This article was downloaded by: [UNIVERSIDAD DE CONCEPCION - BIBLIOTECA]
On: 22 September 2009
Access details: Access Details: [subscription number 906706322]
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Thermal Stresses

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713723680

Analyticity of Semigroups Associated with Thermoviscoelastic Mixtures of Solids
Margareth S. Alves ${ }^{\text {a }}$; Jaime E. Muñoz Rivera ${ }^{\text {b }}$; Mauricio Sepúlveda ${ }^{\text {c }}$; Octavio P. Vera Villagrán ${ }^{\text {d }}$ ${ }^{\text {a }}$ Departamento de Matemática, Universidade Federal de Viçosa-UFV, Viçosa-MG, Brasil ${ }^{\text {b }}$ National Laboratory for Scientific Computation, Quitandinha-Petrópolis, Rio de Janeiro. RJ, Brazil ${ }^{\text {c }}$ Departamento de Ingeniería Matemática, Universidad de Concepción, Chile ${ }^{\text {d }}$ Departamento de Matemática, Universidad del Bío-Bío, Collao, Concepción, Chile

Online Publication Date: 01 October 2009

To cite this Article Alves, Margareth S., Muñoz Rivera, Jaime E., Sepúlveda, Mauricio and Vera Villagrán, Octavio P.(2009)'Analyticity of Semigroups Associated with Thermoviscoelastic Mixtures of Solids',Journal of Thermal Stresses,32:10,986 - 1004
To link to this Article: DOI: 10.1080/01495730903103028
URL: http://dx.doi.org/10.1080/01495730903103028

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

ANALYTICITY OF SEMIGROUPS ASSOCIATED WITH THERMOVISCOELASTIC MIXTURES OF SOLIDS

Margareth S. Alves ${ }^{1}$, Jaime E. Muñoz Rivera ${ }^{2}$, Mauricio Sepúlveda ${ }^{3}$, and Octavio P. Vera Villagrán ${ }^{4}$
${ }^{1}$ Departamento de Matemática, Universidade Federal de Viçosa-UFV, Viçosa-MG, Brasil
${ }^{2}$ National Laboratory for Scientific Computation, Quitandinha-Petrópolis, Rio de Janeiro. RJ, Brazil
${ }^{3}$ Departamento de Ingeniería Matemática, Universidad de Concepción, Chile
${ }^{4}$ Departamento de Matemática, Universidad del Bío-Bío, Collao, Concepción, Chile

In this paper we investigate the asymptotic behavior of solutions to the initial boundary value problem for a one-dimensional theory of mixtures of thermoviscoelastic solids. Our main goal is to present conditions which insure the analyticity and the lack of analyticity of the corresponding semigroup.

Keywords: Analyticity; Coupled system; C_{0}-semigroup; Thermoviscoelastic mixtures

INTRODUCTION

Thermoviscoelastic mixtures of solids is a subject which has deserved much attention in the recent years. The first works on the continuum theory of mixtures were the contributions by Truesdell and Toupin [1], Green and Naghdi [2, 3] and Bowen and Wiese [4]. Extensive reviews of the subject can be found in the works [5-8]. The first theory for a mixture of elastic solids based on the Lagrangian description has been presented by Bedford and Stern [9].

The theory of viscoelastic mixtures has been investigated by several authors (see [10-12] and references therein). In [10, 11], the authors derive the basic equations of a nonlinear theory of heat conducting viscoelastic mixtures in Lagrangian description. They assume that the constituents have a common temperature and that every thermodynamical process which takes place in the mixture satisfies the Clausius-Duhem inequality.

In this paper we want to emphasize the study of analyticity for C_{0}-semigroups associated with an one-dimensional linear theory of mixtures of

Received 28 November 2008; accepted 11 February 2009.
This MS has been supported by FONDECYT project 1070694, FONDAP and BASAL projects CMM, Universidad de Chile, and CI^{2} MA, Universidad de Concepción. OVV has been supported by Postdoctoral Fellowship of LNCC (National Laboratory of Scientific Computing), Brazil.

Address correspondence to Mauricio Sepúlveda, Departamento de Ingeniería Matemática, Universidad de Concepción, Concepción, Chile. E-mail: mauricio@ing-mat.udec.cl
two thermoviscoelastic solids. The model considered has been treated by Ieşan and Quintanilla [10] and Ieşan and Nappa [11]. In what follows, we briefly describe this model.

We consider a mixture of two interacting continua that occupies the interval $(0, L)$. The displacements of typical particles at time t are u and w, where $u=u(x, t), w=w(y, t), x, y \in(0, L)$. We assume that the particles under consideration occupy the same position at time $t=0$, such that $x=y$ (see, e.g., [9]). The temperature deviation (difference to a fixed constant reference temperature) in each point x and the time t is given by $\theta=\theta(x, t)$. We denote by ρ_{1} and ρ_{2} the mass densities of the two constituents at time $t=0 . T, S$ the partial stresses associated with the constituents, P the internal diffusive force, Θ the entropy density, Q the heat flux vector and T_{0} is the absolute temperature in the reference configuration. In the absence of body forces and heat sources the system of equations which governs the linear theory consists of the equations of motion

$$
\rho_{1} u_{t t}=T_{x}-P, \quad \rho_{2} w_{t t}=S_{x}+P
$$

the energy equation

$$
\rho T_{0} \Theta_{t}=Q_{x}
$$

where $\rho=\rho_{1}+\rho_{2}$, and the constitutive equations. From the one-dimensional linear theory established in [10], it results that in the absence of porosity, the constitutive equations are the following

$$
\begin{aligned}
T & =a_{11} u_{x}+a_{12} w_{x}+b_{11} u_{x t}+b_{12} w_{x t}-b_{1} \theta \\
S & =a_{12} u_{x}+a_{22} w_{x}+b_{21} u_{x t}+b_{22} w_{x t}-b_{2} \theta \\
P & =\alpha(u-w)+\alpha_{1}\left(u_{t}-w_{t}\right)+\alpha_{2} \theta_{x} \\
\rho \Theta & =b_{1} u_{x}+b_{2} w_{x}+c \theta \\
Q & =K \theta_{x}+K_{1}\left(u_{t}-w_{t}\right)
\end{aligned}
$$

where $c, \alpha, K, K_{1}, \alpha_{i}, \beta_{i}, a_{i j}, b_{i j}(i, j=1,2)$ are constitutive coefficients. The Clausius-Duhem inequality reduces to

$$
b_{11} x^{2}+\left(b_{12}+b_{21}\right) x y+b_{22} y^{2}+\alpha_{1} z^{2}+\left(\alpha_{2}+K_{1} T_{0}^{-1}\right) z \ell+K T_{0}^{-1} \ell^{2} \geq 0
$$

for all x, y, z and ℓ. This inequality and the above constitutive equations can be found also in [11]. If we assume that $b_{12}=b_{21}$ and $\alpha_{2}+K_{1} T_{0}^{-1}=0$ and substitute the constitutive equations into the motion equations and the energy equation, we obtain the system of field equations

$$
\begin{gather*}
\rho_{1} u_{t t}-a_{11} u_{x x}-a_{12} w_{x x}-b_{11} u_{x x t}-b_{12} w_{x x t}+\alpha(u-w)+\alpha_{1}\left(u_{t}-w_{t}\right)+\beta_{1} \theta_{x}=0 \\
\rho_{2} w_{t t}-a_{12} u_{x x}-a_{22} w_{x x}-b_{12} u_{x x t}-b_{22} w_{x x t}-\alpha(u-w)-\alpha_{1}\left(u_{t}-w_{t}\right)+\beta_{2} \theta_{x}=0 \tag{1}\\
c \theta_{t}-\kappa \theta_{x x}+\beta_{1} u_{x t}+\beta_{2} w_{x t}=0
\end{gather*}
$$

with $0<x<L, t>0, \kappa=K T_{0}^{-1}$. We assume that $\rho_{1}, \rho_{2}, c, \kappa$, and α are positive constants, $\alpha_{1} \geq 0$ and $\beta_{1}^{2}+\beta_{2}^{2} \neq 0$. The matrix $A=\left(a_{i j}\right)$ is symmetric and positive definite and $B=\left(b_{i j}\right) \neq 0$ is symmetric and non negative definite, that is,

$$
\begin{array}{ll}
a_{11}>0, & a_{11} a_{22}-a_{12}^{2}>0 \\
b_{11} \geq 0, & b_{11} b_{22}-b_{12}^{2} \geq 0
\end{array}
$$

We study the system (1) with the following initial conditions:

$$
\begin{equation*}
u(., 0)=u_{0}, \quad u_{t}(., 0)=u_{1}, \quad w(., 0)=w_{0}, \quad w_{t}(., 0)=w_{1}, \quad \theta(., 0)=\theta_{0} \tag{2}
\end{equation*}
$$

and the boundary conditions:

$$
\begin{equation*}
u(0, t)=u(L, t)=w(0, t)=w(L, t)=\theta_{x}(0, t)=\theta_{x}(L, t)=0 \quad \text { in }(0, \infty) \tag{3}
\end{equation*}
$$

Our purpose in this work is to investigate the analyticity of the semigroup associated with the system (1)-(3). The exponential stability and analyticity of the semigroups associated with dissipative systems have been studied by many authors. We refer to the book of Liu and Zheng [13] for a general survey on these topics. However, the exponential stability for the case of the thermoelastic mixtures $\left(B=0, \alpha_{1}=0\right)$ has been only studied at [14, 15]. In [14], the authors prove (generically) the asymptotic stability. In [15], the authors prove that the semigroup associated is exponentially stable if and only if

$$
\beta_{2}\left(\beta_{1} \rho_{2} a_{11}+\beta_{2} \rho_{1} a_{12}\right) \neq \beta_{1}\left(\beta_{2} \rho_{1} a_{22}+\beta_{1} \rho_{2} a_{12}\right)
$$

and

$$
\frac{n^{2} \pi^{2}}{L^{2}} \neq \frac{\alpha\left(\left(\rho_{1} \beta_{2}^{2}-\rho_{2} \beta_{1}^{2}\right)+\beta_{1} \beta_{2}\left(\rho_{1}-\rho_{2}\right)\right)}{\beta_{1} \beta_{2}\left(\rho_{2} a_{11}-a_{22} \rho_{1}\right)-a_{12}\left(\beta_{1}^{2} \rho_{2}-\beta_{2}^{2} \rho_{1}\right)}
$$

holds for all $n \in \mathbb{N}$.
We recall that very few contributions have been addressed to study the time behavior of the solutions of nonclassical elastic theories. Our main result is to establish conditions on the matrix B, which guarantee the analyticity of the corresponding semigroup. We show that the semigroup is analytic if and only if B is non singular.

This paper is organized as follows: Section two, outlines briefly the notation and the well-posed of the system is established. In section three, we show the analyticity of the corresponding semigroup provided B is positive definite. In section four, we show the non analyticity when B is singular.

Finally, throughout this paper C is a generic constant, not necessarily the same at each occasion (it will change from line to line), which depends in an increasing way on the indicated quantities.

EXISTENCE AND UNIQUENESS OF THE SOLUTIONS

In this section we study the setting of the semigroup and we establish the well-posed of the system. The initial boundary value problem (1)-(3) can be reduced to the following abstract initial value problem for a first-order evolution equation

$$
\begin{equation*}
\frac{d}{d t} U(t)=\mathscr{A} U(t), \quad U(0)=U_{0}, \quad \forall t>0 \tag{4}
\end{equation*}
$$

where $U(t)=\left(u, w, u_{t}, w_{t}, \theta\right)^{T}, U_{0}=\left(u_{0}, w_{0}, u_{1}, w_{1}, \theta_{0}\right)^{T}$ and

$$
\mathscr{A}\left(\begin{array}{c}
u \tag{5}\\
w \\
v \\
\eta \\
\theta
\end{array}\right)=\left(\begin{array}{c}
v \\
\eta \\
\frac{1}{\rho_{1}}\left(a_{11} u+a_{12} w+b_{11} v+b_{12} \eta\right)_{x x}-\frac{\alpha}{\rho_{1}}(u-w)-\frac{\alpha_{1}}{\rho_{1}}(v-\eta)-\frac{\beta_{1}}{\rho_{1}} \theta_{x} \\
\frac{1}{\rho_{2}}\left(a_{12} u+a_{22} w+b_{12} v+b_{22} \eta\right)_{x x}+\frac{\alpha}{\rho_{2}}(u-w)+\frac{\alpha_{1}}{\rho_{2}}(v-\eta)-\frac{\beta_{2}}{\rho_{2}} \theta_{x} \\
-\frac{\beta_{1}}{c} v_{x}-\frac{\beta_{2}}{c} \eta_{x}+\frac{\kappa}{c} \theta_{x x}
\end{array}\right)
$$

We define $L_{*}^{2}(0, L)=\left\{\theta \in L^{2}(0, L): \int_{0}^{L} \theta d x=0\right\}$ the Hilbert space with the usual inner product and norm of $L^{2}(0, L)$ and consider

$$
\mathscr{H}=H_{0}^{1}(0, L) \times H_{0}^{1}(0, L) \times L^{2}(0, L) \times L^{2}(0, L) \times L_{*}^{2}(0, L)
$$

equipped with the inner product given by

$$
\begin{aligned}
\langle(u, w, v, \eta, \theta),(\tilde{u}, \tilde{w}, \tilde{v}, \tilde{\eta}, \tilde{\theta})\rangle_{\mathscr{H}}= & \int_{0}^{L}\left(a_{11} u_{x} \overline{\tilde{u}}_{x}+a_{12}\left(u_{x} \overline{\tilde{w}}_{x}+w_{x} \overline{\tilde{u}}_{x}\right)+a_{22} w_{x} \overline{\tilde{w}}_{x}\right) d x \\
& +\alpha \int_{0}^{L}(u-w)(\overline{\tilde{u}-\tilde{w}}) d x+\rho_{1} \int_{0}^{L} v \overline{\tilde{v}} d x \\
& +\rho_{2} \int_{0}^{L} \eta \overline{\tilde{\eta}} d x+c \int_{0}^{L} \theta \overline{\tilde{\theta}} d x
\end{aligned}
$$

and the norm induced $\|\cdot\|_{\mathscr{H}}$. We can show that the norm $\|\cdot\|_{\mathscr{H}}$ is equivalent to usual norm of \mathscr{H}. We also consider the Hilbert space $V=\left\{\varphi \in H^{2}(0, L) \cap L_{*}^{2}(0, L)\right.$: $\left.\varphi_{x} \in H_{0}^{1}(0, L)\right\}$ with norm $\|\varphi\|_{V}=\left\|\varphi_{x x}\right\|_{L^{2}(0, L)}$.

Instead of dealing with (1)-(3) we will consider (4) in the Hilbert space \mathscr{H}, with the domain of the operator \mathscr{A} :

$$
\begin{aligned}
\mathscr{D}(\mathscr{A})=\{ & \left\{U=(u, w, v, \eta, \theta) \in \mathscr{H}: v, \eta \in H_{0}^{1}(0, L), \theta \in V\right. \\
& \left.a_{11} u+a_{12} w+b_{11} v+b_{12} \eta, a_{12} u+a_{22} w+b_{12} v+b_{22} \eta \in H^{2}(0, L)\right\}
\end{aligned}
$$

Firstly, we show that the operator \mathscr{A} generates a C_{0}-semigroup of contractions on the space \mathscr{H}.

Proposition 1. The operator \mathscr{A} generates a C_{0}-semigroup $S_{\mathscr{A}}(t)$ of contractions on the space \mathscr{H}.

Proof. We will show that \mathscr{A} is a dissipative operator and 0 belongs to the resolvent set of \mathscr{A}, denoted by $\rho(\mathscr{A})$. Then our conclusion will follow using the well known the Lumer-Phillips theorem (see Pazy [16]). We observe that the operator \mathscr{A} is densely defined from $\mathscr{D}(\mathscr{A})$ to \mathscr{H} and if $U=(u, w, v, \eta, \theta) \in \mathscr{D}(\mathscr{A})$ then

$$
\begin{aligned}
\langle\curvearrowright A U, U\rangle_{\mathscr{H}}= & a_{11} \int_{0}^{L} v_{x} \bar{u}_{x} d x+a_{12} \int_{0}^{L} v_{x} \bar{w}_{x} d x+\alpha \int_{0}^{L} v \bar{u} d x-\alpha \int_{0}^{L} v \bar{w} d x \\
& +a_{12} \int_{0}^{L} \eta_{x} \bar{u}_{x} d x+a_{22} \int_{0}^{L} \eta_{x} \bar{w}_{x} d x-\alpha \int_{0}^{L} \eta \bar{u} d x+\alpha \int_{0}^{L} \eta \bar{w} d x \\
& -\int_{0}^{L}\left[a_{11} u_{x}+a_{12} w_{x}+b_{11} v_{x}+b_{12} \eta_{x}\right] \bar{v}_{x} d x-\int_{0}^{L} \beta_{1} \theta_{x} \bar{v} d x \\
& -\int_{0}^{L}\left[a_{12} u_{x}+a_{22} w_{x}+b_{12} v_{x}+b_{22} \eta_{x}\right] \bar{\eta}_{x} d x-\int_{0}^{L} \beta_{2} \theta_{x} \bar{\eta} d x-\alpha \int_{0}^{L} u \bar{v} d x \\
& +\alpha \int_{0}^{L} w \bar{v} d x+\alpha \int_{0}^{L} u \bar{\eta} d x-\alpha \int_{0}^{L} w \bar{\eta} d x-\int_{0}^{L}\left(\beta_{1} v_{x}+\beta_{2} \eta_{x}-\kappa \theta_{x x}\right) \bar{\theta} d x \\
& -\alpha_{1} \int_{0}^{L}|v-\eta|^{2} d x .
\end{aligned}
$$

Performing straightforward calculations we obtain

$$
\begin{align*}
\operatorname{Re}\langle\mathscr{A} U, U\rangle_{\mathscr{H}}= & -\kappa\left\|\theta_{x}\right\|_{L^{2}(0, L)}^{2}-b_{11}\left\|v_{x}\right\|_{L^{2}(0, L)}^{2}-b_{22}\left\|\eta_{x}\right\|_{L^{2}(0, L)}^{2} \\
& -2 b_{12} \operatorname{Re} \int_{0}^{L} v_{x} \bar{\eta}_{x} d x-\alpha_{1}\|v-\eta\|_{L^{2}(0, L)}^{2} \tag{6}
\end{align*}
$$

Case I: The matrix B is positive definite. In this case we get

$$
\begin{align*}
\operatorname{Re}\langle\mathscr{A} U, U\rangle_{\mathscr{H}} \leq & -\kappa\left\|\theta_{x}\right\|_{L^{2}(0, L)}^{2}-\frac{\operatorname{det} B}{2 b_{22}}\left\|v_{x}\right\|_{L^{2}(0, L)}^{2}-\frac{\operatorname{det} B}{2 b_{11}}\left\|\eta_{x}\right\|_{L^{2}(0, L)}^{2} \\
& -\alpha_{1}\|v-\eta\|_{L^{2}(0, L)}^{2} \leq 0 \tag{7}
\end{align*}
$$

Therefore the operator \mathscr{A} is dissipative.
Case II: The matrix B is singular. Now,
(a) $b_{11}>0$ implies $b_{22}=b_{12}^{2} / b_{11}$. Then in (6) we have

$$
\begin{equation*}
\operatorname{Re}\langle\mathscr{A} U, U\rangle_{\mathscr{H}}=-\kappa\left\|\theta_{x}\right\|_{L^{2}(0, L)}^{2}-\frac{1}{b_{11}}\left\|b_{11} v_{x}+b_{12} \eta_{x}\right\|_{L^{2}(0, L)}^{2}-\alpha_{1}\|v-\eta\|_{L^{2}(0, L)}^{2} \leq 0 \tag{8}
\end{equation*}
$$

(b) $b_{11}=0$ implies $b_{12}=0$. Then in (6) we have

$$
\begin{equation*}
\operatorname{Re}\langle\mathscr{A} U, U\rangle_{\mathscr{H}}=-\kappa\left\|\theta_{x}\right\|_{L^{2}(0, L)}^{2}-b_{22}\left\|\eta_{x}\right\|_{L^{2}(0, L)}^{2}-\alpha_{1}\|v-\eta\|_{L^{2}(0, L)}^{2} \leq 0 \tag{9}
\end{equation*}
$$

Thus \mathscr{A} is also dissipative.

On the other hand, we show that $0 \in \rho(\ngtr)$. In fact, given $F=(f, g, h, p, q) \in$ \mathscr{H}, we must show that there exists a unique $U=(u, w, v, \eta, \theta)$ in $\mathscr{D}(\mathscr{A})$ such that $\mathscr{A} U=F$, that is,

$$
\begin{gather*}
v=f \text { in } H_{0}^{1}(0, L) \tag{10}\\
\eta=g \text { in } H_{0}^{1}(0, L) \tag{11}\\
\left(a_{11} u+a_{12} w+b_{11} v+b_{12} \eta\right)_{x x}-\alpha(u-w)-\alpha_{1}(v-\eta)-\beta_{1} \theta_{x}=\rho_{1} h \text { in } L^{2}(0, L) \tag{12}\\
\left(a_{12} u+a_{22} w+b_{12} v+b_{22} \eta\right)_{x x}+\alpha(u-w)+\alpha_{1}(v-\eta)-\beta_{2} \theta_{x}=\rho_{2} p \text { in } L^{2}(0, L) \tag{13}\\
-\beta_{1} v_{x}-\beta_{2} \eta_{x}+\kappa \theta_{x x}=c q \text { in } L_{*}^{2}(0, L) \tag{14}
\end{gather*}
$$

Replacing (10), (11) in (14) we have

$$
\begin{equation*}
\kappa \theta_{x x}=c q+\beta_{1} f_{x}+\beta_{2} g_{x} \in L_{*}^{2}(0, L) \tag{15}
\end{equation*}
$$

It is known that there is a unique $\theta \in V$ satisfying (15).
On the other hand, given the continuous and coercive sesquilinear form

$$
\begin{aligned}
M((u, w),(\varphi, \psi))= & a_{11} \int_{0}^{L} u_{x} \bar{\varphi}_{x} d x+a_{12} \int_{0}^{L} u_{x} \bar{\psi}_{x} d x+a_{12} \int_{0}^{L} w_{x} \bar{\varphi}_{x} \\
& +a_{22} \int_{0}^{L} w_{x} \bar{\psi}_{x} d x+\alpha \int_{0}^{L}(u-w)(\overline{\varphi-\psi}) d x
\end{aligned}
$$

for $\quad(u, w),(\varphi, \psi) \in H_{0}^{1}(0, L) \times H_{0}^{1}(0, L) \quad$ and \quad the functional $G: H_{0}^{1}(0, L) \times$ $H_{0}^{1}(0, L) \rightarrow \mathbb{C}$

$$
\begin{aligned}
G(\varphi, \psi)= & -\int_{0}^{L}\left(b_{11} v+b_{12} \eta\right)_{x} \bar{\varphi}_{x} d x-\rho_{1} \int_{0}^{L} h \bar{\varphi} d x-\beta_{1} \int_{0}^{L} \theta_{x} \bar{\varphi} d x \\
& -\int_{0}^{L}\left(b_{12} v+b_{22} \eta\right)_{x} \bar{\psi}_{x} d x-\rho_{2} \int_{0}^{L} p \bar{\psi} d x-\beta_{2} \int_{0}^{L} \theta_{x} \bar{\psi} d x \\
& -\alpha_{1} \int_{0}^{L}(v-\eta)(\overline{\varphi-\psi}) d x
\end{aligned}
$$

it follows using the Lax-Milgram theorem that there exists a unique vector function (u, w) in $H_{0}^{1}(0, L) \times H_{0}^{1}(0, L)$ such that

$$
M((u, w),(\varphi, \psi))=G(\varphi, \psi), \quad \forall(\varphi, \psi) \in H_{0}^{1}(0, L) \times H_{0}^{1}(0, L)
$$

Thus

$$
\begin{aligned}
& \int_{0}^{L}\left(a_{11} u_{x}+a_{12} w_{x}+b_{11} v_{x}+b_{12} \eta_{x}\right) \bar{\varphi}_{x} d x \\
& \quad+\alpha \int_{0}^{L}(u-w) \bar{\varphi} d x+\beta_{1} \int_{0}^{L} \theta_{x} \bar{\varphi} d x+\alpha_{1} \int_{0}^{L}(v-\eta) \bar{\varphi} d x=-\rho_{1} \int_{0}^{L} h \bar{\varphi} d x \\
& \int_{0}^{L}\left(a_{12} u_{x}+a_{22} w_{x}+b_{12} v_{x}+b_{22} \eta_{x}\right) \bar{\psi}_{x} d x \\
& \quad-\alpha \int_{0}^{L}(u-w) \bar{\psi} d x+\beta_{2} \int_{0}^{L} \theta_{x} \bar{\psi} d x-\alpha_{1} \int_{0}^{L}(v-\eta) \bar{\psi} d x=-\rho_{2} \int_{0}^{L} p \bar{\psi} d x
\end{aligned}
$$

$\forall \varphi, \psi \in H_{0}^{1}(0, L)$. It follows that $a_{11} u+a_{12} w+b_{11} v+b_{12} \eta$ and $a_{12} u+a_{22} w+b_{12} v+$ $b_{22} \eta$ belong to $H_{0}^{1}(0, L) \cap H^{2}(0, L)$ and the Eqs. (12), (13) are verified. Moreover, it is easy to show that $\|U\|_{\mathscr{H}} \leq C\|F\|_{\mathscr{H}}$, for a positive constant C. Therefore, we conclude that $0 \in \rho(\mathscr{A})$.

From the Proposition 1 we can establish the following result (see Pazy [16]).
Theorem 1. For any $U_{0} \in \mathscr{H}$ there exists a unique solution $U(t)=\left(u, w, u_{t}, w_{t}, \theta\right)$ of (1)-(3) satisfying

$$
u, w \in C\left(\left[0, \infty\left[: H_{0}^{1}(0, L)\right) \cap C^{1}\left(\left[0, \infty\left[: L^{2}(0, L)\right)\right.\right.\right.\right.
$$

and

$$
\theta \in C\left(\left[0, \infty\left[: L_{*}^{2}(0, L)\right) \cap L^{2}(] 0, \infty\left[: H^{1}(0, L)\right)\right.\right.
$$

If $U_{0} \in \mathscr{D}(\mathscr{A})$,

$$
\begin{aligned}
& u, w \in C^{1}\left(\left[0, \infty\left[: H_{0}^{1}(0, L)\right) \cap C^{2}\left(\left[0, \infty\left[: L^{2}(0, L)\right)\right.\right.\right.\right. \\
& a_{11} u+a_{12} w+b_{11} u_{t}+b_{12} w_{t} \in C\left(\left[0, \infty\left[: H^{2}(0, L)\right)\right.\right. \\
& a_{12} u+a_{22} w+b_{12} u_{t}+b_{22} w_{t} \in C\left(\left[0, \infty\left[: H^{2}(0, L)\right)\right.\right.
\end{aligned}
$$

and

$$
\theta \in C^{1}\left(\left[0, \infty\left[: L^{2}(0, L)\right) \cap C([0, \infty[: V)\right.\right.
$$

ANALYTICITY

In this section we will prove the analyticity of the semigroup $S_{\mathscr{I}}(t)$ when the matrix B is positive definite. Our main tool will be the following theorem whose proof can be seen in Liu and Zheng [13].

Theorem 2. Let $S(t)$ be a C_{0}-semigroup of contractions of linear operators in a Hilbert space \mathscr{H} with infinitesimal generator $\mathscr{A l}$. Suppose that $i \mathbb{R} \subset \rho(\mathscr{A})$. Then, $S(t)$ is analytic if and only if

$$
\begin{equation*}
\limsup _{|\lambda| \rightarrow \infty}\left\|\lambda(i \lambda I-\mathscr{A})^{-1}\right\|_{\Phi(H)}<\infty \tag{16}
\end{equation*}
$$

where $\mathscr{L}(\mathscr{H})$ denotes the space of continuous linear functions in \mathscr{H}.
Lemma 1. Let \mathscr{A} be defined in (5) and assume that the matrix B is positive definite. Then set $i \mathbb{R}=\{i \lambda: \lambda \in \mathbb{R}\}$ is contained in $\rho(\mathscr{A})$.

Proof. In this lemma, we will use $\|$.$\| to denote the norm in the space \mathscr{L}(\mathscr{H})$. Following the arguments given by Liu and Zheng [13], the proof consists of the
following steps:
Step 1. Since $0 \in \rho(\mathscr{A})$, for any real number λ with $\left\|\lambda \mathscr{A}^{-1}\right\|<1$, the linear bounded operator ($i \lambda \not A^{-1}-I$) is invertible, therefore $i \lambda I-\mathscr{A}=\mathscr{A}\left(i \lambda A^{-1}-I\right)$ is invertible and its inverse belongs to $\mathscr{L}(\mathscr{H})$, that is, $i \lambda \in \rho(\mathscr{A})$. Moreover, $\|(i \lambda I-$ $\mathscr{A})^{-1} \|$ is a continuous function of λ in the interval $\left(-\left\|\mathscr{A}^{-1}\right\|^{-1},\left\|\mathscr{A}^{-1}\right\|^{-1}\right)$.

Step 2. If $\sup \left\{\left\|(i \lambda I-\mathscr{A})^{-1}\right\|:|\lambda|<\left\|\mathscr{A}^{-1}\right\|^{-1}\right\}=M<\infty$, then for $\left|\lambda_{0}\right|<$ $\left\|\mathscr{A}^{-1}\right\|^{-1}$ and $\lambda \in \mathbb{R}$ such that $\left|\lambda-\lambda_{0}\right|<M^{-1}$, we have $\left\|\left(\lambda-\lambda_{0}\right)\left(i \lambda_{0} I-\mathscr{A}\right)^{-1}\right\|<1$, therefore the operator

$$
i \lambda I-\mathscr{A}=\left(i \lambda_{0} I-\mathscr{A}\right)\left(I+i\left(\lambda-\lambda_{0}\right)\left(i \lambda_{0} I-\mathscr{A}\right)^{-1}\right)
$$

is invertible with its inverse in $\mathscr{L}(\mathscr{H})$, that is, i $\lambda \in \rho(\mathscr{A})$. Since λ_{0} is arbitrary we can conclude that $\left\{i \lambda:|\lambda|<\left\|\mathscr{A}^{-1}\right\|^{-1}+M^{-1}\right\} \subset \rho(\mathscr{A})$ and the function $\left\|(i \lambda I-\mathscr{A})^{-1}\right\|$ is continuous in the interval $\left(-\left\|\mathscr{A}^{-1}\right\|^{-1}-M^{-1},\left\|\mathscr{A}^{-1}\right\|^{-1}+M^{-1}\right)$.

Step 3. Thus, it follows by item (ii) that if $i \mathbb{R} \subset \rho(A)$ is not true, then there exists $\omega \in \mathbb{R}$ with $\left\|\mathscr{A}^{-1}\right\|^{-1} \leq|\omega|$ such that $\{i \lambda:|\lambda|<|\omega|\} \subset \rho(\mathscr{A})$ and $\sup \{\|(i \lambda I-$ $\left.\mathscr{A})^{-1} \|:|\lambda|<|\omega|\right\}=\infty$. Therefore, there exists a sequence λ_{n} in \mathbb{R} with $\lambda_{n} \rightarrow \omega$, $\left|\lambda_{n}\right|<|\omega|$ and sequences of vector functions $U_{n}=\left(u_{n}, w_{n}, v_{n}, \eta_{n}, \theta_{n}\right) \in \mathscr{D}(\mathscr{A}), F_{n}=$ $\left(f_{n}, g_{n}, h_{n}, p_{n}, q_{n}\right) \in \mathscr{H}$, such that $\left(i \lambda_{n} I-\mathscr{A}\right) U_{n}=F_{n}$ and $\left\|U_{n}\right\|_{\mathscr{H}}=1$ and $F_{n} \rightarrow 0$ in \mathscr{H} when $n \rightarrow \infty$. Since

$$
\operatorname{Re}\left\langle\left(i \lambda_{n} I-\mathscr{A}\right) U_{n}, U_{n}\right\rangle_{\mathscr{H}} \rightarrow 0
$$

using the same idea given by (7) we have

$$
\kappa\left\|\theta_{n x}\right\|_{L^{2}(0, L)}^{2}+\frac{\operatorname{det} B}{2 b_{22}}\left\|v_{n x}\right\|_{L^{2}(0, L)}^{2}+\frac{\operatorname{det} B}{2 b_{11}}\left\|\eta_{n x}\right\|_{L^{2}(0, L)}^{2} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Therefore $v_{n} \rightarrow 0, \eta_{n} \rightarrow 0$ in $H_{0}^{1}(0, L)$ and $\theta_{n} \rightarrow 0$ in $H^{1}(0, L)$. On the other hand, we have that $i \lambda_{n} u_{n}-v_{n}=f_{n} \rightarrow 0, i \lambda_{n} w_{n}-\eta_{n}=g_{n} \rightarrow 0$ in $H_{0}^{1}(0, L)$. Thus we obtain $u_{n} \rightarrow 0, w_{n} \rightarrow 0$ in $H_{0}^{1}(0, L)$, because $\omega \neq 0$. Since $\left\|U_{n}\right\|_{\mathscr{H}}=1$, for all $n \in \mathbb{N}$, we have a contradiction and the proof of the lemma is complete.

Theorem 3. Let A be defined in (5) and assume that B is positive definite. Then the semigroup $S_{s i}(t)$ is analytic.

Proof. From the Theorem 2 and Lemma 1, it suffices to show that (16) holds. Given $\lambda \in \mathbb{R}$ and $F=(f, g, h, p, q) \in \mathscr{H}$, there is a unique $U=(u, w, v, \eta, \theta)$ in $\mathscr{D}(\mathscr{A})$, such that $(i \lambda I-\mathscr{A}) U=F$, that is,

$$
\begin{align*}
& i \lambda u-v=f \text { in } H_{0}^{1}(0, L) \tag{17}\\
& i \lambda w-\eta=g \text { in } H_{0}^{1}(0, L) \tag{18}\\
& i \lambda \rho_{1} v-\left(a_{11} u+a_{12} w+b_{11} v+b_{12} \eta\right)_{x x}+\alpha(u-w) \\
& \quad+\alpha_{1}(v-\eta)+\beta_{1} \theta_{x}=\rho_{1} h \text { in } L^{2}(0, L) \tag{19}
\end{align*}
$$

$$
\begin{align*}
& i \lambda \rho_{2} \eta-\left(a_{12} u+a_{22} w+b_{12} v+b_{22} \eta\right)_{x x}-\alpha(u-w) \\
& \quad-\alpha_{1}(v-\eta)+\beta_{2} \theta_{x}=\rho_{2} p \quad \text { in } L^{2}(0, L) \tag{20}\\
& i \lambda c \theta+\beta_{1} v_{x}+\beta_{2} \eta_{x}-\kappa \theta_{x x}=c q \text { in } L_{*}^{2}(0, L) \tag{21}
\end{align*}
$$

Note that $\operatorname{Re}\langle(i \lambda I-\mathscr{A}) U, U\rangle_{\mathscr{H}}=-\operatorname{Re}\langle\mathscr{A} U, U\rangle_{\mathscr{H}}=\operatorname{Re}\langle F, U\rangle_{\mathscr{H}}$. Hence

$$
\begin{equation*}
\left\|v_{x}\right\|_{L^{2}(0, L)}^{2}+\left\|\eta_{x}\right\|_{L^{2}(0, L)}^{2}+\left\|\theta_{x}\right\|_{L^{2}(0, L)}^{2} \leq C\|F\|_{\mathscr{H}}\|U\|_{\mathscr{H}} \tag{22}
\end{equation*}
$$

Taking the inner product in $L^{2}(0, L)$ of (19), (20) with u, w respectively, and using (17), (18) we obtain

$$
\begin{align*}
& a_{11} \int_{0}^{L}\left|u_{x}\right|^{2} d x+\alpha \int_{0}^{L}|u|^{2} d x+a_{12} \int_{0}^{L} w_{x} \bar{u}_{x} d x-\alpha \int_{0}^{L} w \bar{u} d x \\
& \quad=-b_{11} \int_{0}^{L} v_{x} \bar{u}_{x} d x-b_{12} \int_{0}^{L} \eta_{x} \bar{u}_{x} d x+\rho_{1} \int_{0}^{L}|v|^{2} d x+\rho_{1} \int_{0}^{L} v \bar{f} d x \\
& \quad+\rho_{1} \int_{0}^{L} h \bar{u} d x-\beta_{1} \int_{0}^{L} \theta_{x} \bar{u} d x-\alpha_{1} \int_{0}^{L}(v-\eta) \bar{u} d x \tag{23}
\end{align*}
$$

and

$$
\begin{align*}
& a_{22} \int_{0}^{L}\left|w_{x}\right|^{2} d x+\alpha \int_{0}^{L}|w|^{2} d x+a_{12} \int_{0}^{L} u_{x} \bar{w}_{x} d x-\alpha \int_{0}^{L} u \bar{w} d x \\
& \quad=-b_{12} \int_{0}^{L} v_{x} \bar{w}_{x} d x-b_{22} \int_{0}^{L} \eta_{x} \bar{w}_{x} d x+\rho_{2} \int_{0}^{L}|\eta|^{2} d x+\rho_{2} \int_{0}^{L} \eta \bar{g} d x \\
& \quad+\rho_{2} \int_{0}^{L} p \bar{w} d x-\beta_{2} \int_{0}^{L} \theta_{x} \bar{w} d x+\alpha_{1} \int_{0}^{L}(v-\eta) \bar{w} d x \tag{24}
\end{align*}
$$

Adding (23) and (24), using the inequalities of Young and Cauchy-Schwartz and performing a straightforward calculation we obtain

$$
\begin{aligned}
& \frac{\operatorname{det} A}{2 a_{22}}\left\|u_{x}\right\|_{L^{2}(0, L)}^{2}+\frac{\operatorname{det} A}{2 a_{11}}\left\|w_{x}\right\|_{L^{2}(0, L)}^{2}+\alpha\|u-w\|_{L^{2}(0, L)}^{2} \\
& \quad \leq\left|\beta_{1}\right| \int_{0}^{L}\left|\theta_{x}\left\|u\left|d x+\left|\beta_{2}\right| \int_{0}^{L}\right| \theta_{x}| | w\left|d x+b_{11} \int_{0}^{L}\right| v_{x}\right\| u_{x}\right| d x+\left|b_{12}\right| \int_{0}^{L}\left|\eta_{x} \| u_{x}\right| d x \\
& \quad+b_{22} \int_{0}^{L}\left|\eta_{x} \| w_{x}\right| d x+\left|b_{12}\right| \int_{0}^{L}\left|v_{x}\right|\left|w_{x}\right| d x+\rho_{1} \int_{0}^{L}|v|^{2} d x+\rho_{1} \int_{0}^{L}|v||f| d x \\
& \quad+\rho_{1} \int_{0}^{L}|h||u| d x+\rho_{2} \int_{0}^{L}|\eta|^{2} d x+\rho_{2} \int_{0}^{L}|\eta||g| d x+\rho_{2} \int_{0}^{L}|p \| u| d x \\
& \quad+\alpha_{1} \int_{0}^{L}|v-\eta \| u-w| d x
\end{aligned}
$$

It results by the Poincaré inequality and (22) that

$$
\begin{equation*}
\left\|u_{x}\right\|_{L^{2}(0, L)}^{2}+\left\|w_{x}\right\|_{L^{2}(0, L)}^{2} \leq C\|U\|_{\mathscr{H}}\|F\|_{\mathscr{H}} \tag{25}
\end{equation*}
$$

Taking the imaginary part of the inner product in $L^{2}(0, L)$ of (21) with θ and using (22) we obtain

$$
\begin{equation*}
\lambda\|\theta\|_{L^{2}(0, L)}^{2} \leq C\|U\|_{\mathscr{H}}\|F\|_{\mathscr{H}} \tag{26}
\end{equation*}
$$

By (17), (18), (22) and (25) we get

$$
\begin{equation*}
\lambda\left\|u_{x}\right\|_{L^{2}(0, L)}^{2}+\lambda\left\|w_{x}\right\|_{L^{2}(0, L)}^{2} \leq C\|U\|_{\mathscr{H}}\|F\|_{\mathscr{H}} \tag{27}
\end{equation*}
$$

Finally, taking the imaginary part of the inner product in $L^{2}(0, L)$ of (19) with v and (20) with η and using (22), (25) we obtain

$$
\begin{equation*}
\lambda\|v\|_{L^{2}(0, L)}^{2}+\lambda\|\eta\|_{L^{2}(0, L)}^{2} \leq C\|U\|_{\mathscr{H}}\|F\|_{\mathscr{H}} \tag{28}
\end{equation*}
$$

Combining (26), (27) and (28) we find that

$$
\begin{equation*}
\lambda\|U\|_{\mathscr{H}}^{2} \leq C\|U\|_{\mathscr{H}}\|F\|_{\mathscr{H}} \tag{29}
\end{equation*}
$$

That is,

$$
|\lambda|\left\|(i \lambda I-\mathscr{A})^{-1}\right\|_{\Phi(\mathscr{H})} \leq C
$$

The theorem follows.

THE LACK OF ANALYTICITY

In this section, the goal is to prove that the semigroup $S_{S A}(t)$ is not analytic when the matrix B is singular and negative definite. To simplify the computations we consider, without loss of generality, $L=\pi$ and $\rho_{1}=\rho_{2}=1$. Due to the Theorem 2 it is enough to show that there is a sequence λ_{n} in $\mathbb{R}, \lambda_{n} \rightarrow \infty$ when $n \rightarrow \infty$, and a bounded sequence F_{n} in \mathscr{H} such that

$$
\begin{equation*}
\left\|\lambda_{n}\left(i \lambda_{n} I-\mathscr{A}\right)^{-1} F_{n}\right\|_{\mathscr{H}} \rightarrow \infty \quad \text { as } n \rightarrow \infty \tag{30}
\end{equation*}
$$

Remark 1. For instance, we observe that if $a_{11}=a_{22}, b_{11}=b_{22}=-b_{12}$ and $\beta_{1}+$ $\beta_{2}=0$, then we can obtain solutions of the form $u=w$ and $\theta=0$. These solutions are undamped and do not decay to zero. Therefore, the semigroups associated are not analytic. On the other hand, if $\alpha_{1}=0, a_{11}=a_{22}, b_{11}=b_{22}=b_{12}$ and $\beta_{1}-\beta_{2}=0$, we can also obtain solutions undamped of the form $u=-w$ and $\theta=0$. In the proof of the next theorem we are not going to consider these cases.

Initially, we observe that there is an orthogonal matrix $P=\left(\begin{array}{ll}p_{11} & p_{12} \\ p_{12} & p_{11}\end{array}\right)$ and a diagonal matrix $D=\left(\begin{array}{c}\xi \\ \vdots \\ 0\end{array}\right), \xi>0$, such that $B=P D P$. Moreover, we observe that we are going to separate the proof of the next theorem in the cases $\alpha_{1}=0$ and $\alpha_{1}>0$.

Theorem 4. Let B be a singular matrix. Then the semigroup $S_{s 1}(t)$ is not analytic.

Proof. For each $n \in \mathbb{N}$, we take $F_{n}=\left(0,0, p_{12} \sin (n x),-p_{11} \sin (n x), 0\right) \in \mathscr{H}$ and we denote by $U_{n}=\left(u_{n}, w_{n}, v_{n}, \eta_{n}, \theta_{n}\right) \in \mathscr{D}(\mathscr{A})$ the solution of the resolvent equation

$$
\begin{equation*}
(i \lambda I-\mathscr{A}) U_{n}=F_{n}, \quad \lambda \in \mathbb{R} \tag{31}
\end{equation*}
$$

We know that $\operatorname{Re}\left\langle(i \lambda I-\mathscr{A}) U_{n}, U_{n}\right\rangle_{\mathscr{H}}=-\operatorname{Re}\left\langle\mathscr{A} U_{n}, U_{n}\right\rangle_{\mathscr{H}}=\operatorname{Re}\left\langle F_{n}, U_{n}\right\rangle_{\mathscr{H}}$.
If $b_{11}>0$, it follows from (8) that

$$
\kappa\left\|\theta_{n x}\right\|_{L^{2}(0, \pi)}^{2}+\frac{1}{b_{11}}\left\|b_{11} v_{n x}+b_{12} \eta_{n x}\right\|_{L^{2}(0, \pi)}^{2} \leq\left\|U_{n}\right\|_{\mathscr{H}}\left\|F_{n}\right\|_{\mathscr{H}}, \quad \forall n \in \mathbb{N}
$$

Since $\left\|F_{n}\right\|_{\mathscr{H}}=\sqrt{\frac{\pi}{2}}$ for all $n \in \mathbb{N}$, it follows that

$$
\begin{equation*}
\left\|U_{n}\right\|_{\mathscr{H}} \geq \sqrt{\frac{2 \kappa^{2}}{\pi}}\left\|\theta_{n x}\right\|_{L^{2}(0, \pi)}^{2}+\sqrt{\frac{2}{\pi b_{11}^{2}}}\left\|b_{11} v_{n x}+b_{12} \eta_{n x}\right\|_{L^{2}(0, \pi)}^{2}, \quad \forall n \in \mathbb{N} \tag{32}
\end{equation*}
$$

We observe that if $b_{11}=0$ we can obtain a similar inequality to (32). Due to the boundary conditions, the solutions are the form $u_{n}=A_{n} \sin (n x), w_{n}=B_{n} \sin (n x)$ and $\theta_{n}=C_{n} \cos (n x)$ and by Eq. (31) we have $v_{n}=i \lambda u_{n}, \eta_{n}=i \lambda w_{n}$ and

$$
\begin{align*}
& -\lambda^{2} A_{n}+n^{2}\left(a_{11}+i \lambda b_{11}\right) A_{n}+n^{2}\left(a_{12}+i \lambda b_{12}\right) B_{n}+\alpha\left(A_{n}-B_{n}\right) \\
& \quad+i \alpha_{1} \lambda\left(A_{n}-B_{n}\right)-\beta_{1} n C_{n}=p_{12} \tag{33}\\
& -\lambda^{2} B_{n}+n^{2}\left(a_{12}+i \lambda b_{12}\right) A_{n}+n^{2}\left(a_{22}+i \lambda b_{22}\right) B_{n}-\alpha\left(A_{n}-B_{n}\right) \\
& \quad-i \alpha_{1} \lambda\left(A_{n}-B_{n}\right)-\beta_{2} n C_{n}=-p_{11} \tag{34}\\
& c \lambda C_{n}+\lambda \beta_{1} n A_{n}+\lambda \beta_{2} n B_{n}-i \kappa n^{2} C_{n}=0 \tag{35}
\end{align*}
$$

We can rewrite (33), (34) as

$$
\begin{equation*}
-\lambda^{2} X_{n}+n^{2} A X_{n}+i \lambda n^{2} B X_{n}+\Phi X_{n}+i \lambda \Phi_{1} X_{n}-n \Psi C_{n}=G \tag{36}
\end{equation*}
$$

such that

$$
\begin{aligned}
X_{n} & =\binom{A_{n}}{B_{n}}, \quad A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{12} & a_{22}
\end{array}\right), \quad B=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{12} & b_{22}
\end{array}\right), \\
\Phi & =\left(\begin{array}{cc}
\alpha & -\alpha \\
-\alpha & \alpha
\end{array}\right), \quad \Phi_{1}=\left(\begin{array}{cc}
\alpha_{1} & -\alpha_{1} \\
-\alpha_{1} & \alpha_{1}
\end{array}\right), \quad \Psi=\binom{\beta_{1}}{\beta_{2}}, \quad G=\binom{p_{12}}{-p_{11}}
\end{aligned}
$$

Therefore, for $Y_{n}=P X_{n}=\binom{\tilde{A}_{n}}{\widetilde{B}_{n}}$ we have in (36) that

$$
\begin{equation*}
-\lambda^{2} Y_{n}+n^{2} P A P Y_{n}+i \lambda n^{2} D Y_{n}+P \Phi P Y_{n}+i \lambda P \Phi_{1} P Y_{n}-P \Psi n C_{n}=P G \tag{37}
\end{equation*}
$$

We introduce the notation

$$
P A P=\left(\begin{array}{ll}
\tilde{a}_{11} & \tilde{a}_{12} \\
\tilde{a}_{12} & \tilde{a}_{22}
\end{array}\right), \quad \tilde{a}_{11}>0, \quad \tilde{a}_{22}>0
$$

$$
\begin{aligned}
P \Phi P & =\left(\begin{array}{ll}
\alpha_{11} & \alpha_{12} \\
\alpha_{12} & \alpha_{22}
\end{array}\right), \quad \alpha_{11} \geq 0, \quad \alpha_{22} \geq 0 \\
P \Phi_{1} P & =\left(\begin{array}{ll}
\gamma_{11} & \gamma_{12} \\
\gamma_{12} & \gamma_{22}
\end{array}\right), \quad \gamma_{11} \geq 0, \quad \gamma_{22} \geq 0 \\
P \Psi & =\binom{\tilde{\beta}_{1}}{\tilde{\beta}_{2}}
\end{aligned}
$$

Replacing in (37) together with (35) we obtain

$$
\begin{gather*}
\left(-\lambda^{2}+\tilde{a}_{11} n^{2}+\alpha_{11}+i \lambda \xi n^{2}+i \lambda \gamma_{11}\right) \widetilde{A}_{n}+\left(\tilde{a}_{12} n^{2}+\alpha_{12}+i \lambda \gamma_{12}\right) \widetilde{B}_{n}-\tilde{\beta}_{1} n C_{n}=0 \tag{38}\\
\left(\tilde{a}_{12} n^{2}+\alpha_{12}+i \lambda \gamma_{12}\right) \widetilde{A}_{n}+\left(-\lambda^{2}+\tilde{a}_{22} n^{2}+\alpha_{22}+i \lambda \gamma_{22}\right) \widetilde{B}_{n}-\tilde{\beta}_{2} n C_{n}=1 \tag{39}\\
\left(c \lambda-i \kappa n^{2}\right) n C_{n}+\lambda \tilde{\beta}_{1} n^{2} \widetilde{A}_{n}+\lambda \tilde{\beta}_{2} n^{2} \widetilde{B}_{n}=0 \tag{40}
\end{gather*}
$$

We take $\lambda=\lambda_{n}=\sqrt{\tilde{a}_{22} n^{2}+\alpha_{22}}, n \in \mathbb{N}$, in (31).
Case $\alpha_{1}=0$. From (38)-(40) we get

$$
\begin{gather*}
\left(-\lambda_{n}^{2}+\tilde{a}_{11} n^{2}+i \lambda_{n} \xi n^{2}+\alpha_{11}\right) \widetilde{A}_{n}+\left(\tilde{a}_{12} n^{2}+\alpha_{12}\right) \widetilde{B}_{n}-\tilde{\beta}_{1} n C_{n}=0 \tag{41}\\
\left(\tilde{a}_{12} n^{2}+\alpha_{12}\right) \widetilde{A}_{n}+\left(-\lambda_{n}^{2}+\tilde{a}_{22} n^{2}+\alpha_{22}\right) \widetilde{B}_{n}-\tilde{\beta}_{2} n C_{n}=1 \tag{42}\\
\left(c \frac{\lambda_{n}}{n^{2}}-i \kappa\right) n C_{n}+\lambda_{n} \tilde{\beta}_{1} \widetilde{A}_{n}+\lambda_{n} \tilde{\beta}_{2} \widetilde{B}_{n}=0 \tag{43}
\end{gather*}
$$

We divide the proof in three items.
Item I. Assume that $\left(\beta_{1}, \beta_{2}\right)$ is not an eigenvector of B associated to the eigenvalue ξ, that is, $\tilde{\beta}_{2}=p_{12} \beta_{1}-p_{11} \beta_{2} \neq 0$.

If $\tilde{a}_{12}=\alpha_{12}=0$, from (42) we get

$$
n C_{n}=-\frac{1}{\tilde{\beta}_{2}}
$$

and

$$
\int_{0}^{\pi}\left|\theta_{n x}\right|^{2} d x=\frac{\pi}{2 \tilde{\beta}_{2}^{2}}
$$

Using (32) we obtain (30).
If $\tilde{a}_{12} \neq 0$ or $\alpha_{12} \neq 0$, then from (42) we have

$$
\begin{equation*}
\widetilde{A}_{n}=\frac{1}{\tilde{a}_{12} n^{2}+\alpha_{12}}+\frac{\tilde{\beta}_{2}}{\tilde{a}_{12} n^{2}+\alpha_{12}} n C_{n} \tag{44}
\end{equation*}
$$

Substituting (44) in (41) we obtain

$$
\widetilde{B}_{n}=\frac{\left(\lambda_{n}^{2}-\tilde{a}_{11} n^{2}-i \lambda_{n} \xi n^{2}-\alpha_{11}\right)}{\left(\tilde{a}_{12} n^{2}+\alpha_{12}\right)^{2}}+\frac{\tilde{\beta}_{2}\left(\lambda_{n}^{2}-\tilde{a}_{11} n^{2}-i \lambda_{n} \xi n^{2}-\alpha_{11}\right)+\tilde{\beta}_{1}\left(\tilde{a}_{12} n^{2}+\alpha_{12}\right)}{\left(\tilde{a}_{12} n^{2}+\alpha_{12}\right)^{2}} n C_{n}
$$

Substituting the above term in (43) we get

$$
\begin{aligned}
& \left(\frac{c \lambda_{n}-i \kappa n^{2}}{n^{2}}+\frac{\tilde{\beta}_{2}^{2} \lambda_{n}\left(\lambda_{n}^{2}-\tilde{a}_{11} n^{2}-i \lambda_{n} \xi n^{2}-\alpha_{11}\right)+2 \lambda_{n} \tilde{\beta}_{1} \tilde{\beta}_{2}\left(\tilde{a}_{12} n^{2}+\alpha_{12}\right)}{\left(\tilde{a}_{12} n^{2}+\alpha_{12}\right)^{2}}\right) n C_{n} \\
& =-\frac{\lambda_{n} \tilde{\beta}_{1}\left(\tilde{a}_{12} n^{2}+\alpha_{12}\right)+\lambda_{n} \tilde{\beta}_{2}\left(\lambda_{n}^{2}-\tilde{a}_{11} n^{2}-i \lambda_{n} \xi n^{2}-\alpha_{11}\right)}{\left(\tilde{a}_{12} n^{2}+\alpha_{12}\right)^{2}}
\end{aligned}
$$

Defining

$$
\begin{aligned}
P_{n}= & -\tilde{\beta}_{2} n^{2} \lambda_{n}^{3}+i \tilde{\beta}_{2} \xi n^{4} \lambda_{n}^{2}+\lambda_{n}\left(\tilde{\beta}_{2} \tilde{a}_{11} n^{4}-\tilde{\beta}_{1} \tilde{a}_{12} n^{4}+\tilde{\beta}_{2} \alpha_{11} n^{2}-\tilde{\beta}_{1} \alpha_{12} n^{2}\right) \\
Q_{n}= & \left(c \lambda_{n}-i \kappa n^{2}\right)\left(\tilde{a}_{12} n^{2}+\alpha_{12}\right)^{2}+2 \lambda_{n} \tilde{\beta}_{1} \tilde{\beta}_{2}\left(\tilde{a}_{12} n^{4}+\alpha_{12} n^{2}\right) \\
& +\tilde{\beta}_{2}^{2} \lambda_{n}\left(\lambda_{n}^{2} n^{2}-\tilde{a}_{11} n^{4}-i \lambda_{n} \xi n^{4}-\alpha_{11} n^{2}\right)
\end{aligned}
$$

we obtain

$$
n C_{n}=\frac{P_{n}}{Q_{n}}
$$

Thus

$$
\lim _{n \rightarrow \infty} \frac{P_{n}}{n^{6}}=i \tilde{\beta}_{2} \xi \tilde{a}_{22}, \quad \lim _{n \rightarrow \infty} \frac{Q_{n}}{n^{6}}=-i\left(\tilde{\beta}_{2}^{2} \xi \tilde{a}_{22}+\kappa \tilde{a}_{12}^{2}\right)
$$

and

$$
\lim _{n \rightarrow \infty} n C_{n}=-\frac{\tilde{\beta}_{2} \xi \tilde{a}_{22}}{\tilde{\beta}_{2}^{2} \xi \tilde{a}_{22}+\kappa \tilde{a}_{12}^{2}}
$$

Since

$$
\int_{0}^{\pi}\left|\theta_{n x}\right|^{2} d x=\frac{\pi}{2} n^{2} C_{n}^{2}
$$

we have (30).
Item II. Assume that $\left(\beta_{1}, \beta_{2}\right)$ is an eigenvector of the matrix A and an eigenvector of B associated to the eigenvalue ξ, that is, $\tilde{\beta}_{2}=0$ and $\tilde{a}_{12}=0$.

Due to Remark 1, we can suppose $\alpha_{12} \neq 0$. From (42) and (43) we get

$$
\widetilde{A}_{n}=\frac{1}{\alpha_{12}}, \quad C_{n}=-\frac{\lambda_{n} \tilde{\beta}_{1} n}{\alpha_{12}\left(c \lambda_{n}-i \kappa n^{2}\right)}
$$

It follows using (41) that

$$
\widetilde{B}_{n}=-\frac{\left(\tilde{a}_{11}-\tilde{a}_{22}\right) n^{2}-\alpha_{22}+\alpha_{11}+i \lambda_{n} \xi n^{2}}{\alpha_{12}^{2}}-\frac{\tilde{\beta}_{1}^{2} \lambda_{n} n^{2}}{\alpha_{12}^{2}\left(c \lambda_{n}-i \kappa n^{2}\right)}
$$

Since

$$
\operatorname{Im} \widetilde{B}_{n}=n^{2} \lambda_{n}\left(-\frac{\xi}{\alpha_{12}^{2}}-\frac{\tilde{\beta}_{1}^{2} \kappa n^{2}}{\alpha_{12}^{2}\left(c^{2} \lambda_{n}^{2}+\kappa^{2} n^{4}\right)}\right)
$$

then

$$
\lim _{n \rightarrow \infty}\left|\widetilde{B}_{n}\right|=\infty
$$

Thus

$$
\begin{align*}
& \int_{0}^{\pi}\left|u_{n x}\right|^{2} d x=\frac{\pi}{2}\left|n A_{n}\right|^{2}=\frac{\pi n^{2}}{2}\left|p_{11} \widetilde{A}_{n}+p_{12} \widetilde{B}_{n}\right|^{2} \tag{45}\\
& \int_{0}^{\pi}\left|w_{n x}\right|^{2} d x=\frac{\pi}{2}\left|n B_{n}\right|^{2}=\frac{\pi n^{2}}{2}\left|p_{12} \widetilde{A}_{n}-p_{11} \widetilde{B}_{n}\right|^{2} \tag{46}
\end{align*}
$$

Hence

$$
\lim _{n \rightarrow \infty}\left\|u_{n x}\right\|_{L^{2}(0, \pi)}=\lim _{n \rightarrow \infty}\left\|w_{n x}\right\|_{L^{2}(0, \pi)}=\infty
$$

Therefore

$$
\lim _{n \rightarrow \infty}\left\|U_{n}\right\|_{\mathscr{H}}=\infty
$$

and we have (30).
Item III. We assume that $\left(\beta_{1}, \beta_{2}\right)$ is not an eigenvector of the matrix A and is an eigenvector of B associated to the eigenvalue ξ, that is, $\tilde{\beta}_{2}=0, \tilde{a}_{12} \neq 0$. Then the Eq. (42) yields

$$
\widetilde{A}_{n}=\frac{1}{\tilde{a}_{12} n^{2}+\alpha_{12}} .
$$

On the other hand, we observe that

$$
\begin{aligned}
\beta_{1} A_{n}+\beta_{2} B_{n} & =\beta_{1}\left(p_{11} \widetilde{A}_{n}+p_{12} \widetilde{B}_{n}\right)+\beta_{2}\left(p_{12} \widetilde{A}_{n}-p_{11} \widetilde{B}_{n}\right) \\
& =\left(\beta_{1} p_{11}+\beta_{2} p_{12}\right) \widetilde{A}_{n}+\left(\beta_{1} p_{12}-\beta_{2} p_{11}\right) \widetilde{B}_{n} \\
& =\tilde{\beta}_{1} \widetilde{A}_{n}+\tilde{\beta}_{2} \widetilde{B}_{n} \\
& =\tilde{\beta}_{1} \widetilde{A}_{n}
\end{aligned}
$$

and

$$
\begin{equation*}
\beta_{1} v_{n x}+\beta_{2} \eta_{n x}=i \tilde{\beta}_{1} \widetilde{A}_{n} \lambda_{n} n \cos (n x) \tag{47}
\end{equation*}
$$

Thus

$$
\lim _{n \rightarrow \infty} \int_{0}^{\pi}\left|\beta_{1} v_{n x}+\beta_{2} \eta_{n x}\right|^{2} d x=\frac{\pi \tilde{a}_{22} \tilde{\beta}_{1}^{2}}{2 \tilde{a}_{12}^{2}} .
$$

Since $\left\{\left(b_{11}, b_{12}\right),\left(\beta_{1}, \beta_{2}\right)\right\}$ and $\left\{\left(b_{12}, b_{22}\right),\left(\beta_{1}, \beta_{2}\right)\right\}$ are linearly dependents, assuming $b_{11}>0$ we have

$$
\lim _{n \rightarrow \infty} \int_{0}^{\pi}\left|b_{11} v_{n x}+b_{12} \eta_{n x}\right|^{2} d x>0
$$

It follows from (32) that (30) holds.
Case $\alpha_{1}>0$. From (38)-(40) we get

$$
\begin{gather*}
\left(m_{1} n^{2}+m_{2}+i \lambda_{n}\left(\xi n^{2}+\gamma_{11}\right)\right) \widetilde{A}_{n}+\left(\tilde{a}_{12} n^{2}+\alpha_{12}+i \lambda_{n} \gamma_{12}\right) \widetilde{B}_{n}-\tilde{\beta}_{1} n C_{n}=0 \tag{48}\\
\left(\tilde{a}_{12} n^{2}+\alpha_{12}+i \lambda_{n} \gamma_{12}\right) \widetilde{A}_{n}+i \lambda_{n} \gamma_{22} \widetilde{B}_{n}-\tilde{\beta}_{2} n C_{n}=1 \tag{49}\\
\left(c \lambda_{n}-i \kappa n^{2}\right) n C_{n}+\lambda_{n} \tilde{\beta}_{1} n^{2} \widetilde{A}_{n}+\lambda_{n} \tilde{\beta}_{2} n^{2} \widetilde{B}_{n}=0 \tag{50}
\end{gather*}
$$

with $m_{1}=a_{11}-a_{22}$ and $m_{2}=\alpha_{11}-\alpha_{22}$. In this case we also divide the proof in three items.

Item I. Assume that $\left(\beta_{1}, \beta_{2}\right)$ is not an eigenvector of B associated to the eigenvalue $\xi\left(\tilde{\beta}_{2} \neq 0\right)$.

Suppose that $\gamma_{22}=0$. It results that $\alpha_{12}=\gamma_{12}=0$ and from (49) we get

$$
\tilde{a}_{12} n^{2} \widetilde{A}_{n}-\tilde{\beta}_{2} n C_{n}=1
$$

If $\tilde{a}_{12}=0$, then

$$
n C_{n}=-\frac{1}{\tilde{\beta}_{2}} \quad \text { and } \quad \int_{0}^{\pi}\left|\theta_{n x}\right|^{2} d x=\frac{\pi}{2 \tilde{\beta}_{2}^{2}}
$$

Using (32) we conclude (30).
If $\tilde{a}_{12} \neq 0$, then

$$
\begin{equation*}
\widetilde{A}_{n}=\frac{1}{\tilde{a}_{12} n^{2}}+\frac{\tilde{\beta}_{2}}{\tilde{a}_{12} n^{2}} n C_{n} \tag{51}
\end{equation*}
$$

Substituting (51) in (48) we obtain

$$
\widetilde{B}_{n}=-\frac{m_{1} n^{2}+m_{2}+i \lambda_{n}\left(\xi n^{2}+\gamma_{11}\right)}{\tilde{a}_{12}^{2} n^{4}}-\frac{\tilde{\beta}_{2}\left(m_{1} n^{2}+m_{2}+i \lambda_{n}\left(\xi n^{2}+\gamma_{11}\right)\right)-\tilde{\beta}_{1} \tilde{a}_{12} n^{2}}{\tilde{a}_{12}^{2} n^{4}} n C_{n}
$$

Substituting the above term in (50) we get

$$
\begin{aligned}
& \left(\frac{c \lambda_{n}-i \kappa n^{2}}{n^{2}}+\frac{\tilde{\beta}_{2}^{2} \lambda_{n}\left(-m_{1} n^{2}-m_{2}-i \lambda_{n}\left(\xi n^{2}+\gamma_{11}\right)\right)+2 \lambda_{n} \tilde{\beta}_{1} \tilde{\beta}_{2} \tilde{a}_{12} n^{2}}{\tilde{a}_{12}^{2} n^{2}}\right) n C_{n} \\
& =\frac{-\tilde{\beta}_{1} \tilde{a}_{12} \lambda_{n} n^{2}+\lambda_{n} \tilde{\beta}_{2}\left(m_{1} n^{2}+m_{2}+i \lambda_{n}\left(\xi n^{2}+\gamma_{11}\right)\right)}{\tilde{a}_{12}^{2} n^{2}}
\end{aligned}
$$

Defining

$$
\begin{aligned}
Z_{n} & =n^{2} \lambda_{n}\left(m_{1} \tilde{\beta}_{2}-\tilde{\beta}_{1} \tilde{a}_{12}\right)+m_{2} \tilde{\beta}_{2} \lambda_{n}+i \tilde{\beta}_{2} \lambda_{n}^{2}\left(\xi n^{2}+\gamma_{11}\right) \\
W_{n} & =\left(c \lambda_{n}-i \kappa n^{2}\right) \tilde{a}_{12}^{2}+2 \lambda_{n} \tilde{\beta}_{1} \tilde{\beta}_{2} \tilde{a}_{12} n^{2}-\tilde{\beta}_{2}^{2} \lambda_{n}\left(m_{1} n^{2}+m_{2}\right)-i \tilde{\beta}_{2}^{2} \lambda_{n}^{2}\left(\xi n^{2}+\gamma_{11}\right)
\end{aligned}
$$

we obtain

$$
n C_{n}=\frac{Z_{n}}{W_{n}}
$$

Thus

$$
\lim _{n \rightarrow \infty} \frac{Z_{n}}{n^{4}}=i \tilde{\beta}_{2} \xi \tilde{a}_{22}, \quad \lim _{n \rightarrow \infty} \frac{W_{n}}{n^{4}}=-i \tilde{\beta}_{2}^{2} \xi \tilde{a}_{22}
$$

and

$$
\lim _{n \rightarrow \infty} n C_{n}=-\frac{1}{\tilde{\beta}_{2}}
$$

Since

$$
\lim _{n \rightarrow \infty}\left\|\theta_{n x}\right\|_{L^{2}(0, L)}=\frac{1}{\left|\tilde{\beta}_{2}\right|} \sqrt{\frac{\pi}{2}}
$$

we have (30).
Now, suppose that $\gamma_{22} \neq 0$. Multiplying (49) by $\tilde{\beta}_{2} n^{2}$ and (50) by $-i \gamma_{22}$ and adding the results we get

$$
\begin{equation*}
\left[\tilde{\beta}_{2} n^{2}\left(\tilde{a}_{12} n^{2}+\alpha_{12}\right)+i n^{2} \lambda_{n}\left(\tilde{\beta}_{2} \gamma_{12}-\tilde{\beta}_{1} \gamma_{22}\right)\right] \tilde{A}_{n}-\left[\left(\tilde{\beta}_{2}^{2}+\kappa \gamma_{22}\right) n^{2}+i c \gamma_{22} \lambda_{n}\right] n C_{n}=\tilde{\beta}_{2} n^{2} \tag{52}
\end{equation*}
$$

Multiplying (48) by $i \gamma_{22} \lambda_{n}$ and (49) by $-\left(\tilde{a}_{12} n^{2}+\alpha_{12}+i \lambda_{n} \gamma_{12}\right)$ we get

$$
\begin{align*}
& {\left[i \gamma_{22} \lambda_{n}\left(m_{1} n^{2}+m_{2}\right)-\gamma_{22} \lambda_{n}^{2}\left(\xi n^{2}+\gamma_{11}\right)-\left(\tilde{a}_{12} n^{2}+\alpha_{12}+i \lambda_{n} \gamma_{12}\right)^{2}\right] \tilde{A}_{n}} \\
& \quad+\left[i \lambda_{n}\left(\gamma_{12} \tilde{\beta}_{2}-\gamma_{22} \tilde{\beta}_{1}\right)+\tilde{\beta}_{2}\left(\tilde{a}_{12} n^{2}+\alpha_{12}\right)\right] n C_{n}=-\left(\tilde{a}_{12} n^{2}+\alpha_{12}+i \lambda_{n} \gamma_{12}\right) \tag{53}
\end{align*}
$$

Defining

$$
\begin{aligned}
M_{n}= & -\tilde{\beta}_{2} n^{2}\left[i \gamma_{22} \lambda_{n}\left(m_{1} n^{2}+m_{2}\right)-\gamma_{22} \lambda_{n}^{2}\left(\xi n^{2}+\gamma_{11}\right)-\left(\tilde{a}_{12} n^{2}+\alpha_{12}+i \lambda_{n} \gamma_{12}\right)^{2}\right] \\
& -\left[\tilde{\beta}_{2} n^{2}\left(\tilde{a}_{12} n^{2}+\alpha_{12}\right)+i n^{2} \lambda_{n}\left(\tilde{\beta}_{2} \gamma_{12}-\tilde{\beta}_{1} \gamma_{22}\right)\right]\left(\tilde{a}_{12} n^{2}+\alpha_{12}+i \lambda_{n} \gamma_{12}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
N_{n}= & {\left[\left(\tilde{\beta}_{2}^{2}+\kappa \gamma_{22}\right) n^{2}+i c \gamma_{22} \lambda_{n}\right]\left[i \gamma_{22} \lambda_{n}\left(m_{1} n^{2}+m_{2}\right)-\gamma_{22} \lambda_{n}^{2}\left(\xi n^{2}+\gamma_{11}\right)\right.} \\
& \left.-\left(\tilde{a}_{12} n^{2}+\alpha_{12}+i \lambda_{n} \gamma_{12}\right)^{2}\right] \\
& +\left[\tilde{\beta}_{2} n^{2}\left(\tilde{a}_{12} n^{2}+\alpha_{12}\right)+i n^{2} \lambda_{n}\left(\tilde{\beta}_{2} \gamma_{12}-\tilde{\beta}_{1} \gamma_{22}\right)\right]\left[i \lambda_{n}\left(\gamma_{12} \tilde{\beta}_{2}-\gamma_{22} \tilde{\beta}_{1}\right)+\tilde{\beta}_{2}\left(\tilde{a}_{12} n^{2}+\alpha_{12}\right)\right]
\end{aligned}
$$

we obtain from (52) and (53)

$$
n C_{n}=\frac{M_{n}}{N_{n}}
$$

Thus

$$
\lim _{n \rightarrow \infty} \frac{M_{n}}{n^{6}}=\tilde{\beta}_{2} \xi \tilde{a}_{22} \gamma_{22}, \quad \lim _{n \rightarrow \infty} \frac{N_{n}}{n^{6}}=-\left(\tilde{\beta}_{2}^{2}+\kappa \gamma_{22}\right) \xi \tilde{a}_{22} \gamma_{22}-\kappa \gamma_{22} \tilde{a}_{12}^{2}
$$

and

$$
\lim _{n \rightarrow \infty} n C_{n}=-\frac{\tilde{\beta}_{2} \xi \tilde{a}_{22}}{\left(\tilde{\beta}_{2}^{2}+\kappa \gamma_{22}\right) \xi \tilde{a}_{22}+\kappa \tilde{a}_{12}^{2}}
$$

Since

$$
\lim _{n \rightarrow \infty}\left\|\theta_{n x}\right\|_{L^{2}(0, L)}=\sqrt{\frac{\pi}{2}} \frac{\left|\tilde{\beta}_{2}\right| \xi \tilde{a}_{22}}{\left(\tilde{\beta}_{2}^{2}+\kappa \gamma_{22}\right) \xi \tilde{a}_{22}+\kappa \tilde{a}_{12}^{2}}
$$

we have (30).
Item II. Assume that $\left(\beta_{1}, \beta_{2}\right)$ is an eigenvector of the matrix A and an eigenvector of B associated to the eigenvalue $\xi\left(\tilde{\beta}_{2}=\tilde{a}_{12}=0\right)$.

Due to Remark 1, we can suppose $\gamma_{22} \neq 0$. From (49) and (50) we get

$$
\widetilde{B}_{n}=\frac{1}{i \gamma_{22} \lambda_{n}}-\frac{\alpha_{12}+i \gamma_{12} \lambda_{n}}{i \gamma_{22} \lambda_{n}} \widetilde{A}_{n}, \quad C_{n}=-\frac{\tilde{\beta}_{1} \lambda_{n} n}{c \lambda_{n}-i \kappa n^{2}} \widetilde{A}_{n}
$$

It follows using (48) that

$$
\tilde{A}_{n}=-\frac{G_{n}}{H_{n}}
$$

with

$$
\begin{aligned}
G_{n}= & c \alpha_{12} \lambda_{n}+\kappa \gamma_{12} \lambda_{n} n^{2}+i\left(c \gamma_{12} \lambda_{n}^{2}-\kappa \alpha_{12} n^{2}\right) \\
H_{n}= & -c \gamma_{22} \lambda_{n}^{3}\left(\xi n^{2}+\gamma_{11}\right)+\kappa \gamma_{22} \lambda_{n} n^{2}\left(m_{1} n^{2}+m_{2}\right)-c \alpha_{12}^{2} \lambda_{n}+c \gamma_{12}^{2} \lambda_{n}^{3} \\
& -2 \kappa \alpha_{12} \gamma_{12} \lambda_{n} n^{2}+i\left[\left(\tilde{\beta}_{1}^{2} \gamma_{22}-\kappa \gamma_{12}^{2}+\kappa \gamma_{11} \gamma_{22}\right) \lambda_{n}^{2} n^{2}+\kappa \alpha_{12}^{2} n^{2}-2 c \alpha_{12} \gamma_{12} \lambda_{n}^{2}\right. \\
& \left.+\kappa \gamma_{22} \xi \lambda_{n}^{2} n^{4}+c \gamma_{22} \lambda_{n}^{2}\left(m_{1} n^{2}+m_{2}\right)\right]
\end{aligned}
$$

Since

$$
\lim _{n \rightarrow \infty} \frac{n G_{n}}{n^{6}}=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{H_{n}}{n^{6}}=i \kappa \gamma_{22} \xi
$$

then

$$
\lim _{n \rightarrow \infty} n \widetilde{A}_{n}=0 \text { and } \lim _{n \rightarrow \infty} n \widetilde{B}_{n}=-i \frac{1}{\gamma_{22} \sqrt{\tilde{a}_{22}}}
$$

Therefore, by (45) and (46) we have (30).

Item III. We assume that $\left(\beta_{1}, \beta_{2}\right)$ is not an eigenvector of the matrix A and is an eigenvector of B associated to the eigenvalue $\xi\left(\tilde{\beta}_{2}=0, \tilde{a}_{12} \neq 0\right)$. Then the Eq. (49) yields

$$
\begin{equation*}
\left(\tilde{a}_{12} n^{2}+\alpha_{12}+i \lambda_{n} \gamma_{12}\right) \widetilde{A}_{n}+i \lambda_{n} \gamma_{22} \widetilde{B}_{n}=1 \tag{54}
\end{equation*}
$$

If $\gamma_{22}=0$ then

$$
\widetilde{A}_{n}=\frac{1}{\tilde{a}_{12} n^{2}+\alpha_{12}}
$$

The limit (30) follows from (47).
If $\gamma_{22} \neq 0$, from (54) and (50) we have

$$
\begin{aligned}
\widetilde{B}_{n} & =\frac{1}{i \gamma_{22} \lambda_{n}}-\frac{\tilde{a}_{12} n^{2}+\alpha_{12}+i \lambda_{n} \gamma_{12}}{i \gamma_{22} \lambda_{n}} \widetilde{A}_{n} \\
n C_{n} & =-\frac{\tilde{\beta}_{1} \lambda_{n} n^{2}}{c \lambda_{n}-i k n^{2}} \widetilde{A}_{n}
\end{aligned}
$$

From (51) it results that

$$
\widetilde{A}_{n}=-\frac{R_{n}}{S_{n}}
$$

with

$$
\begin{aligned}
R_{n}= & c \lambda_{n}\left(\tilde{a}_{12} n^{2}+\alpha_{12}\right)+\kappa \gamma_{12} n^{2} \lambda_{n}-i\left(\kappa \tilde{a}_{12} n^{4}+\kappa \alpha_{12} n^{2}-c \gamma_{12} \lambda_{n}^{2}\right) \\
S_{n}= & \gamma_{22} \lambda_{n}\left(\kappa n^{2}+i c \lambda_{n}\right)\left(m_{1} n^{2}+m_{2}+i \lambda_{n}\left(\xi n^{2}+\gamma_{11}\right)\right) \\
& -\left(\tilde{a}_{12} n^{2}+\alpha_{12}+i \lambda_{n} \gamma_{12}\right)^{2}\left(c \lambda_{n}-i \kappa n^{2}\right)+i \tilde{\beta}_{1}^{2} \gamma_{22} n^{2} \lambda_{n}^{2}
\end{aligned}
$$

Thus

$$
\lim _{n \rightarrow \infty} \frac{n \lambda_{n} R_{n}}{n^{6}}=-i \kappa \sqrt{\tilde{a}_{22}} \tilde{a}_{12}, \quad \lim _{n \rightarrow \infty} \frac{S_{n}}{n^{6}}=\kappa\left(\tilde{a}_{12}^{2}+\xi \gamma_{22} \tilde{a}_{22}\right) i
$$

and

$$
\lim _{n \rightarrow \infty} n \lambda_{n} \tilde{A}_{n}=-\frac{\tilde{a}_{12} \sqrt{\tilde{a}_{22}}}{\tilde{a}_{12}^{2}+\xi \gamma_{22} \tilde{a}_{22}}
$$

Therefore, from (47) we can obtain (30). The theorem follows.

REFERENCES

1. C. Truesdell and R. A. Toupin, The Classical Field Theories, in S. Flügge (ed.), Handbuch der Physik, vol. III/3, Springer-Verlag, Berlin, pp. 226-902, 1960.
2. A. E. Green and P. M. Naghdi, A Dynamical Theory of Interacting Continua, Internat. J. Engrg. Sci., vol. 3, pp. 231-241, 1965.
3. A. E. Green and P. M. Naghdi, A Note on Mixtures, Internat. J. Engrg. Sci., vol. 6, pp. 631-635, 1968.
4. R. M. Bowen and J. C. Wiese, Diffusion in Mixtures of Elastic Materials, Internat. J. Engrg. Sci., vol. 7, pp. 689-722, 1969.
5. R. J. Atkin and R. E. Craine, Continuum Theories of Mixtures: Basic Theory and Historical Development, Quat. J. Mech. Appl. Math., vol. 29, pp. 209-243, 1976.
6. A. Bedford and D. S. Drumheller, Theory of Immiscible and Structured Mixtures, Internat. J. Engrg. Sci., vol. 21, pp. 863-960, 1983.
7. R. M. Bowen, Theory of Mixtures, in A. C. Eringen (ed.), Continuum Physics III, Vol. III, pp. 3-120, Academic Press, New York, 1976.
8. K. R. Rajagopal and L. Tao, Mechanics of Mixtures, World Scientific, Singapore, 1995.
9. A. Bedford and M. Stern, A Multi-continuum Theory for Composite Elastic Materials, Acta Mechanica, vol. 14, pp. 85-102, 1972.
10. D. Ieşan and R. Quintanilla, A Theory of Porous Thermoviscoelastic Mixtures, J. Thermal Stresses, vol. 30, pp. 693-714, 2007.
11. D. Ieşan and L. Nappa, On the Theory of Viscoelastic Mixtures and Stability, Mathematics and Mechanics of Solids, vol. 13, pp. 55-80, 2008.
12. D. Ieşan and R. Quintanilla, On a Theory of Interacting Continua with Memory, J. Thermal Stresses, vol. 25, pp. 1161-1178, 2002.
13. Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, CRC Research Notes in Mathematics 398, p. 206, Chapman \& Hall, Boca Raton, FL, 1999.
14. F. Martínez and R. Quintanilla, Some Qualitative Results for the Linear Theory of Binary Mixtures of Thermoelastic Solids, Collect. Math., vol. 46, pp. 263-277, 1995.
15. M. S. Alves, J. E. Muñoz Rivera, and R. Quintanilla, Exponential Decay in a Thermoelastic Mixture of Solids, Int. J. Solids Struct., vol. 46, pp. 1659-1666, 2009.
16. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, p. 279, Springer-Verlag, New York, 1983.
