.1) can be immediately inverted to give the c(J,∆)’s, by simply integrating against

FJ,∆:3

c(J,∆) = N(J,∆)

∫
d2z µ(z, z̄)FJ,∆(z, z̄)G(z, z̄) . (3.5)

The integration runs over the full complex plane (with z̄ = z∗). The measure is fixed by

self-adjointness of the Casimir differential operators in eq. (A.2), which works out to give

µ(z, z̄) =

∣∣∣∣z − z̄zz̄

∣∣∣∣d−2
(
(1− z)(1− z̄)

)a+b

(zz̄)2
. (3.6)

The orthogonality assumption is actually a simple consequence of the Casimir equations

(modulo minor convergence issues to be discussed shortly). The normalization factor

N(J,∆), given in eq. (A.14), can be calculated using only the behavior of the blocks near

3I thank V. Goncalves and J. Penedones for initial collaboration on this Euclidean inversion formula. I

have also been made aware of related work by B. van Rees and M. Hogervorst on this subject.
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the origin, where the radial integral boils down to a Mellin transform (which also explains

the choice of contour in eq. (3.1)). Both of these issues are discussed in detail in A.1.

We will not dwell too much on eq. (3.5), since it is only an intermediate step toward

the Lorentzian formula that we are after. Let us only describe the connection between the

partial wave expansion (3.1) and the usual OPE sum (2.3). In Euclidean kinematics where

|ρ| < 1, the blocks GJ,∆(z, z̄) vanish exponentially at large real ∆, like power-laws |ρ|∆.

Therefore it is natural to close the contour to the right in eq. (3.1) on the first term of

eq. (3.2), and to the left in the shadow block (which will produce an identical result due to

the mentioned shadow symmetry). The OPE sum is therefore reproduced provided that

the partial wave coefficients c(J,∆) have poles with appropriate residues:

cJ,∆ = −Res ∆′=∆c(J,∆
′) (∆ generic) . (3.7)

The function c(J,∆) thus encodes the usual OPE data through the position and residue of

its poles. The fact that this data is encoded in an analytic function of ∆ will be important

physically, since the discreteness of the original OPE data would otherwise preclude our

next step. The qualifier “generic” was added in the preceding equation due to some special

cases that we now discuss.

Subtleties, convergence, contour, etc. This subsubsection contains technical com-

ments that the reader may skip on first reading. The preceding equations are too hasty for

two reasons: the blocks GJ,∆ themselves have poles, and the integral (3.5) doesn’t always

converge. These two issues are fixed here.

Let us first discuss convergence of the inverse transform (3.5) near z = 0. The integral

in this region can be defined easily by analytic continuation. Indeed one can make the

integral convergent by subtracting finitely many terms in the small-z expansion of the

amplitude times block, which can then be integrated back using the analytic formula:∫ 1

0

d|z|
|z|
|z|p±∆ ≡ 1

p±∆
. (3.8)

Being analytic in ∆, this prescription automatically preserves self-adjointness of the Casimir

operators. This formula also shows explicitly how the blocks in the usual OPE sum turn

into poles of the function c(J,∆).

There are a few special cases at low dimensions, which can all be understood by think-

ing of the representation (3.1) as an inverse Mellin transform, which it is near the origin.

Due to the unitarity bound ∆−J ≥ d−2 for J ≥ 1, these only affect the J = 0 contribution.

• For operators with dimension less than d/2, one should deform the contour so it picks

only the positive-residue pole on the left of d/2 instead of its reflection on the right.

• For operators of dimension precisely d/2, one should use a principal-value contour so

that only half of the residue contributes. (In two dimensions, this case also includes

conserved currents with J = 1.)

• The unit block is orthogonal to all FJ,∆. This is why it appears separately in eq. (3.1).
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The blocks GJ,∆ have poles, which were not included in eq. (3.7). These poles are all

below the unitarity bound ∆ = J+d−2, but are nonetheless to the right of the contour

∆ = d/2, and so they should be included. Poles of conformal blocks were studied e.g.

in [31, 32]. Their possible location is heavily constrained by the Casimir equations, which

imply that the residue solves the same equations and thus must be related by one of

the symmetries (A.5). The only poles with ∆ > d/2 are at ∆ = j + d − 2 − m with

m = 0, 1, 2, . . . and with residue proportional to Gj−1−m,j+d−1, which is then a physical

block (above the unitarity bound and with integer spin). The proportionality factor rJ,∆
is given in eq. (A.19). Therefore all the residues produce physical blocks. Collecting their

coefficient, we find that the correct formula for the OPE coefficients is not (3.7) but rather

cJ,∆ = −Res ∆′=∆

{
c(J,∆′) (∆ generic) ,

c(J,∆′)− rJ,∆′c(∆′+1−d, J+d−1) (∆−J−d = 0, 1, 2, . . .) .
(3.9)

This is consistent with the inversion formula (3.5) since its integrand (through the factor

N(J,∆)) diverges at ∆−J−d = 0, 1, 2, producing poles unrelated to z → 0 divergences.

However these poles of the integrand cancels in the combination (3.9).

Finally let us analyze the region z → 1 (z →∞ is similar). Convergence there depends

on the dimension of the lightest operator exchanged in the t-channel, compared to that of

the external operators. Thus for generic external operators the integral will not converge.

However one can define the integral by cutting off a small circle around 1, for example, and

dropping the singular terms as its radius goes to zero. As long as the same cutoff is used

for all spins (so that the spurious pole cancelation just mentioned continues to operate),

the resulting expression will only have the correct physical poles, and the OPE coefficients

extracted from eq. (3.9) will correctly reproduce the correlator. We conclude that the

integral (3.5) may or may not converge near z → 1 but this seems devoid of consequences

for generic z, z̄. This is akin to the Fourier transform of a singular distribution, which is

ambiguous up to contact terms in coordinate space and polynomials in momentum space.

All of these subtleties can be tested explicitly in simple examples, like the 2D Ising

model, as discussed in appendix B.

3.2 S-matrix Froissart-Gribov formula revisited

In section 2.5 we saw how the angular momentum projection (2.23) and dispersion rela-

tion (2.24) naturally combine into the (S-matrix) Froissart-Gribov formula (2.28), thus

relating partial waves coefficients to discontinuities of amplitudes. In CFT we have con-

structed analogous ingredients: the Euclidean inversion formula (3.5) and the Regge-limit

dispersion relation (2.20), and one could imagine again substituting the later into the for-

mer. Unfortunately, being restricted to the Regge limit, that dispersion relation is not

good enough for our purposes.

Fortunately, there exists a second derivation of the S-matrix Froissart-Gribov formula,

which does not require a dispersion relation. It is essentially the contour deformation

argument from the introduction; we reformulate it here in terms of variables that will

be more convenient shortly, focusing for simplicity on d = 3 scattering where the SO(2)
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w

1/w0w0

Figure 4. Scattering amplitudes in the complex w-plane, where w = eiθ. Two copies of the t-

channel appear on the right, related to each other by w → 1/w, and two copies of the u-channel

cut appear on the left.

Gegenbauer polynomials are just cosines. The trick is to rewrite eq. (2.23) as a contour

integral in the variable w = eiθ:

aJ(s) =

∮
dw

iw
wJM(s, t(w)), t(w) =

s− 4m2

4

(
w +

1

w
− 2

)
. (3.10)

The main features in the w-plane are shown in figure 4. On the positive real axis there are

two branch points, where t(w0) = t0 > 0. They are related by w → 1/w and both represent

the same physical point, the t-channel threshold. Similarly on the negative axis there are

two copies of the u-channel cut. To proceed, assuming J large enough that wJ times the

amplitude vanishes near the origin of the unit disc, we simply close the contour toward the

interior. The integral becomes a sum of contributions from the t- and u-channel cuts as in

eq. (2.27), with

atJ(s) =

∫ w0

0

dw

w
wJ DisctM(s, t(w)) , (3.11)

which is equivalent to eq. (2.28) via the change of variable 2 cosh η = w+1/w. Whereas the

Euclidean contour integral (3.10) only made physical sense for integer spin J , the disconti-

nuity integral eq. (3.11) is fundamentally Lorentzian and makes sense for continuous spin.

3.3 Main derivation: conformal Froissart-Gribov formula

We now adapt this contour deformation argument to CFTs. The geometry is easier to

visualize in terms of the ρ-coordinates (2.9), where the “radial” and “angular” variables

are naturally identified with the magnitude and phase of ρ. The Euclidean inversion for-

mula (3.5) then runs over the unit disc:

c(J,∆) = N(J,∆)

∫ 1

0
σdσ

∮
|w|=1

dw

iw
µ(ρ, ρ̄) g(ρ, ρ̄)FJ,∆(ρ, ρ̄)

∣∣∣ρ=σw
ρ̄=σw−1

. (3.12)

Here, the measure in ρ-coordinates, including the Jacobian from the change of variable, is

µ(ρ, ρ̄) =
(1− ρ2)(1− ρ̄)2

16ρ2ρ̄2

∣∣∣∣(1− ρρ̄)(ρ̄− ρ)

4ρρ̄

∣∣∣∣d−2((1− ρ)(1− ρ̄)

(1 + ρ)(1 + ρ̄)

)a+b
2

. (3.13)

We also recall that, at this stage, J is still restricted to be an integer.
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w

1/σσ 1

C

−σ−1/σ−1

w

C+

C−

Figure 5. The w-plane contours C and C± in the CFT case. The singularities at w = ±1 are

integrable and come only from the measure factor |z − z̄|d−2. The branch points at w = ±σ and

w = ±1/σ pose no problems, but the arcs at w = 0 and w → ∞ correspond to the Regge limit

where the integrand should vanish at large positive spin.

At fixed σ < 1, the complex-w plane contains the same features as in the preceding

subsection. There are two copies of the t-channel cut starting at w = σ and w = 1/σ

(corresponding to ρ̄ = 1 and ρ = 1, respectively), and two copies of the u-channel cut,

starting at w = −σ and w = −1/σ.

Roughly speaking, the idea is to split the block FJ,∆ into a part which vanishes like wJ

near the origin and another which vanishes like w−J at infinity, so that we can close the

w-contour to the interior or exterior in each case. This was the trick in the S-matrix case.

The behavior of the blocks FJ,∆ is however more complicated. As explained in appendix A,

there are 8 solutions to the Casimir equations corresponding to a given value of J and ∆,

which can be conveniently labelled (for generic J and ∆) by their power-law behavior in

the regime 0� z � z̄ � 1:

gpure
j,∆ (z, z̄) = z

∆−j
2 z̄

∆+j
2 × (1 + integer powers of z/z̄, z̄) . (3.14)

The 8 solutions are then related by the symmetries (A.5). The limit w → 0 is governed

by these asymptotics but after analytic continuation around the point z̄ = 1. The block

FJ,∆(z, z̄) then becomes a complicated combination of all 8 basic solutions. The possible

exponents are such that two solutions vanish like wJ , two diverge like w−J , and the four

remaining ones have exponents controlled by ∆. Ideally we would like to get rid of the 6

nondecreasing solutions, which is not obviously possible. A systematic strategy is to simply

close the contour in eq. (3.12) to the interior of the unit disc, and then try to remove the

nonvanishing terms near the origin by adding zero in the form of an integral over blocks

e±J,∆(ρ, ρ̄) along the closed contours C±, circling the upper- and lower-half planes, as shown

in figure 5. That is, omitting the ρ, ρ̄ arguments, we write

c(J,∆) =

∫ 1

0
σdσ

(∮
C

dw

iw
µ g N(J,∆)FJ,∆ +

∑
±

∮
C±

dw

iw
µ g e±J,∆

)
. (3.15)

Naturally, the extra functions e±J,∆ should be eigenfunctions of the same Casimir equations.

These should also vanish at large w, in order to not re-introduce the problem there. Since
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large w corresponds to 0� z̄ � z � 1, this singles out two of the eigenfunctions:

e±J,∆(z, z̄) = e±,1J,∆ g
pure
∆+1−d,j+d−1(z̄, z) + e±,2J,∆ g

pure
1−∆,j+d−1(z̄, z) (w →∞) , (3.16)

where e±,1J,∆ are unknown coefficients. This ansatz vanishes like w−J at large w as can be

seen from (3.14). Equation (3.15), with the arcs at infinity dropped, thus holds for any

choice of these coefficients. We would like to find a choice such that the arcs at the origin

also cancel, at least for sufficiently large spin, that is

N(J,∆)FJ,∆ + e+,1
J,∆ g

pure
∆+1−d,j+d−1 + e+,2

J,∆ g
pure
1−∆,j+d−1 ∝ w

J (w → 0 + i0) . (3.17)

Taking the coefficient of each 6 unwanted solution gives 6 constraints on two parameters.

To compute these constraints we performed the analytic continuation of the above eigen-

functions to the origin w → 0 using a sequence of elementary monodromies: first, one

lowers w below 1/σ, which takes z counter-clockwise around 1 and changes the blocks gpure

according to eq. (A.22). Then one takes w below 1 and interchange the arguments z and

z̄ using eq. (A.23). Finally, one takes w below σ, which takes z̄ counter-clockwise around

1 and is done using eq. (A.22) again. Although the individual steps are simple, composing

these three steps produces a complicated linear combination of all 8 solutions, so we do

not reproduce it here. It needs to be added to the continuation of FJ,∆ to w < σ, obtained

using eq. (A.22) once.

Thus we obtain 6 constraints on two free parameters e
+,1/2
J,∆ . This system is overcon-

strained so it is not obvious a priori that a solution exists. It is not too surprising that

the system is overconstrained, since a solution is at best expected when the spin is an

integer. It is still not obvious whether it should have any solution in that case, but the

physical analogy between the correlator and the S-matrix suggests that a solution should

exist. Indeed, a solution does exist! It is given as (3.16) with

e+,1
J,∆ =

1

4
κJ+∆e

−iπ(a+b) , e+,2
J,∆ =

1

4
κJ+∆

Γ
(
d
2 −∆

)
Γ(∆− 1)

Γ
(
∆− d

2

)
Γ(d−∆− 1)

e−iπ(a+b) (3.18)

and the complex conjugate expressions for e− below the axis. Pleasantly, this is precisely

such that eq. (3.16) organizes into a regular block G∆+1−d,J+d−1 (note the interchange of

dimension and spin compared to the usual blocks.) Also, most of the complicated factors

from N(J,∆) have canceled out. Furthermore, we find that, after adding e− below the

axis, the contributions from the four regions (w ∈ (0, r)∪ (r, 1)∪ (1, 1/r)∪ (1/r,∞)), which

all project onto the interval 0 < z, z̄ < 1, are all proportional to the same block! The

different regions are related to each other by the same phases as in the positive-definite

double discontinuity (2.16), times absolute value of the measure, exactly like we physically

hoped for! Finally, the contribution from the cuts with w < 0 produce a similar result but

with an extra factor (−1)J .

It would be nice to understand more deeply why the above solution exists at all,

perhaps by obtaining it through some integral representation. In the rest of this paper we

concentrate on its implications.
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3.4 Final result

Our final result for the s-channel OPE coefficients, based on (3.18), can thus be written as:

c(J,∆) = ct(J,∆) + (−1)Jcu(J,∆) (3.19)

where each of the two channel contribution is an integral over a causal diamond:

ct(J,∆) =
κJ+∆

4

∫ 1

0
dzdz̄ µ(z, z̄)G∆+1−d,J+d−1(z, z̄) dDisc

[
G(z, z̄)

]
. (3.20)

The u-channel contribution cu is the same but with the integration ranging from −∞ to

0 and the double discontinuity taken around z =∞. Equivalently, it is the same but with

operators 1 and 2 interchanged.

Equation (3.20) is the main result of this paper. It expresses the OPE coefficients in

the s-channel (x1 → x2), isolated on the left-hand-side, in terms of an integral over the

correlator. In this sense it “inverts” the OPE.

Most importantly for us, and in contrast with the Euclidean formula (3.5) which also

“inverts” the OPE, this CFT Froissart-Gribov formula is manifestly analytic in spin. Just

like the S-matrix Froissart-Gribov formula, the formula only works when Re J is large

enough that the arcs at infinity vanish. The bounds reviewed in section 2.3 guarantee this

for J > 1 in any unitary CFT. The integrand is positive definite, due to positivity of the

double discontinuity (2.16) and the absolute value sign in the measure (3.6).4

Assuming analyticity in spin, it was shown in [22] how to extend the s-channel OPE

into the Lorentzian region by replacing the sum over spins by an integral; the existence of

the above formula apparently justifies this step.

It is not possible to immediately verify the formula (3.20) by simply inserting the s-

channel OPE on the right-hand side and verifying it termwise, since the double discontinuity

vanishes for any individual s-channel block, precisely as in the example in the introduction.

What makes the formula possible is that in any unitary theory the OPE coefficients for

different spins are not independent of each other: this is necessary for the OPE to resum

to something sensible in Lorentzian signature. In the next section we provide nontrivial

checks confirming that the formula is correct; explicit checks in the 2D Ising model are also

given in appendix B.

4 Application to operators with large spin

The analyticity in spin makes the CFT Froissart-Gribov formula (3.20) ideal to study large

spin operators and understand how they organize into analytic families. Operators with

large spin have been studied extensively in the literature as noted in introduction, and here

we will rederive and extend some of these results using the above formula; in particular,

instead of asymptotic expansions in 1/J , we find sums which explicitly converge down to

J = 2.
4Technically, although always a positive-definite function, for large enough external dimensions ∆i the

double discontinuity becomes a singular distribution near z̄ = 1, in which case the correct mathematical

notion of “positive-definite” is less clear to us. Integrals like (4.7) seem to remain positive even in this case.
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4.1 Generating function

The spectrum of the theory is encoded in the poles of the inversion integral (3.20). These

originate from the z → 0 integration boundary. In practice, it is really only the one-

dimensional z̄ integration which produces the OPE coefficients, and it will be useful to make

this manifest by integrating out the z̄ variable to define a generating function C±(z, β).

To avoid double-coutning, it is better to restrict the integration range in eq. (3.20)

to z̄ > z, at the cost of a factor of two. A further simplification is to decompose the

block into two pure power solutions gpure using eq. (A.10): the second solution ensures the

symmetry (3.4) between operators and their shadow, but we do not expect it to contribute

to the poles at ∆ > d/2 in general. Thus, as far as the Euclidean OPE data is concerned,

we can rewrite the inversion formula as:

ct(J,∆)
∣∣∣
poles

=

∫ 1

0

dz

2z
z
J−∆

2

(∫ 1

z
dz̄ κJ+∆

µ(z, z̄) gpure
∆+1−d,J+d−1(z, z̄)

z
J−∆

2
−1

dDisc
[
G(z, z̄)

])
.

(4.1)

The z integral is now trivial, since it simply converts a term z
τ
2 in the expansion of the

parenthesis into a pole 1/(τ + J − ∆), that is, to the exchange of an operator of twist

∆ − J = τ . Thus the z dependence as z → 0 simply tracks the twist of operators and we

can regard the parenthesis as a generating function.

The parenthesis depends on three variables: z, J,∆. If we focus on the z → 0 limit,

however, the nontrivial dependence is only through z and the sum β = ∆ + J . This

combination is called the “conformal spin” in the literature because it corresponds to the

Casimir invariant of the SL2(R) conformal symmetries of a null ray. Performing the integral

in that limit we thus define a SL2(R) generating function:

Ct(z, β) ≡
∫ 1

z

dz̄(1− z̄)a+b

z̄2
κβ kβ(z̄) dDisc

[
G(z, z̄)

]
. (4.2)

Physically, this integral projects onto SL2(R) primaries with respect to the null direction

z̄, but it does not subtract descendants along the z direction. On the other hand these can

be automatically subtracted by expanding the block in eq. (4.1) to subleading powers in

z. In fact, according to eq. (A.24), the expansion contains only SL2(R) blocks with shifted

value of β, hence the OPE data for conformal primaries can be expressed entirely in terms

of the SL2(R) generating function:5

ct(J,∆)
∣∣∣
poles

=

∫ 1

0

dz

2z
z
J−∆

2

( ∞∑
m=0

zm
m∑

k=−m
B

(m,k)
J,∆ Ct(z, J+∆+2k)

)
, (4.3)

where the B
(m,k)
J,∆ are rational functions of J,∆ that are computable recursively using the

quadratic Casimir equation. Only finitely many terms in m are needed to extract any given

OPE coefficient: just enough to subtract all the descendants from lower twist primaries.

5The coefficient B
(m,k)
J,∆ have poles at twists ∆ − J − d = 0, 1, 2, . . . as predicted by eq. (3.9). These are

removed when taking the combination in that equation.

– 21 –



J
H
E
P
0
9
(
2
0
1
7
)
0
7
8

We note also that the process of extracting the coefficient of a given power of z in eq. (4.2)

commutes with doing the z̄ integral (for J > 1), whose boundary can then be taken to be 0.6

Finally, let us record the precise relation between the generating function (4.2) and

OPE coefficients. According to the inversion formula (3.19), operators with even and odd

spins constitute two independent analytic families, and the t and u channel contributions

should be added with a relative sign depending on whether the desired operator has even

or odd spin,

C(±)(z, β) =
∑
m

C(±)
m (β) z

1
2
τ

(±)
m (β) , C(±) ≡ Ct ± Cu . (4.4)

The expansion coefficients C
(±)
m (β) and τ

(±)
m (β) then encode the OPE coefficients and twists

of the operators. Both are analytic in β and to obtain physical operators one should restrict

to those values of β for which the spin 1
2(β−τ) happens to be an integer. Actually, C is not

quite the OPE coefficient, because, according to eq. (3.9), the ∆-residue of 1/(∆−J−τ(β))

should be taken with J fixed. This produces a extra Jacobian factor:

f12Of43O =

(
1− dτ

(±)
m (β)

dβ

)−1

C(±)
m (β)

∣∣∣∣∣β−τ(±)
m (β)
2

=J

(4.5)

where the sign (±) depends on the parity of J . Precisely this formula, and the existence of a

function C(z, β), has been deduced empirically before from large-J expansions, see [11, 33].

For operators of subleading twist one should replace C by c to account for the subtraction

of descendants according to eq. (4.3).

4.2 Vaccum exchange

A simple but important case where the integral (4.2) can be done analytically is the unit

operator in the t-channel. One then expects s-channel OPE coefficients to be products of

Γ-functions. In fact, since one can vary the dimensions of the external operators, this gives

an infinite set of integrals which can be done analytically. Taking the pair of operators (4,3)

to be the same as (1,2), the vacuum contribution to the generating function, is, according

to eqs. (2.10) and (4.2),

C+(z, β) ⊃ z
∆1+∆2

2 I
(a,a)
−∆1−∆2

(β) (vacuum exchange) , (4.6)

where as before a = ∆2−∆1
2 , and using a standard Euler-type representation for the hyper-

geometric function kβ , we could evaluate the following general integral:

I
(a,b)
τ ′ (β) ≡

∫ 1

0

dz̄

z̄2
(1− z̄)a+bκβkβ(z̄) dDisc

(1− z̄
z̄

) τ ′
2
−b

(z̄)−b


=

1

Γ
(
− τ ′

2 − a
)
Γ
(
− τ ′

2 + b
) × Γ

(β
2 − a

)
Γ
(β

2 + b
)

Γ
(
β − 1

) ×
Γ
(β

2 −
τ ′

2 − 1
)

Γ
(β

2 + τ ′

2 + 1
) .

(4.7)

6This follows from the fact that the correlator dDisc
[
G(z, z̄)

]
is bounded as z = z̄ → 0, so the lower-

endpoint of the range of integration can only produce powers of z higher than z(∆+J)/2−1, independently

of m and k in eq. (4.3). This is never of the form z(∆−J)/2 for any J > 1.
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This formula will be used extensively in this section.

Some comments are in order. First, the integral vanishes when the exponent τ ′ differs

from 2b or −2a by a nonnegative integer, in agreement with the discussion in subsection 2.4:

physically these exponents represent “double trace” t-channel operators of twist ∆2 + ∆3

or ∆1 + ∆4 plus even integers. Note also that the integral naively diverges for sufficiently

negative exponent τ ′, but the result is actually finite. This can be understood from the

derivation in the preceding section, where the double-discontinuity arose from the contour

integrals in figure 5: the contours smoothly avoid the branch point z̄ = 1 and so can’t

diverge there, and thus the integral is explicitly analytic in τ ′ (except for the last factor

which comes from divergences around 0).

The nonzero result for negative integer exponent, where the double-discontinuity

naively vanishes, can be interpreted as a δ-function terms at z̄ = 1: physically, it is

not too surprising to learn that the discontinuity of a propagator 1/x2
23 is a δ-function.

Mathematically the “double discontinuity” of 1/(1− z̄) ∼ 1/(x2
23x

2
14) is however ambiguous

and to directly compute the integral in this case requires to go back to the contour integral

in figure 5. In practice, a good way to deal with a general, singular double-discontinuity

in eq. (4.2) is to use eq. (4.7) to integrate its singular part analytically, thus leaving an

unambiguous remainder.

Incidentally, a converse to formula (4.7) appeared recently in [11] while this work was

being completed, where the following sum of SL2(R) blocks was derived:

∞∑
m=0

I
(a,b)
τ ′ (β0 + 2m)kβ0+2m(z̄) =

(
1− z̄
z̄

) τ ′
2
−b

(z̄)−b −R(a,b)
τ ′,β0

(z̄), (4.8)

where R is an explicitly known remainder, with the property that is has a vanishing double-

discontinuity around z̄ = 1.7 This property was termed “Casimir-regular” in [11]. This

is a nice consistency check which confirms that the SL2(R) inversion integral (4.2) indeed

“inverts” the coefficient of kβ .

At large spin or equivalently large β, the collinear block kβ(z̄) behave like (ρ̄)β/2 and

so the inversion integral is dominated by z̄ → 1. There the t-channel blocks vanish with

an exponent governed by their twist. One thus expect the large-β limit of the s-channel

OPE coefficients to decay with the twist τ ′ of t-channel exchanged operators, and, indeed,

the above integral decays like 1/β(τ ′+a−b+3/2).

It follows that, at large β, the t-channel unit contribution to the generating func-

tional (4.6) can’t be cancelled by any other operator, if the theory has a twist gap above

the unit operator (which is always the case for a unitary theory in d > 2). This is pre-

cisely the conclusion reached in [6, 7]: operators with twist arbitrarily close to ∆1 + ∆2

must exist at large spin. The same argument holds for subleading powers of z, leading to

primaries of dimension ∆1 + ∆2 + 2m+J . Following [11], we refer to these as double-twist

7For identical operators, we record for reference the expression from [11]:

R(0,0)
γ,β0

(1− z) =
1

Γ
(
− γ

2

)2 Γ
(
β0−γ

2
− 1
)

Γ
(
β0+γ

2

) ∞∑
k=0

∂

∂k

Γ
(
β0
2

+ k
)

( γ
2
− k)Γ(k + 1)2Γ

(
β0
2
− k − 1

) ( z

1− z

)k
. (4.9)
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operators [12]m(J). A central focus of the analytic bootstrap program is to understand the

1/β corrections to these multi-twist families, to which we now turn.

4.3 Systematics of large-J corrections

The t-channel unit contribution (4.6) gets corrected, at subleading orders in 1/β, by a

convergent sum over t-channel primaries of subleading twist, each decaying like 1/βτ
′
. First

we focus on an individual primary, and then we discuss the effects of the infinite summation.

Our starting point will be the generating functional (4.2) with the correlator repre-

sented by its t-channel OPE. Accounting for the prefactor in the crossing relation (2.10),

C(z, β) =
∑
J ′,∆′

f14O′f23O′

∫ 1

z

dz̄(1− z̄)a+b

z̄2
κβkβ(z̄) dDisc

(zz̄)
∆1+∆2

2 GJ ′,∆′(1− z̄, 1− z)[
(1− z)(1− z̄)

]∆2+∆3
2

 .
(4.10)

The sum converges (at fixed z) since all sampled values of z̄ lie within the convergence

radius of the OPE. We now first tentatively take the z → 0 limit term by term — this will

not be completely correct, but almost!

As discussed in appendix A.3, for each block there are two towers of terms in the z → 0

limit, starting from two exponents τ1 = ∆1 + ∆2 and τ2 = ∆3 + ∆4:

z
∆1+∆2

2 GJ ′,∆′(1−z̄, 1−z) =
∑
i=1,2

∞∑
n=0

z
1
2
τi+n ×H(i),n

J ′,∆′(1− z̄) . (4.11)

The computation of the functions H in general dimension is detailed in appendix. There

is a slight issue when the initial and final operator pairs are identical, as is needed to get

matrix elements between identical double-twist operators: then the two exponents τi are

identical and logarithms of z appear. The z → 0 expansion must then be rewritten slightly:

z
∆1+∆2

2 GJ ′,∆′(1−z̄, 1−z) =

∞∑
n=0

z
∆1+∆2+2n

2 ×
(

1

2
log z H log,n

J ′,∆′(1− z̄) +Hreg,n
J ′,∆′(1− z̄)

)
.

(4.12)

The 1
2 log z term is interpreted, to first order in the anomalous dimension, as a shift to the

dimension of the double-twist operators. At large spin, one only needs the limit z̄ → 1 of the

H functions, which can be determined simply from SL2(R) blocks (see eq. (A.21)) and reads

H
(log),0
J ′,∆′ (1− z̄) ≈ −2

Γ(∆′ + J ′)

Γ
(

∆′+J ′

2

)2 (1− z̄)
∆′−J′

2 (1 +O(1− z̄)) . (4.13)

Plugging into (4.7) and dividing by the unit operator contribution in eq. (4.6), we thus

obtain the first-order correction to double-twist anomalous dimensions from exchange of

a single t-channel operator of spin J ′ and dimension ∆′:

∆[12]0(J)− (∆1 + ∆2 + J) ≈ −2f11O′f22O′
Γ(∆′ + J ′)

Γ
(

∆′+J ′

2

)2 I(a,a)
∆′−J ′−∆1−∆2

(β)

I
(a,a)
−∆1−∆2

(β)

≈ −2f11O′f22O′
Γ(∆′ + J ′)Γ(∆1)Γ(∆2)

Γ
(

∆′+J ′

2

)2
Γ
(
∆1 − ∆′−J ′

2

)
Γ
(
∆2 − ∆′−J ′

2

) 1(
β/2

)∆′−J ′
(4.14)
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where β = ∆[12]0(J) + J is the conformal spin, and the approximation signs are up to

subleading orders in 1/β (coming both from the truncation of the (1− z̄) series and of the

integral (4.7)).

Eq. (4.14) is in perfect agreement with formulas from sections 3 and 4 of [6]. This is

a nice check of all the factors in our inversion formula (3.20).

A comment is in order regarding the u-channel cut contribution, neglected in the

above, but which is to be added with an extra sign (−1)J in eq. (3.19). The u-channel

term would be absent in certain situations where the operators are distinct, but in general

one should sum up the t- and u-channel contributions prior to dividing by the vacuum

exchange. Thus even and odd spins generally describe two totally independent analytic

families of operators. In the case where the operators 1, 2 are identical, the above formula

remains valid but should be restricted to even spins.

In the case of stress tensor exchange, the OPE coefficient is fixed by symmetries. With

our blocks normalized as in (2.4) and the TT normalization CT defined as in [2], the OPE

coefficients reads fiiT = ∆id
2
√
CT (d−1)

. Plugging it into (4.14) it then also agrees with [6, 7].

The main difference so far compared with these works, is that the inversion formula

applies to each individual operator in the even/odd spin families, as opposed to giving

only their average large-spin properties. In particular, this establishes the existence of

each individual double-twist operator (for sufficiently large spin that we can ignore the

possibility of coefficients summing up to zero or very large anomalous dimensions), and it

explains why they organize into analytic families in the first place.

4.3.1 Subleading powers: individual block

To generate subleading terms in 1/J from a given block is now straightforward: one simply

expands the function H log,0
J ′,∆′(1 − z̄) to higher orders in (1 − z̄)/z̄ and use the analytic

integral (4.7). This can be done to any desired order using the quartic equation satisfied

by H, see appendix A.3. This however only produces an asymptotic expansion in 1/J ,

because the series in (1 − z̄)/z̄ does not converge for z̄ < 1
2 . The inversion formula makes

it possible to do better, since in principle one can just do the z̄ integral numerically and

conceptually there is no need to expand in 1/J .

To illustrate this in a simple concrete example, consider the exchange of a t-channel

primary of spin J ′ = 0. The z → 0 limit of the t-channel block, H
(log),0
J ′,∆′ (1 − z̄), can be

evaluated analytically in terms of a hypergeometric function given in eq. (A.36). Thus the

contribution of an individual J ′ = 0 primary to the double-twist anomalous dimension is,

restricting eq. (4.10) to lowest twist:

∆[12]0(J)−(∆1+∆2+J)≈−2f11O′f22O′
Γ(∆′)

Γ
(

∆′

2

)2
I

(a,a)
−∆1−∆2

(β)

∫ 1

0

dz̄(1−z̄)∆2−∆1

z̄2
κβkβ(z̄)

×dDisc

[
2F1

(
∆′

2 ,
∆′

2 ,∆
′− d−2

2 ,1−z̄
)

(1−z̄)∆2−∆′/2
z̄

∆1+∆2
2

]
. (4.15)

The approximation sign is only because we have used the coefficient of 1
2 log z in the gener-

ating function as a proxy for the anomalous dimension, as above, but this formula exactly

gives the coefficient of 1
2 log z. (This proxy will be relaxed shortly.)
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Expanding the integral at large spin β we reproduce, for example, the first few terms

of the large spin expansion given for four scalars in the 3D Ising model in eq. (5.6) and

footnote 14 of [10] (with j2
there = 1

4β(β−2)here). Thus the above integral indeed resums the

1/J expansion to all orders! It converges for β > d−∆1−∆2, which includes all operators

of spin J ≥ 2 due to unitarity bounds.

4.3.2 Beyond leading-log: exact sum rule and application to 3D Ising

If one could sum up all t-channel primaries, the convergent expansion (4.10) would repro-

duce exactly all s-channel OPE coefficients. However, in practice, one must address the

fact that the infinite sum over primaries does not commute with taking the z → 0 limit

of each term. This is because the true z → 0 limit of the generating function involves

power-laws zτ/2, in contrast with individual t-channel blocks, which have at most single

logarithms times double-twist powers.

A simple solution is to subtract a known sum, such as the SL2(R) sum in eq. (4.8).

Let us restrict, for notational simplicity, to the case where all four operators are the same

scalar σ, and to the lowest twist; generalization will be straightforward. From the t-channel

sum (4.10) we know that

C0(β)z∆σ+ 1
2
γ0(β) + subleading in z =

∑
J ′,∆′

f2
σσO′ ĨJ ′,∆′(z, β), (4.16)

where C0(β) and γ0(β) are the lowest-twist OPE coefficicent and anomalous dimension

appearing in eq. (4.4), and Ĩ stands for the universal (theory-independent) integral of a

block in eq. (4.10). Subtracting eq. (4.8) with z̄ → 1−z (and an arbitrary β0) and dividing

by z∆σ , this replaces the exponent on the left by a constant and logarithm:

A(β)+B(β)
1

2
logz=

∞∑
J ′=0

[
−C0(β)I

(0,0)
γ0(β)(β0+2J ′)kβ0+2J ′(1−z)+

1

z∆σ

∑
∆′

f2
σσO′ ĨJ ′,∆′(z,β)

]
z→0

.

(4.17)

The point is that we can now take the z → 0 limit termwise and obtain two equations giving

the coefficients A,B as convergent sums over t-channel primaries. The coefficients A and

B are then directly related to the s-channel OPE coefficients and anomalous dimension

through the expression for the remainder R given in eq. (4.9):

A(β) +B(β)
1

2
log z ≡ C0(β)R(0,0)

γ0(β),β0
(1− z)

∣∣∣
k=0

= C0(β)

(
1 +

γ0(β)

2
log z +O(γ2

0)

)
.

(4.18)

Thus, when the anomalous dimension is small, the sum rule in eq. (4.17) reduces to the

naive procedure of extracting OPE coefficients and anomalous dimensions from regular and

logarithmic terms, as was done above, but in general the k = 0 term in R incorporates

corrections of order γ2
0 . Note also that even though C and γ0 appear on both sides of the

equation, their effect is much more important on the left-hand side, so the equation can be

solved iteratively.

At subleading twists, the same logic gives rise to two sum rules for each exponent

τ = 2∆σ + 2m where m = 0, 1, 2, . . .. The number of subtraction needed for convergence is
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equal to the number of s-channel operators with twist less than 2∆σ+2m at that particular

value of β, which we generally expect to be finite.

Somewhat reminiscent sum rules have been used recently in Mellin space [34, 35].

These authors expand the correlator in terms of Witten diagrams instead of conformal

blocks and then require that spurious “double trace” operators of twist 2∆ + 2m cancel

out. It would be interesting to better understand the connection.

Using the numerical data for the 3D Ising model provided graciously in [11], we could

numerically check the above sum rule (4.18); including the operators from the [σσ]0, [σσ]1
and [εε0] families tabulated in the appendices of that paper, we checked the sum rule for

the s-channel stress tensor to 10−3 accuracy for its dimension and OPE coefficient. This is

impressively accurate although not significantly different than the quality of the asymptotic

expansions already considered in [11]. We leave it as an open question to identify which

operators must be included to increase the precision beyond this point.

An interesting possibility is to use the convergent sums to control the errors. For

example, schematically, an alternative way to extract the lowest twist at a given β is from

− γ(β) = lim
z→0

(2∆σ − 2z∂z)C(z, β)

C(z, β)
. (4.19)

At finite z, both the numerator and denominator are convergent t-channel sums, and eval-

uating the sum at finite but small z (say 10−3) the error will be proportional to z. Both the

numerator and denominator are generically sums of positive terms. Since the denominator

starts with 1, the effect of any given t-channel primary is stronger on the numerator than

denominator. For the right-hand-side to not exceed 2∆σ − 1 ≈ 0.036 for the stress tensor

(β = 5), which the ε-exchange already nearly comes close to saturating, then gives an upper

bound on the remaining operator contributions. When we change the values of β, these

get smaller, with the higher-dimension contributions decaying more rapidly with β, thus

allowing to bound the uncertainties on other operators using the error on the stress tensor.

The main novelty of the inversion formula (3.20), compared with formulas from

refs. [10] and [11] which include similar physics, is that conceptually it produces convergent

sums that are valid for any individual spin J > 1, as opposed to inverting a crossing equa-

tion as a series in 1/J . Although this does not seem to make a big numerical difference for

the 3D Ising model, this does explain conceptually why the 1/J expansions of [10, 11] ap-

pear to work all the way down to the stress tensor. It will be interesting to see how this helps

make error estimates that can be used in practice by the numerical bootstrap program.

4.3.3 Quadruple cut equation: large spin in both channels

We conclude this discussion with a brief analysis of the interplay between operators of

large spin in both channels. Just like the double discontinuity around z̄ = 1, which kills

individual s-channel blocks and allows to focus on the analytic-in-spin part, by taking a

further double-discontinuity at z = 0 one can focus on the part which is analytic-in-spin

in both channels.

We do this by defining a generating function C(β′, β) that depends on two conformal

spins. Specifically, we integrate C(z, β) over z using a measure similar to z̄ in eq. (4.2).
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Restricting, for simplicity, to identical external operators of dimension ∆, we thus define:

C(β′, β) ≡
∫ 1

0

dz

(1− z)2−∆
κβ′kβ′(1− z)

∫ 1

z

dz̄

z̄2
κβkβ(z̄) qDisc

[
1

z∆
G(z, z̄)

]
. (4.20)

Here qDisc is the quadruple discontinuity: the double-discontinuity around z̄ = 1 followed

by the double-discontinuity around z = 0. At large spins β′, β, the integral is dominated

by the corner (z, z̄)→ (0, 1), which is the usual double-lightlike limit.

Plugging in the expansion (4.4), this can be interpreted as a sum over families of

operators in the s-channel:

C(β′, β) =
∑
m

Cm(β)
(
I

(0,0)
γm(β)(β

′) + subleading
)
, (4.21)

where γm = τm− 2∆ are anomalous dimension (defined relative to double-twist operators)

and the (known) omitted terms originate only from the difference between zγ/2 and (z/(1−
z))γ/2 in the small z expansion and are subleading at large β′. On the other hand, the

factors to the power ∆ in eq. (4.20) have been chosen so that the formula is crossing

symmetrical under interchange of β and β′, and so it can also be interpreted as a sum over

t-channel operators:

C(β′, β) =
∑
m

C ′m(β′)
(
I

(0,0)
γ′m(β′)(β) + subleading

)
. (4.22)

What can be learnt from equating (4.21) and (4.22)?

As an example, in the 3D Ising model, considering the σσσσ correlator and taking

β′ � β � 1 to project onto the lowest s-channel trajectory [σσ]0, the equality reduces to:

C̃0(β)

Γ(−1
2γ0(β))2

1

(β′/2)γ0(β)
×
(

1 + subleading
)

=
∑
m

C̃ ′m(β′)

Γ(−1
2γ
′
m(β′))2

1

(β/2)γ′m(β′)
, (4.23)

where C̃0(β) ≡ 2β

(β/2)
3
2
C0(β), and again we omit computable 1/β corrections. The double-

twist anomalous dimension [σσ]0 vanishes at large β (see eq. (4.14)): γ0(β) ∝ −f2
σσε/β

∆ε .

The left-hand side can thus be expanded into powers 1/β(m∆ε) where m = 2, 3, . . . Com-

paring with the right-hand-side, where the power of β correspond to the twist of operators,

one concludes that multi-twist families {[εε], [εεε], . . .} of twist m∆ε must exist, and one

also predicts their (averaged) OPE coefficients. For example, from the m = 2 case, the [εε]

OPE coefficient must approach a constant asymptotically. Physically, this ensures that the

t-channel OPE reproduces the correct term 1
8γ

2 log2 z predicted by exponentiation of the

leading anomalous dimension (this was also discussed recently in [11]). For the [εεε] family,

the formula predicts OPE coefficients which grow like log(β′), etc.

Finally, let us mention another interesting situation where the quadruple discontinuity

seems particularly apt at capturing the physics: the interplay between isolated lowest-twist

trajectories in both channels, which gives, in a general CFT:

C̃0(β)

Γ(−1
2γ0(β))2

1

(β′/2)γ0(β)
=

C̃ ′0(β′)

Γ(−1
2γ
′
0(β′))2

1

(β/2)γ
′
0(β′)

. (4.24)
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Taking the logarithm on both sides, one sees that the right-hand-side can grow at most

linearly with log(β). Imposing this on the left-hand-side, one concludes that, for such

isolated trajectories, there must exist constants such that:

lim
β→∞

γ0(β) = 2Γcusp log(β/2) + γ∞ + power suppressed,

lim
β′→∞

C̃ ′0(β′)

Γ(−1
2γ
′
0(β′))2

= c× (β′/2)−γ∞ + power suppressed.
(4.25)

This gives a simple proof that the well-known logarithmic scaling behavior of gauge theories

is the most general possibility consistent with crossing symmetry, as originally proved

in [36]. The limit for the OPE coefficient, when Γcusp 6= 0, also agrees with the result there.

(The extension remains relatively simple when there is only one operator in one channel

but many in the other, see [37].) It would be nice to understand how subleading twist

trajectories in both channels interact with each other, perhaps combining the quadruple

discontinuity with the methods of [38, 39]; we leave this for the future.

5 Application to AdS bulk locality and Witten diagrams

The inversion formula (3.20), involving a bounded and positive definite integrand domi-

nated by single-trace operators, seems an ideal tool to analyze CFTs with gravity duals.

As an application we derive here upper bounds on higher-derivative interactions.

5.1 Bounding heavy operator contributions as a function of spin

Consider a theory with a sparse spectrum of single-trace operators, characterized by a large

gap ∆gap, which for simplicity we define here as the lowest twist of single-trace primaries

with spin J > 2. The contributions to the t-channel OPE can be separated into light and

heavy operators according to their twist. Double-trace primaries contribute to the double

discontinuity only at subleading order in 1/N , as discussed in section 2.4, and the heavy

contribution to the double discontinuity can be estimated as in eq. (2.22):

dDiscG
∣∣
heavy

= (prefactor)
∑

∆−J>∆gap

cJ ′,∆′

(
1−√ρ
1 +
√
ρ

)∆′+J ′ (1−
√
ρ̄

1 +
√
ρ̄

)∆′−J ′

× phases

≤ e−∆gap(
√
z+
√
z̄) . (5.1)

This inequality is in fact mathematically rigorous, since (prefactor)
∑

cJ′,∆′ ≤ 1 due to

convergence of the Euclidean OPE, and
1−√ρ
1+
√
ρ ≤ e−2

√
ρ ≤ e−

√
z. We stress the importance

of focusing on the double discontinuity, otherwise double-trace operators (which exist below

the gap) would also contribute.

Changing variables to (z, z̄) = σe±t with σ small, the heavy contribution to the inver-

sion formula (3.20) becomes, using (A.9),

ct(J,∆)
∣∣
heavy

= C

∫ 1

0

dσ

σ
σj−1

∫ ∞
−∞

dt
∣∣ sinh(t)

∣∣d−2
C̃∆+1−d(cosh t) dDiscG

∣∣
heavy

, (5.2)
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where C =
√
πΓ(∆−1)κJ+∆

Γ( d−1
2

)Γ(∆− d
2

)
is some constant. For ∆ = d

2 + iν along the physical contour

of integration, the t integration is nonsingular but the σ integral is strongly suppressed

away from its lower endpoint; plugging in the upper bound from eq. (5.1), dDiscG ≤
e−2
√
σ cosh(t)∆gap , one gets bounds of the type∣∣∣c(J, d

2
+ iν)heavy

∣∣∣ ≤ #

(∆2
gap)J−1

(5.3)

where # is a universal (theory-independent) constant (that may depend on ν).

To be clear, eq. (5.3) does not assume that any large-N factorization or even distinction

between single- and multi- traces exists above the gap, only that a full, unitary, theory exists

in the UV limit σ → 0 at finite N , and that the double traces below the gap are numerically

suppressed (for the double-discontinuity) due to the parameter 1/N . Also no statement is

needed about the UV behavior of the correlator order by order in 1/N .

To put this bound into perspective we can look at the case J = 2, where c(2,∆) must

contain the stress tensor pole. We recall that the inversion integral (5.2) is justified for

J > 1, which includes this case. The contribution to c(2,∆) of a finite number of light

t-channel operators, as studied in the preceding section, only produce poles at double-trace

twists, which are only near the stress tensor pole if ∆1 + ∆2 − (d − 2) ≈ 0, that is if the

external scalar operators nearly saturate the unitary bound, which we do not expect to

happen in strongly coupled theories. Therefore the stress tensor residue ∼1/cT ∼ 1/N must

be saturated by heavy t-channel operators (a similar conclusion is obtained on the gravity

side [40]), so (5.3) gives a bound of the type cT ≥ #∆2
gap with a calculable coefficient.

From the gravity perspective, this is the statement (expected from unitarity) that new

states must appear below the Planck scale. (Similar parametric bounds were obtained

in Mellin space [15]; the improvement here stems from dDisc G being locally bounded, in

contrast to the Mellin amplitude, which makes the argument nonperturbative in 1/N .)

Since the double discontinuity is positive definite and locally bounded, one can use the

stress tensor contribution to control its overall normalization, thus rewriting eq. (5.3) as∣∣∣c(J, d
2

+ iν)heavy

∣∣∣ ≤ 1

cT

#

(∆2
gap)J−2

, (5.4)

again with some computable coefficient. Again this is valid for J > 1.

This bound can be compared to expectations from effective field theory in AdS. In this

setup, “heavy” operators represent fields of large mass in AdS units, which can be integrated

out when computing correlators of light fields, as depicted in figure 6. This produces

a series of higher-derivative corrections suppressed by inverse power of the heavy mass,

of the schematic form (∂2/∆gap)mφ4 with various contractions. As explained originally

in [12], the Witten diagrams associated with these interactions give rise to solutions to the

crossing equation which are supported by double trace primaries with finitely many spins,

J = 0, . . .m.

We see that the bound (5.4) coincides with the expected optimal one in the case

where derivatives are organized to produce the maximal angular momentum (in the channel

under consideration): each extra factor of ∂2 is then suppressed by ∆2
gap. In general, the
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⇒

1

2

3

4

O

Õ

(a) (b)

Figure 6. (a) Integrating out a heavy field in AdS space produces local higher-derivative interac-

tions, suppressed by powers of the heavy mass. (b) The double-discontinuity of a one-loop correction

is equal to a product of trees.

bound (5.4) is however weaker because it detects the angular momentum of an interaction

rather than its mass dimension.

This is still highly constraining due to crossing symmetry, because it is not possible

for a four-scalar interaction to have very many derivatives without having large spin in at

least one of the s-, t- or u-channel. Therefore, except for finitely many exceptions (such

as the six-derivative interaction represented by the flat space amplitude stu, which has

spin 2 in all channels), the Regge limit constraint (5.4) proves that the coefficients of all

higher-derivative interactions contributing to a four-point correlator must be small and

decay with increasing dimension, as conjectured in [12]. We also expect the bounds to

be more constraining for external operators in spin, due to the restrictions on their local

self-interactions.

We thus believe that the bound (5.4) goes a long way toward establishing that all large-

N theories with a large gap admit a local gravity dual, although it will be important to

improve it toward the expected optimal bounds, which will presumably require information

from limits other then the Regge limit. Also it will be important to gain better control

over the low spins — for example the spin 0 interaction φ4 — which are generally expected

to have also small coefficients in AdS/CFT but over which we provide no control here.

Another important question is whether a theory dual to a CFT with a large gap can have

a light spin-two particle beyond the graviton, which is not expected on the gravity side

but not ruled out by the present arguments. (Of course, with supersymmetry, there can be

more restrictions; for instance the constraint implemented in [16], that the correlator cannot

grow faster in the Regge limit than spin-two exchange, fully determined the correlators in

the N = 4 theory and is rigorously justified by the above bounds.)

Finally, let us briefly comment on loop corrections at large N . Since the double dis-

continuity extracts, roughly speaking, the coefficient of log2(1− z̄), double-trace operators

start to contribute to it at the one-loop order, but only in a way proportional to the leading

1/N anomalous dimension of t-channel operators, which can be extracted from tree-level

amplitudes. (A similar conclusion was reached recently in Mellin space [41].) Note that,
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because of mixing among double traces, one has to sum over all the intermediate primaries

O, Õ. All we would like to add here is that, since the amplitude M already extracts

one discontinuity (see eq. (2.13)), the double-discontinuity at one-loop can be written in a

very suggestive form: ImM = M⊗M (the tensor product sign representing multiplica-

tion in (J ′,∆′) space, divided by free theory OPE coefficient of the t-channel intermediate

operators, f2
OÕ[OÕ]

).

6 Conclusion

The aim of this paper was to present a mathematical formula. The formula is in eq. (3.20).

Given a four-point correlator in a conformal field theory, the formula returns the op-

erator dimensions and OPE coefficients which lead to it. This data is an analytic function

of the spin of the exchanged operator, and the formula, similarly to a dispersive represen-

tation, quantifies the consequences of this fact. The input is that the Lorentzian correlator

admits a sensible high-energy Regge limit, which physically is a consequence of crossing

symmetry and of the positivity of Euclidean OPE data. A simplified formula, which ex-

ploits only the SL2(R) conformal symmetries of a null line, is given in eq. (4.2).

We have illustrated the formula in a number of applications and tests. In section 4

we showed how it concisely encodes a body of existing results on operators with large

spin. Most importantly, it explains conceptually why these operators organize into analytic

families in the first place. It provides convergent sums, instead of asymptotic series in 1/J .

We hope that this will be of great help to control its errors.

In theories with a large-N factorization, the formula is saturated by single-trace op-

erators. In the case where the spectrum is sparse this enables to bound OPE coefficients

of double-trace operators of spin larger than 2, see eq. (5.4). These bounds match the ex-

pectations from a dual AdS theory that would be local down to distances of order 1/∆gap

in AdS units. We believe that this goes a long way toward proving that any large-N CFT

with a large gap has a local gravity dual, as originally conjectured in [12]. They do not

saturate the expectations yet however, as was expected since they use only the Regge limit

and not the more general high-energy fixed-angle limit.

We feel that a lot remains to understand, and that the tool could be useful for other

questions. Analyticity in spin is only guaranteed to apply to OPE data for spin J ≥ 2, and

it would be important to better understand spins 0,1 (which in this paper are only covered

by the Euclidean inversion formula (3.5)). One might ask for instance if strong scalar self-

interactions are possible in theories with AdS gravity dual. Also it would be nice to better

understand why our main formula eq. (3.20) exists at all, due to the overconstrained nature

of the system we solved. This could also help generalize the formula to external operators

with spin; such a generalization could shed new light on the relation between the a and c

central charges in theories with AdS gravity dual [42, 43]. In two dimensions, extending

the formula to Virasoro blocks would also be interesting. Our finding that correlators are

analytic in spin for J ≥ 2 squares well with the recent conjecture of [44], that the only

theories with Virasoro primaries of bounded spin have maximal spin 0 (and are Liouville

theory specifically), although from the present perspective it is not immediately clear why
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spin 1 should not be possible. In the context of the 1/N expansion, it could be fruitful

to pursue the analogy with S-matrix unitarity and higher-point correlators sketched at

the end of the preceding section — this could help organize multi-twist operators in more

general theories. In general theories, it would be exciting to implement the error control

on the large-spin expansion suggested in section 4, so as to be enable using these analytic

predictions within the numerical bootstrap.

Finally, it is worth remembering that the Froissart-Gribov formula originated over 50

years ago in the context of the S-matrix bootstrap. Have all its applications been found?
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A Conformal blocks in general dimensions

Conformal blocks are characterized by the dimensions and spin of the exchanged primary

operator. This data is encoded in the quadratic and quartic Casimir invariants of the

conformal algebra [45, 46]:

c2 =
1

2
[J(J + d− 2) + ∆(∆− d)] ,

c4 = J(J + d− 2)(∆− 1)(∆− d+ 1) ,
(A.1)

which are the eigenvalues of the following differential operators:

C2 = Dz +Dz̄ + (d− 2)
zz̄

z − z̄
[(1− z)∂z − (1− z̄)∂z̄] ,

C4 =

(
zz̄

z − z̄

)d−2

(Dz −Dz̄)

(
zz̄

z − z̄

)2−d
(Dz −Dz̄) .

(A.2)

Here

Dz = z2∂z(1− z)∂z − (a+ b)z2∂z − abz (A.3)

and a = 1
2(∆2 −∆1), b = 1

2(∆3 −∆4) as in the main text.

In even spacetime dimensions, explicit closed-form solutions can be obtained in terms

of hypergeometric functions, as given in eqs. (2.5). In the general case, it is necessary to

rely on other methods such as the various series expansions discussed in this appendix.

Since we will be interested in analytic continuations, it will be useful to consider the

most general solution to these equations. These are most concisely described when J and

∆ are generic (such that J and J ±∆ are non-integer) — non-generic cases can then be

obtained as limits. One can then choose solutions that are pure power laws in the limit

0� z � z̄ � 1, labelled by their exponents:

gpure
J,∆ (z, z̄) = z

∆−J
2 z̄

∆+J
2 × (1 + integer powers of z/z̄, z̄) . (A.4)

– 33 –



J
H
E
P
0
9
(
2
0
1
7
)
0
7
8

There are in fact eight independent solutions, which are obtained from the above by acting

with the three independent Z2 symmetries of the Casimir eigenvalues (A.1):

J←→2− d− J ; ∆←→ d−∆; ∆←→ 1− J . (A.5)

A.1 Expansions around the origin z, z̄ → 0

In the limit that z, z̄ → 0, the dependence on their ratio is controlled by the Gegenbauer

differential equation with x = cos θ = 1
2(
√
z/z̄ +

√
z̄/z):

gpure
J,∆ = (zz̄)

∆
2 (fJ(x) +O(zz̄)),

[
(1− x2)∂2

x − (d− 1)x∂x + J(J + d− 2)
]
fJ(x) = 0 .

(A.6)

This is the d-dimension generalization of spherical harmonics, e.g. Legendre polynomials.

This is physically expected since in Euclidean kinematics x is the cosine of an angle. The

pure power solutions corresponding to (A.4) can be written as

fJ(x) = (2x)J2F1

(
−J
2
,
1− J

2
, 2− J − d

2
,

1

x2

)
. (A.7)

On the other hand, there is always a solution analytic around x = 1, known as Gegenbauer

polynomial (normalized here to C̃j(1) = 1)

C̃J(x) ≡ Γ(J + 1)Γ(d− 2)

Γ(J + d− 2)
C
d/2−1
J (x) = 2F1

(
− J, J + d− 2,

d− 1

2
,
1− x

2

)
. (A.8)

It is, of course, only a polynomial when J is an integer. Comparing its large-x asymptotics

with the normalization (2.4), we conclude that the blocks behave near the origin like

GJ,∆(z, z̄) =
23−d√πΓ(J + d− 2)

Γ
(
d−1

2

)
Γ
(
J + d−2

2

) (zz̄)
∆
2

(
C̃J(x) +O(zz̄)

)
. (A.9)

More generally, the Gegenbauer polynomials can be written as a sum of two pure power

solutions. This gives an exact decomposition of the regular solution G used in the main text:

GJ,∆(z, z̄) = gpure
J,∆ (z, z̄) +

Γ(J + d− 2)Γ
(
− J − d−2

2

)
Γ
(
J + d−2

2

)
Γ(−J)

gpure
−J−d+2,∆(z, z̄). (A.10)

This will be useful since the pure power solutions gpure
J,∆ have simpler asymptotic expansions

and analytic continuations. (This formula is valid for generic dimension. The limit to

even spacetime dimension can be singular for integer spins, but this does not appear to

affect our final formulas.)

Orthonormality of conformal blocks. Interchanging the order of integrations in the

Euclidean inversion formula (3.5), with ∆ = d
2 + iν, one finds the following integral:

IJ,ν;J ′,ν′ ≡
∫
d2z µ(z, z̄) g(z, z̄)FJ, d

2
+iν(z, z̄)FJ ′, d

2
+iν′(z, z̄) . (A.11)

It is easy to verify that, at least when a, b are small enough, the functions F are sufficiently

regular near 0, 1, ∞ that the Casimir operators are self-adjoint. For example, when
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a = b = 0, the F ’s have at most logarithmic singularities near z = 1, and the double-

derivatives in Dz come with a factor (1− z)∂2
z which ensures that all boundary terms near

z = 1 arising from integration-by-parts vanish. When a, b 6= 0, the integral may become

divergent near z = 1, but as discussed in section 3.1 any contribution from the region

z, z̄ ≈ 1 has a specific J, ν dependence which removes any possible physical consequence.

Self-adjointness of the quadratic and quartic Casimirs implies that the above integral

vanishes unless both blocks have the same eigenvalues. For real ν this forces J = J ′ and

ν = ±ν ′. The latter is a distributional term which can only appear if the integral develops

a singularity, which in turn can only come from near the origin where the behavior of the

functions is similar to that of a Mellin transform:∫
0

dr

r
ri(ν±ν

′) = πδ(ν ± ν ′) + non-singular (A.12)

The angular integral, thanks to the appropriate factor for spherical harmonics in d dimen-

sions which arises from the measure (3.6), |(z− z̄)|d−2 ∝ (sin θ/2)d−2, takes the form of the

of the orthogonality relation of Gegenbauer polynomials and forces the spins to be equal:∫ 1

−1
dx(1− x2)

d−3
2 C̃J(x)C̃J ′(x) = δJJ ′

2d−2Γ(J + 1)Γ(d−1
2 )2

Γ(J + d− 2)(2J + d− 2)
(J, J ′ = integers) .

(A.13)

By combining this with the normalization of the single-valued functions F in eq. (3.2), we

obtained the normalization factor in the Euclidean inversion formula (3.5):

N (J,∆) =
Γ
(
J + d−2

2

)
Γ
(
J + d

2

)
KJ,∆

2π Γ(J + 1)Γ(J + d− 2)KJ,d−∆
. (A.14)

Subleading terms and poles of conformal blocks. Subleading terms in zz̄ can be

worked out systematically using the methods of [23]: one postulates an expansion in terms

of powers times Gegenbauer polynomials,

gpure
J,∆ (z, z̄) =

∞∑
m=0

(zz̄)
∆+m

2

m∑
k=−m

Ak,mC̃J+k(x) . (A.15)

The quadratic Casimir equation then gives a first order recurrence relation for the coeffi-

cients ak,m; the spin changes only by one unit at each step due to the addition properties

of angular momentum. We reproduce this recursion relation here in the more general case

where a, b 6= 0. It is seeded by Ak,0 = δk,0 times the prefactor in eq. (A.9) and reads:

2
(
c2(J+k,∆+m)−c2(J,∆)

)
Ak,m = γ+

∆+m−1,J+k−1AJ+k−1,m−1 +γ−∆+m−1,J+kAJ+k+1,m−1

(A.16)

where

γ+
E,J =

(J+d−2)(E+J+2a)(E+J+2b)

2J+d−2
, γ−E,J =

J(E−J−d+2+2a)(E−j−d+2+2b)

2J+d−2
.

(A.17)

This recursion relation is valid whether or not J is integer and holds equally for GJ,∆ and

gpure
J,∆ , one simply has to replace C̃J(x) by

Γ(J+ d−2
2

)

Γ(J+d−2)fJ(x) in the latter case.
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Using this recursion relation, it is possible to determine the poles in the conformal

blocks GJ,∆ as a function of ∆. Since the denominators come from the Casimir, it is easy

to check that the only poles are at ∆ = J + d − 2 −m, where m = 0, 1, 2, . . .. This has a

simple physical interpretation since ∆ ≥ J + d− 2 is the unitarity bound (for generic spin

J): the poles appear when the unitarity bound is crossed. The residue must be one of the

solutions related by the symmetries (A.5). Working out the proportionality factor we find

that the following combination is pole-free for ∆ > d/2:

GJ,∆(z, z̄)− r∆+1−d,J+d−1G∆+1−d,J+d−1(z, z̄), (A.18)

where rJ,∆ is a messy-looking product of Γ-functions (with x = ∆− j − d+ 2):

rJ,∆ =
Γ(∆− 1)Γ(∆ + 2− d)

Γ
(
∆− d

2

)
Γ
(
∆− d−2

2

) Γ
(
J + d−2

2

)
Γ
(
J + d

2

)
Γ(J + 1)Γ(J + d− 2)

Γ(2− x)Γ
(
a+ x

2

)
Γ
(
b+ x

2

)
Γ(x)Γ

(
a+ 2−x

2

)
Γ
(
b+ 2−x

2

) . (A.19)

A.2 Expansions around z → 0 and monodromy under analytic continuation

Many applications involve the collinear limit z → 0. The z̄ dependence is then controlled by

the conformal symmetry SL2(R) of a one-dimensional null line; in particular the quadratic

Casimir (A.2) reduces to a hypergeometric equation whose solution appeared already in

the two- and four-dimensional blocks in eq. (2.5):

gpure
J,∆ (z, z̄)

z→0−−−→ z
∆−J

2 k∆+J(z̄), kβ(z̄) = z̄β/2 2F1(β/2 + a, β/2 + b, β, z̄). (A.20)

In the limit z̄ → 1, the hypergeometric function admits the standard expansion

lim
z̄→1

kβ(z̄) =
Γ(a+ b)Γ(β)

Γ(β/2 + a)Γ(β/2 + b)
(1− z̄)−a−b +

Γ(−a− b)Γ(β)

Γ(β/2− a)Γ(β/2− b)
+ . . . (A.21)

where the dots stand for infinite towers of integer power corrections to the two terms. This

formula will be used to seed the double null limit z → 0, z̄ → 1 in the next subsection.

The second solution to the quadratic equation involves k2−β(z̄) and controls the

collinear limit of gpure
1−∆,1−J(z, z̄). When we analytically continue, in particular going to

the Regge sheet by taking z̄ counter-clockwise around 1 (while retaining z small), these

two solutions mix. The continuation, which can be worked out from (A.21), reads

gpure
j,∆ (z,z̄)	=gpure

j,∆ (z,z̄)

[
1−2i

e−iπ(a+b)

sin(π(J+∆))
sin

(
π

(
J+∆

2
+a

))
sin

(
π

(
J+∆

2
+b

))]

−2πigpure
1−∆,1−j(z,z̄)

e−iπ(a+b)

κJ+∆
(A.22)

with κβ defined in eq. (3.3). In the text we also need the continuation as z goes counter-

clockwise around 1, with z̄ fixed. The trick is to do this in multiple steps, first interchanging

z and z̄ in the pure power solutions. By analyzing the hypergeometric function (A.7) near

x = 1, we obtain the following connection formula, if z is analytically continued to the

right of z̄ in a counter-clockwise fashion (so that x goes counter-clockwise around 1):

gpure
J,∆ (z,z̄)=gpure

−J−d+2,∆(z̄,z)
e−iπ

d−2
2 Γ(−J− d−2

2 )Γ(1−J− d−2
2 )

Γ(−J)Γ(3−J−d)
+gpure

J,∆ (z̄,z)
eiπJ sin(π d−2

2 )

sin
(
π(J+ d−2

2 )
) .

(A.23)
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The continuation of gpure
j,∆ (z, z̄) counter-clockwise around z = 1 can then be obtained simply

by applying (A.23) followed by (A.22) and then (A.23) again. (We caution the reader that

the limit of integer spin should be approached with care in the preceding formula, since

the large solution fJ(x) diverges in this limit and both terms contribute.)

For single-valued combinations, the two ways of reaching the Regge sheet by rotating

either z or z̄ counter-clockwise around 1 should give the same result. The preceding two

formulas can therefore be used to confirm single-valuedness of the combination FJ,∆ in

eq. (3.2).

Subleading terms. To expand in subleading powers of z one can proceed following

methods similar to [47]. In fact in the main text what we really need is the expansion of

the block times measure:

z1−d
(
z̄ − z
z̄

)d−2

(1− z)a+b gpure
∆+1−d,J+d−1(z, z̄) =

∞∑
m=0

z
J−∆

2
+m

m∑
k=−m

B
(m,k)
J,∆ k∆+J+2k (z̄).

(A.24)

The coefficients B
(m,k)
J,∆ (which are those entering eq. (4.3)) can then be obtained recur-

sively using the quadratic Casimir equation. To simplify the expansion it turns out to be

convenient to consider a slightly different prefactor:

z1−d
(
z̄ − z
z̄

) d−2
2

gpure
J,∆ (z, z̄) =

∞∑
m=0

z
j−∆

2
+m h

(m)
J,∆(z̄). (A.25)

We expand each term as a sum of SL2 blocks, h
(m)
J,∆(z̄) =

∑m
k=−m h

(m,k)
J,∆ kβ+2k(z̄) with

β = ∆ + J and τ = ∆− J , and find that the quadratic Casimir equation becomes∑
k

(
k(k + β − 1) +m(m+ τ + 1− d)

)
h

(m,k)
J,∆ kβ+2k(z̄)

=

(
1

2

(
τ − d

)
+m+ a

)(
1

2

(
τ − d

)
+m+ b

)
h

(m−1)
J,∆ (z̄)

+
1

4
(d− 2)(d− 4)

m∑
m′=1

(
2m′

z̄m′
− 2m′ − 1

z̄m′−1

)
h

(m−m′)
J,∆ (z̄) .

(A.26)

The right-hand side can be expressed as a sum over SL2 blocks using the recursion relation:

1

z̄
kβ(z̄) = kβ−2(z̄) +

(
1

2
− 2ab

β(β − 2)

)
kβ(z̄) +

(a2 − 1
4β

2)(b2 − 1
4β

2)

β2(β2 − 1)
kβ+2(z̄) . (A.27)

In this way the coefficients h
(m,k)
J,∆ can be obtained recursively. Multiplying by (1 −

z/z̄)
d−2

2 (1−z)a+b and exchanging J ↔ 1−∆ to go from (A.25) to (A.24) and re-expanding

in z, then gives the desired B
(m,k)
J,∆ coefficients. As simple examples we find B

(0,0)
J,∆ = 1 and

B
(1,1)
J,∆ = − (d−2)(J+2)

2J+d .
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A.3 Expansions around z̄ → 1

Operators with low twist and high spin in the s-channel are controlled by the behavior of

t-channel blocks G(1− z̄, 1− z) in the limit z → 0, z̄ → 1. The argument of the block itself

thus appraochs (0, 1). An expansion in powers of z around this limit, that is, in powers

of the second argument of the block, was defined in (4.11) and corresponds to the twist

expansion in the s-channel. Reverting to (z, z̄) arguments it can be written equivalently as

GJ,∆(z, z̄) =
∑
i=1,2

∞∑
m=0

(1− z̄)pi+mH
(i),m
J,∆ (z) . (A.28)

The quadratic Casimir equation is singular in this limit z̄ → 1, since the operator Dz̄

reduces m by one unit. One concludes that there can be only two towers of terms, beginning

with the two exponents corresponding to the zero-modes of Dz̄: p1 = 0 and p2 = −a − b,
which represent double-twist s-channel operators. (When these blocks are used in t-channel,

which is related by 1 ↔ 3 to the s-channel, one should use that a|t−channel = ∆2−∆3
2 and

b|t−channel = ∆1−∆4
2 . The H

(i),m
J,∆ functions defined by eq. (A.28) then become precisely

those entering eq. (4.11).)

The solutions are more conveniently described by decomposing the blocks into pure

power solutions (A.10). Normalizing the contributions so that they have simple behavior

at z → 0, this gives

gpure
J,∆ (z, z̄) =

∑
i=1,2

∞∑
m=0

(1− z̄)pi+mc
(i)
J+∆H̃

(i),m
J,∆ (z) (A.29)

where in the z → 0 limit, H̃
(i),m
J,∆ (z) = z

∆−J
2 times a tower of integer powers, and the

coefficients, coming from the collinear expansion (A.21), are

c
(1)
β =

Γ(β)Γ(−a− b)
Γ(β/2− a)Γ(β/2− b)

, c
(2)
β =

Γ(β)Γ(a+ b)

Γ(β/2 + a)Γ(β/2 + b)
. (A.30)

In the case where a + b = 0, which occurs for identical operators, logarithms of z̄ appear

and this need to be rewritten, following eq. (4.12), as

gpure
J,∆ (z, z̄) =

∞∑
m=0

(1− z̄)mclog
J+∆

((
1

2
log(1− z̄) + cfin

J+∆

)
H̃ log,m
J,∆ (z) + H̃reg,m

J,∆ (z)
))

, (A.31)

where H̃
log/reg,0
J,∆ /z

∆−J
2 respectively tend to 1 or 0 as z → 0. The coefficients are now

clog
β = − 2Γ(β)

Γ(β/2− a)Γ(β/2 + a)
, cfin

β =
1

2
ψ(β/2− a) +

1

2
ψ(β/2 + a)− ψ(1) , (A.32)

where ψ(x) = Γ′(x)/Γ(x) is the polygamma function.

When this expansion is used in the t-channel, the expansion in powers of z is dual to

1/J corrections in the s-channel. The coefficients are determined by the Casimir equations,

but this is actually subtle, since in this limit both the quadratic and quartic Casimirs mix
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the m = 0 and m = 1 terms. To resolve this, we start from the equation for C4 and

substitute in the equation for C2 to remove the offending lowering operators Dz̄; after

some algebra we find:

c4GJ,∆(z, z̄) =

(
zz̄

z − z̄

)d−2 (
2Dz − Y − c2 + 2− d

)( zz̄

z − z̄

)2−d (
2Dz + Y − c2

)
GJ,∆(z, z̄) ,

(A.33)

where Y = (d − 2) zz̄
z−z̄ [(1− z)∂z − (1− z̄)∂z̄] is the operator entering (A.2). The limit

z̄ → 0 is now regular and gives a closed equation for m = 0:

c4H̃
(i),0
J,∆ (z) =

(
z

1− z

)d−2 (
2Dz − Ỹ − c2 + 2− d

)( z

1− z

)2−d (
2Dz + Ỹ − c2

)
H̃

(i),0
J,∆ (z) ,

(A.34)

where now Ỹ = −(d−2)z(∂z + pi
1−z ). That the equation is quartic was to be expected since

there needs to be 8 solutions, and there are only two exponents p. In the logarithmic case

a+ b = 0, one simply replaces pi by d/d log(1− z̄).

We don’t know whether this quartic differential equation can be solved in terms of more

elementary functions. In any case, it can be solved numerically, or also straightforwardly

as a power series in z: the above differential equation directly translates into a fourth-order

recurrence relation. For example, focusing on the case where d = 3 and a = b = 0 as used

in the main text, and expanding in the variable y = z
1−z , we find that

H̃ log,0
J,∆ (y)/y

∆−J
2 =1+

(∆−J−1)(∆(1−2J)+J)

2(2∆−1)(2J−1)
y+
(
(∆−J)2−1

)
×

×
(
∆3(4J2−8J+3)−∆2(4J3−12J2+13J−6)+∆J2+J2(J−2)

)
8(2∆−1)(2∆+1)(∆−J)(2J−3)(2J−1)

y2+...

H̃reg,0
J,∆ (y)/y

∆−J
2 =− y

2(2∆−1)(2J−1)

−∆2(3−2J)+2∆(3−2J+2J2)+3−5J+J2

4(2∆−1)(2∆+1)(2J−3)(2J−1)
y2+... (A.35)

In the special case J = 0, the equation factorizes, and correspondingly we find that the

series simplifies and can be summed exactly:

H̃
(1),0
0,∆ (z) = 2F1

(
∆

2
+ a,

∆

2
+ b,∆− d− 2

2
, z

)
,

H̃
(2),0
0,∆ (z) = (1− z)−a−b2F1

(
∆

2
− a, ∆

2
− b,∆− d− 2

2
, z

)
.

(A.36)

In the limit a+ b→ 0, either of these solution converges to H̃ log,0
0,∆ (y) as quoted in the main

text.

Finally, we note that once the quartic equation for the z-dependence of the leading

z̄ → 1 term is solved, it does not need to be used anymore since the quadratic equation

expresses the subleading (1 − z̄) terms in terms of z-derivatives of the leading solution.
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B A worked example: the 2D Ising model

In this section we test the Lorentzian inversion formula on explicit correlators of the two-

dimensional critical Ising model. This model contains two scalar Virasoro primaries: σ and

ε, which have mass dimension ∆ = 1
8 and ∆ = 1 and are odd and even under a Z2 symmetry,

respectively. Their four-point correlators, with the conventions from subsection 2.1, are [48]

(expressions from [49]):

GA ≡ Gσσσσ =

∣∣∣∣ 1

(1− ρ2)1/4

∣∣∣∣2 +

∣∣∣∣ √
ρ

(1− ρ2)1/4

∣∣∣∣2 , GB ≡ Gσσεε =

∣∣∣∣1 + ρ2

1− ρ2

∣∣∣∣2 ,
GC ≡ Gσεεσ =

∣∣∣∣∣ ρ1/16(1 + 6ρ+ ρ2)

27/8(1− ρ)2(1 + ρ)1/8

∣∣∣∣∣
2

, GD ≡ Gεεεε =

∣∣∣∣1 + 14ρ2 + ρ4

(1− ρ2)2

∣∣∣∣2 .
(B.1)

Note that GB and GC represent different channels of the same correlator.

Let us consider GA in detail, leaving the others to the reader (the others are also

interesting as they manifest the divergences at z̄ → 1 discussed below eq. (3.9). To compute

its double discontinuity, we need to treat ρ, ρ̄ as independent variable and take ρ → 1/ρ,

either above or below the axis (see eq. (2.14)), which gives

dDiscGA(ρ, ρ̄) =
1− 1√

2
(
√
ρ+
√
ρ̄) +

√
ρρ̄

(1− ρ2)1/4(1− ρ̄2)1/4
, (B.2)

which here is to be evaluated in the range 0 < ρ, ρ̄ < 1 (thus differing from the formulas in

the main text by ρ̄→ 1/ρ̄) Note that it is positive, as required. To get the OPE coefficients,

according to our main inversion formula (3.20), we just need to integrate this against the

two-dimensional (global) conformal blocks given in eq. (2.5). Since both the global blocks

and Ising correlator take on a factorized form, we get a sum of factorized integrals:

cAJ,∆ =
(
1 + (−1)J

)κJ+∆

2

[
I0
−1/4(J+∆) I0

−1/4(J+2−∆) + I
1/2
−1/4(J+∆) I

1/2
−1/4(J+2−∆)

− 1√
2
I

1/2
−1/4(J+∆) I0

−1/4(J+2−∆)− 1√
2
I0
−1/4(J+∆) I

1/2
−1/4(J+2−∆)

]
, (B.3)

where, in terms of the ρ-variables, using the measure given in (3.13), the basic integral is

Ip0
p1

(β) ≡
∫ 1

0

dρ (1− ρ2)

4ρ2
kβ(ρ)ρp0(1− ρ2)p1 . (B.4)

This looks very difficult because k is an hypergeometric function with argument ρ, but

in fact in the case that a = b = 0 it can be written in terms of a hypergeometric with

argument ρ2:

kβ(z)
∣∣
a=b=0

= (4ρ)β/2 2F1

(
1

2
,
β

2
,
β + 1

2
, ρ2

)
≡ kβ(ρ). (B.5)

Changing variable to u = ρ2 the integral can then be computed as a generalized hyperge-

ometric function,

Ip0
p1

(β) =
2β−3Γ(p1 + 2)Γ

(β+2p0−2
4

)
Γ
(β+2p0+4p1+6

4

) 3F2

(
1

2
,
β

2
,
β + 2p0 − 2

4
;
β + 1

2
,
β + 2p0 + 4p1 + 6

4
; 1

)
.

(B.6)
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The usual, discrete OPE coefficients are then obtained from these partial wave coefficients

by taking residues, according to (3.9):

cAJ,∆ = −Res∆′=∆

 cA(J,∆′) (∆ generic)

cA(J,∆′)− Γ(J+2−∆′)Γ2( ∆′−J
2

)

Γ(∆′−J)Γ2(J+2−∆′
2

)
cA(∆′−1, J+1) (∆−J = 3, 5, . . .)

(B.7)

For the first few OPE coefficients (up to dimension 7), for example, this formula gives:8

cA0,1 =
1

2
× 1

2
=

1

4
, cA2,2 =

1

64
, cA4,4 =

9

40960
, cA0,4 =

1

4096
,

cA4,5 =
1

65536
, cA6,6 =

35

3670016
cA2,6 =

9

2621440
, cA6,7 =

1

1310720
, . . .

(B.8)

The extra 1
2 in the first case is due to the dimension being equal to d/2, as explained below

eq. (3.8). We have checked that, upon substituting into the OPE sum (2.3), these numbers

reproduce the series expansion of the Euclidean correlator GA! (Using computer algebra

we have checked the match up to dimension 15.) This confirms the extraction of OPE

data (with respect to the rigid, not Virasoro, conformal symmetry) from the Lorentzian

inversion formula, as an analytic function of dimension and spin.

We have also verified that the analytic result (B.3) agrees numerically with the Eu-

clidean inversion integral (3.5):

cAJ,∆ = N (J,∆)

∫
|ρ|<1

d2ρµ(ρ, ρ̄)GA(ρ, ρ̄)FJ,∆(ρ, ρ̄) . (B.9)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in

4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

[2] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving

the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022

[arXiv:1203.6064] [INSPIRE].

[3] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving

the 3d Ising model with the conformal bootstrap II. c-minimization and precise critical

exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].

[4] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity

and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

[5] M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap

II: two dimensional amplitudes, arXiv:1607.06110 [INSPIRE].

8We caution the reader that direct use of Mathematica’s Residue[] command may not always detect all

poles of the 3F2 functions. The numbers quoted here were obtained by evaluating the residues numerically

to high accuracy, for example by taking ∆′ −∆ = 10−50, and rationalizing the result.

– 41 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1126-6708/2008/12/031
https://arxiv.org/abs/0807.0004
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0004
https://doi.org/10.1103/PhysRevD.86.025022
https://arxiv.org/abs/1203.6064
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.6064
https://doi.org/10.1007/s10955-014-1042-7
https://arxiv.org/abs/1403.4545
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.4545
https://doi.org/10.1088/1126-6708/2006/10/014
https://arxiv.org/abs/hep-th/0602178
https://inspirehep.net/search?p=find+EPRINT+hep-th/0602178
https://arxiv.org/abs/1607.06110
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.06110


J
H
E
P
0
9
(
2
0
1
7
)
0
7
8

[6] Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013)

140 [arXiv:1212.4103] [INSPIRE].

[7] A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and

AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

[8] A. Kaviraj, K. Sen and A. Sinha, Analytic bootstrap at large spin, JHEP 11 (2015) 083

[arXiv:1502.01437] [INSPIRE].

[9] A. Kaviraj, K. Sen and A. Sinha, Universal anomalous dimensions at large spin and large

twist, JHEP 07 (2015) 026 [arXiv:1504.00772] [INSPIRE].

[10] L.F. Alday and A. Zhiboedov, Conformal bootstrap with slightly broken higher spin

symmetry, JHEP 06 (2016) 091 [arXiv:1506.04659] [INSPIRE].

[11] D. Simmons-Duffin, The lightcone bootstrap and the spectrum of the 3d Ising CFT, JHEP 03

(2017) 086 [arXiv:1612.08471] [INSPIRE].

[12] I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field

theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

[13] J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03

(2011) 025 [arXiv:1011.1485] [INSPIRE].

[14] A.L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B.C. van Rees, A natural language

for AdS/CFT correlators, JHEP 11 (2011) 095 [arXiv:1107.1499] [INSPIRE].

[15] L.F. Alday and A. Bissi, Unitarity and positivity constraints for CFT at large central charge,

JHEP 07 (2017) 044 [arXiv:1606.09593] [INSPIRE].

[16] L. Rastelli and X. Zhou, Mellin amplitudes for AdS5 × S5, Phys. Rev. Lett. 118 (2017)

091602 [arXiv:1608.06624] [INSPIRE].

[17] V.N. Gribov, Possible asymptotic behavior of elastic scattering, JETP Lett. 41 (1961) 667

[INSPIRE].

[18] P.D.B. Collins, An introduction to Regge theory and high-energy physics, Cambridge

Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge U.K., (2009)

[INSPIRE].

[19] S. Donnachie, H.G. Dosch, O. Nachtmann and P. Landshoff, Pomeron physics and QCD,

Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 19 (2002) 1 [INSPIRE].

[20] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106

[arXiv:1503.01409] [INSPIRE].

[21] T. Hartman, S. Kundu and A. Tajdini, Averaged null energy condition from causality, JHEP

07 (2017) 066 [arXiv:1610.05308] [INSPIRE].

[22] M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP 12 (2012) 091

[arXiv:1209.4355] [INSPIRE].

[23] M. Hogervorst and S. Rychkov, Radial coordinates for conformal blocks, Phys. Rev. D 87

(2013) 106004 [arXiv:1303.1111] [INSPIRE].

[24] D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE convergence in conformal field

theory, Phys. Rev. D 86 (2012) 105043 [arXiv:1208.6449] [INSPIRE].

[25] H. Casini, Wedge reflection positivity, J. Phys. A 44 (2011) 435202 [arXiv:1009.3832]

[INSPIRE].

[26] T. Hartman, S. Jain and S. Kundu, Causality constraints in conformal field theory, JHEP 05

(2016) 099 [arXiv:1509.00014] [INSPIRE].

[27] J. Maldacena, D. Simmons-Duffin and A. Zhiboedov, Looking for a bulk point, JHEP 01

(2017) 013 [arXiv:1509.03612] [INSPIRE].

– 42 –

https://doi.org/10.1007/JHEP11(2013)140
https://doi.org/10.1007/JHEP11(2013)140
https://arxiv.org/abs/1212.4103
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.4103
https://doi.org/10.1007/JHEP12(2013)004
https://arxiv.org/abs/1212.3616
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.3616
https://doi.org/10.1007/JHEP11(2015)083
https://arxiv.org/abs/1502.01437
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.01437
https://doi.org/10.1007/JHEP07(2015)026
https://arxiv.org/abs/1504.00772
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.00772
https://doi.org/10.1007/JHEP06(2016)091
https://arxiv.org/abs/1506.04659
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.04659
https://doi.org/10.1007/JHEP03(2017)086
https://doi.org/10.1007/JHEP03(2017)086
https://arxiv.org/abs/1612.08471
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.08471
https://doi.org/10.1088/1126-6708/2009/10/079
https://arxiv.org/abs/0907.0151
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.0151
https://doi.org/10.1007/JHEP03(2011)025
https://doi.org/10.1007/JHEP03(2011)025
https://arxiv.org/abs/1011.1485
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1485
https://doi.org/10.1007/JHEP11(2011)095
https://arxiv.org/abs/1107.1499
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.1499
https://doi.org/10.1007/JHEP07(2017)044
https://arxiv.org/abs/1606.09593
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.09593
https://doi.org/10.1103/PhysRevLett.118.091602
https://doi.org/10.1103/PhysRevLett.118.091602
https://arxiv.org/abs/1608.06624
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.06624
https://inspirehep.net/search?p=find+J+%22JETPLett.,41,667%22
https://doi.org/10.1017/CBO9780511897603
https://inspirehep.net/search?p=find+recid+127083
https://inspirehep.net/search?p=find+J+CMPCE,19,1
https://doi.org/10.1007/JHEP08(2016)106
https://arxiv.org/abs/1503.01409
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.01409
https://doi.org/10.1007/JHEP07(2017)066
https://doi.org/10.1007/JHEP07(2017)066
https://arxiv.org/abs/1610.05308
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.05308
https://doi.org/10.1007/JHEP12(2012)091
https://arxiv.org/abs/1209.4355
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.4355
https://doi.org/10.1103/PhysRevD.87.106004
https://doi.org/10.1103/PhysRevD.87.106004
https://arxiv.org/abs/1303.1111
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1111
https://doi.org/10.1103/PhysRevD.86.105043
https://arxiv.org/abs/1208.6449
https://inspirehep.net/search?p=find+EPRINT+arXiv:1208.6449
https://doi.org/10.1088/1751-8113/44/43/435202
https://arxiv.org/abs/1009.3832
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.3832
https://doi.org/10.1007/JHEP05(2016)099
https://doi.org/10.1007/JHEP05(2016)099
https://arxiv.org/abs/1509.00014
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.00014
https://doi.org/10.1007/JHEP01(2017)013
https://doi.org/10.1007/JHEP01(2017)013
https://arxiv.org/abs/1509.03612
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.03612


J
H
E
P
0
9
(
2
0
1
7
)
0
7
8

[28] J. Bros, H. Epstein and V. Glaser, A proof of the crossing property for two-particle

amplitudes in general quantum field theory, Commun. Math. Phys. 1 (1965) 240 [INSPIRE].

[29] D.M. Hofman, D. Li, D. Meltzer, D. Poland and F. Rejon-Barrera, A proof of the conformal

collider bounds, JHEP 06 (2016) 111 [arXiv:1603.03771] [INSPIRE].

[30] D. Simmons-Duffin, Projectors, shadows and conformal blocks, JHEP 04 (2014) 146

[arXiv:1204.3894] [INSPIRE].

[31] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP 06

(2014) 091 [arXiv:1307.6856] [INSPIRE].

[32] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping mixed correlators in the 3D Ising

model, JHEP 11 (2014) 109 [arXiv:1406.4858] [INSPIRE].

[33] L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP 11 (2015) 101

[arXiv:1502.07707] [INSPIRE].

[34] R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, Conformal bootstrap in Mellin space, Phys.

Rev. Lett. 118 (2017) 081601 [arXiv:1609.00572] [INSPIRE].

[35] R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, A Mellin space approach to the conformal

bootstrap, JHEP 05 (2017) 027 [arXiv:1611.08407] [INSPIRE].

[36] L.F. Alday and A. Bissi, Higher-spin correlators, JHEP 10 (2013) 202 [arXiv:1305.4604]

[INSPIRE].

[37] L.F. Alday and A. Bissi, Crossing symmetry and higher spin towers, arXiv:1603.05150

[INSPIRE].

[38] L.F. Alday, Solving CFTs with weakly broken higher spin symmetry, arXiv:1612.00696

[INSPIRE].

[39] L.F. Alday, Large spin perturbation theory, arXiv:1611.01500 [INSPIRE].

[40] J. Polchinski and M.J. Strassler, Deep inelastic scattering and gauge/string duality, JHEP

05 (2003) 012 [hep-th/0209211] [INSPIRE].

[41] O. Aharony, L.F. Alday, A. Bissi and E. Perlmutter, Loops in AdS from conformal field

theory, JHEP 07 (2017) 036 [arXiv:1612.03891] [INSPIRE].

[42] X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality constraints on

corrections to the graviton three-point coupling, JHEP 02 (2016) 020 [arXiv:1407.5597]

[INSPIRE].

[43] N. Afkhami-Jeddi, T. Hartman, S. Kundu and A. Tajdini, Einstein gravity 3-point functions

from conformal field theory, arXiv:1610.09378 [INSPIRE].

[44] S. Collier, P. Kravchuk, Y.-H. Lin and X. Yin, Bootstrapping the spectral function: on the

uniqueness of Liouville and the universality of BTZ, arXiv:1702.00423 [INSPIRE].

[45] F.A. Dolan and H. Osborn, Conformal partial waves: further mathematical results,

arXiv:1108.6194 [INSPIRE].

[46] M. Hogervorst, H. Osborn and S. Rychkov, Diagonal limit for conformal blocks in d

dimensions, JHEP 08 (2013) 014 [arXiv:1305.1321] [INSPIRE].

[47] F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion,

Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].

[48] A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in

two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

[49] E. Ardonne and G. Sierra, Chiral correlators of the Ising conformal field theory, J. Phys. A

43 (2010) 505402 [arXiv:1008.2863] [INSPIRE].

– 43 –

https://doi.org/10.1007/BF01646307
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,1,240%22
https://doi.org/10.1007/JHEP06(2016)111
https://arxiv.org/abs/1603.03771
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.03771
https://doi.org/10.1007/JHEP04(2014)146
https://arxiv.org/abs/1204.3894
https://inspirehep.net/search?p=find+EPRINT+arXiv:1204.3894
https://doi.org/10.1007/JHEP06(2014)091
https://doi.org/10.1007/JHEP06(2014)091
https://arxiv.org/abs/1307.6856
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.6856
https://doi.org/10.1007/JHEP11(2014)109
https://arxiv.org/abs/1406.4858
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4858
https://doi.org/10.1007/JHEP11(2015)101
https://arxiv.org/abs/1502.07707
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.07707
https://doi.org/10.1103/PhysRevLett.118.081601
https://doi.org/10.1103/PhysRevLett.118.081601
https://arxiv.org/abs/1609.00572
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.00572
https://doi.org/10.1007/JHEP05(2017)027
https://arxiv.org/abs/1611.08407
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.08407
https://doi.org/10.1007/JHEP10(2013)202
https://arxiv.org/abs/1305.4604
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.4604
https://arxiv.org/abs/1603.05150
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.05150
https://arxiv.org/abs/1612.00696
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.00696
https://arxiv.org/abs/1611.01500
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.01500
https://doi.org/10.1088/1126-6708/2003/05/012
https://doi.org/10.1088/1126-6708/2003/05/012
https://arxiv.org/abs/hep-th/0209211
https://inspirehep.net/search?p=find+EPRINT+hep-th/0209211
https://doi.org/10.1007/JHEP07(2017)036
https://arxiv.org/abs/1612.03891
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.03891
https://doi.org/10.1007/JHEP02(2016)020
https://arxiv.org/abs/1407.5597
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.5597
https://arxiv.org/abs/1610.09378
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.09378
https://arxiv.org/abs/1702.00423
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.00423
https://arxiv.org/abs/1108.6194
https://inspirehep.net/search?p=find+EPRINT+arXiv:1108.6194
https://doi.org/10.1007/JHEP08(2013)014
https://arxiv.org/abs/1305.1321
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1321
https://doi.org/10.1016/j.nuclphysb.2003.11.016
https://arxiv.org/abs/hep-th/0309180
https://inspirehep.net/search?p=find+EPRINT+hep-th/0309180
https://doi.org/10.1016/0550-3213(84)90052-X
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B241,333%22
https://doi.org/10.1088/1751-8113/43/50/505402
https://doi.org/10.1088/1751-8113/43/50/505402
https://arxiv.org/abs/1008.2863
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.2863

	Introduction
	Why good behavior in the Regge limit is constraining

	Review and main ingredients
	Four-point correlator and conformal blocks
	Positivity and analyticity properties of Rindler wedge correlator
	Toy dispersion relation, ANEC and the bound on chaos
	Invitation: theories with large N and large gap
	From dispersion relation to Froissart-Gribov formula

	Inverting the OPE: the CFT Froissart-Gribov formula
	Partial waves: Euclidean case
	S-matrix Froissart-Gribov formula revisited
	Main derivation: conformal Froissart-Gribov formula
	Final result

	Application to operators with large spin
	Generating function
	Vaccum exchange
	Systematics of large-J corrections
	Subleading powers: individual block
	Beyond leading-log: exact sum rule and application to 3D Ising
	Quadruple cut equation: large spin in both channels


	Application to AdS bulk locality and Witten diagrams
	Bounding heavy operator contributions as a function of spin

	Conclusion
	Conformal blocks in general dimensions
	Expansions around the origin z, barz -> 0
	Expansions around z -> 0 and monodromy under analytic continuation
	Expansions around barz -> 1

	A worked example: the 2D Ising model

