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Abstract. In this paper we consider an oscillation model to a plate comprised of two

different thermoelastic materials; that is, we study a transmission problem to thermoe-

lastic plates. Our main result is to prove that the corresponding semigroup associated

to this problem is of analytic type.

1. Introduction. In thermoelasticity, the classical linear model to thermoelastic

plates is given by the following system:

ρutt − μΔutt + γΔ2u+ αΔθ = 0 in Ω ⊂ R
2, (1.1)

cθt − κΔθ − αΔut = 0 in Ω ⊂ R
2, (1.2)

where ρ, γ, α, c, κ and μ are positive constants. The physical model can be seen in [2]

and the references therein. Several authors studied this system with different types of

boundary conditions (Dirichlet, Neumann, clamped, etc.) and proved the exponential

stability of the solutions; see for example [1, 7, 8, 11] and references therein. In the

particular case μ = 0, it was proved in [3, 4, 5] that the semigroup associated to the

above system is analytic. If μ > 0, the system has a hyperbolic character and hence

the corresponding semigroup is not analytic, but the exponential stability of solutions is

kept; see for example [7].
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On the other hand, in the case of transmission problems in thermoelasticity, the

situation concerning exponential stability is more delicate and, to our best knowledge,

there exist only a few results. For example, in [9], the authors proved that a partial

thermoelastic dissipation is enough to stabilize the system exponentially. That is, they

considered the model

ρ1utt − μ1Δutt + γ1Δ
2u+ α1Δθ = 0 in Ω1, (1.3)

cθt − κΔθ − αΔut = 0 in Ω1, (1.4)

ρ2vtt − μ2Δvtt + γ2Δ
2v = 0 in Ω2, (1.5)

where Ω = Ω1 ∪ Ω2 ⊂ R
n,Ω1 ∩ Ω2 = ∅, with ρi, γi, α, c, κ > 0, μ ≥ 0, (i = 1, 2) together

with Dirichlet boundary conditions, suitable transmission conditions and of course initial

conditions. Using multiplier techniques they proved the exponential stability of the

solutions u and v.

Returning to analytical results, as it is known to linear systems, analyticity is syn-

onymous with asymptotic stability and smoothing effect property, which means that no

matter how irregular the initial data is, the corresponding solution is of C∞–class, for

any t > 0. Then the question that arises is the following: Is it possible to obtain ana-

lytic semigroups associated to transmission problems in thermoelasticity? To our best

knowledge, there are no results about this matter in the literature and to fill this gap we

study this point here.

Fig. 1

In other words, we consider a transmission problem associated to thermoelastic plates,

which can be seen as an evolution system with discontinuous coefficients. With this

in mind, we cannot expect C∞ solutions on the whole domain Ω, for t > 0. More
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precisely, the transmission problem to thermoelastic plates that we consider here, over

each component of Ω = Ω1 ∪ Ω2, can be written as

ρ1utt + γ1Δ
2u+ α1Δθ = 0 in Ω1 (1.6)

c1θt − κ1Δθ − α1Δut = 0 in Ω1 (1.7)

ρ2vtt + γ2Δ
2v + α2Δω = 0 in Ω2 (1.8)

c2ωt − κ2Δω − α2Δvt = 0 in Ω2 (1.9)

with boundary conditions

u =
∂u

∂ν
= 0 in Γ1 v =

∂v

∂ν
= 0 in Γ2 (1.10)

and transmission conditions

u = v,
∂u

∂ν
=

∂v

∂ν
in Γ0 (1.11)

θ = ω, κ1
∂θ

∂ν
+ α1

∂ut

∂ν
= κ2

∂ω

∂ν
+ α2

∂vt
∂ν

in Γ0 (1.12)

γ1Δu = γ2Δv, γ1
∂Δu

∂ν
+ α1

∂θ

∂ν
= γ2

∂Δv

∂ν
+ α2

∂ω

∂ν
in Γ0. (1.13)

The initial conditions are given by

u(·, 0) = u0, ut(·, 0) = u1, θ(·, 0) = θ0, in Ω1, (1.14)

v(·, 0) = v0, vt(·, 0) = v1, ω(·, 0) = ω0, in Ω2, (1.15)

where ρi, γi, αi, ci, κi stand as positive constants (i = 1, 2). The domain Ω = Ω1 ∪ Ω2

is a bounded open set in R
2 with boundary ∂Ω = Γ1 ∪ Γ2 where Γ1,Γ2 are two smooth

curves such that Γ1 ∩Γ2 = ∅ and ν is the unit normal vector outside of Ω. Let us denote

by Γ0 the common smooth curve between Ω1 and Ω2.

The main result of this paper is to prove that the semigroup associated to system

(1.6)-(1.15) is analytic and, by direct consequence of this result, the solutions u and v of

this system are exponentially stable when the time goes to infinity; they also have the

smoothing effect property over Ω1 and Ω2 respectively, but not over the whole domain

Ω.

It is important to emphasize here that the main contribution of this paper is to connect

solutions of a thermoelastic transmission problem (discontinuous in principle because we

have two different materials to Ω = Ω1 ∪ Ω2), with analytic semigroups which gives us

the regularity of the solutions u and v in each sub-domain Ω1 and Ω2 respectively, where

the solutions are defined. Of course, from the theory of analytic semigroups, we deduce

directly the exponential stability of the solutions of our system, but the case where only

one region includes the thermoelastic coupling (for example, only in Ω1) is the most

interesting to be considered and was solved satisfactorily by the authors Muñoz Rivera,

J. E. and Portillo Oquendo, H. in [9].

This paper is organized as follows. In section 2 we establish the semigroup formulation

associated to system (1.6)-(1.15) as well as the main tools used in the next sections. In
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section 3 we establish and prove the main result of this paper; that is, we prove that the

semigroup associated to system (1.6)-(1.15) is analytic.

2. Notations and semigroup formulation. Here we establish the notations and

main tools that will be used in the next sections. First, we define the Hilbert spaces

H
m(Ω) := Hm(Ω1)×Hm(Ω2) (m ≥ 1),

H
0(Ω) := L2(Ω1)× L2(Ω2)

and

H
m
Γ (Ω) :=

{
(φ1, φ2) ∈ H

m(Ω) : φi = 0 in Γi(i = 1, 2) and

∂kφ1

∂ν
=

∂kφ2

∂ν
in Γ0 , k = 0, 1, ..., (m− 1)

}
(m ≥ 1).

Using these notations, let us define an appropriate Hilbert space where the semigroup

will be defined, which is

H = H
2
Γ(Ω)×H

0(Ω)×H
0(Ω), (2.1)

with associated norm to U = (u, v, z, y, θ, ω)′ ∈ H defined by

||U ||2H = γ1||Δu||2L2(Ω1)
+ γ2||Δv||2L2(Ω2)

+ ρ1||z||2L2(Ω1)
+ ρ2||y||2L2(Ω2)

+c1||θ||2L2(Ω1)
+ c2||ω||2L2(Ω2)

.

Also, we define the linear operator

A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u

v

z

y

θ

ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

:=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z

y

−γ1Δ
2u− α1Δθ

−γ2Δ
2v − α2Δω

κ1Δθ + α1Δz

κ2Δω + α2Δy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.2)

over the domain D(A) ⊂ H defined by

D(A) :=
{
U = (u, v, z, y, θ, ω)′ ∈ H : (u, v) ∈ H

4(Ω) ∩H
2
Γ(Ω) , (z, y) ∈ H

2
Γ(Ω)

(θ, ω) ∈ H
2(Ω) ∩H

1
Γ(Ω) , (γ1Δu, γ2Δv) ∈ H

1
Γ(Ω)

κ1
∂θ

∂ν
+ α1

∂z

∂ν
= κ2

∂ω

∂ν
+ α2

∂y

∂ν
in Γ0 and

γ1
∂Δu

∂ν
+ α1

∂θ

∂ν
= γ2

∂Δv

∂ν
+ α2

∂ω

∂ν
in Γ0

}
,
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which is associated to system (1.6)-(1.10) with the classical notations z := ut and y := vt.

It is not difficult to prove that the operator A is dissipative and

0 ∈ ρ(A).

Therefore, using semigroups theory (see [6, 10]), we have the following theorem.

Theorem 2.1. The linear operator A given by (2.2) and associated to system (1.6)-(1.10)

is the infinitesimal generator of a C0-semigroup of contractions on the Hilbert space H
defined by (2.1).

On the other hand, the main tool to prove the analyticity of the semigroup generated

by A is the following well-known theorem

Theorem 2.2. A semigroup of contractions {etA}t≥0 in a Hilbert space H with norm

‖ · ‖H is of analytic type if and only if

iR ⊂ �(A) (2.3)

and

lim
|λ|→∞

||λ(iλI −A)−1||L(H) < ∞. (2.4)

Proof. See, e.g., [6, Theorem 1.3.2]. �
In order to apply Theorem 2.2 we will analyze the solution of the resolvent equation

(iλI −A)U = F in H (2.5)

which, in terms of its components, can be written as

iλu− z = f1 in H2(Ω1) (2.6)

iλv − y = f2 in H2(Ω2) (2.7)

iλρ1z + γ1Δ
2u+ α1Δθ = ρ1f

3 in L2(Ω1) (2.8)

iλρ2y + γ2Δ
2v + α2Δω = ρ2f

4 in L2(Ω2) (2.9)

iλc1θ − κ1Δθ − α1Δz = c1f
5 in L2(Ω1) (2.10)

iλc2ω − κ2Δω − α2Δy = c2f
6 in L2(Ω2). (2.11)

Our starting point to arrive at the hypotheses of Theorem 2.2 is to use the estimate

given by the thermal dissipation, which is given by the following Lemma.

Lemma 2.3. Let U = (u, v, z, y, θ, ω)′ ∈ D(A) be a solution of the system (2.6)-(2.11)

with F = (f1, f2, f3, f4, f5, f6)′ ∈ H. Then

κ1||∇θ||2L2(Ω1)
+ κ2||∇ω||2L2(Ω2)

≤ C||U ||H||F ||H,

where C is a positive constant independent of λ and U ∈ D(A).

Proof. By multiplying (2.5) by U ∈ H and taking the real part, our conclusion follows.

�
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3. Analyticity. In order to prove our main result, note that to show the condition

(2.4) from Theorem 2.2 is equivalent to stating that there exists a constant C > 0 such

that

||U ||H = ||(iλI −A)−1F ||H ≤ C

|λ| ||F ||H, ∀|λ| ≥ λ0 > 0, (3.1)

or state that for any ε > 0, there exists Cε > 0 such that

|λ|2||U ||2H ≤ ε|λ|2||U ||2H + Cε||F ||2H, ∀|λ| ≥ λ0 > 0.

This late relation will be established as a consequence of the following Propositions

3.1, 3.3 and 3.4.

Proposition 3.1. Let U = (u, v, z, y, θ, ω)′ ∈ D(A) be a solution of the system (2.6)-

(2.11) with F = (f1, f2, f3, f4, f5, f6)′ ∈ H. Then, for any ε > 0, there exists Cε > 0

such that

|λ|2||θ||2L2(Ω1)
+ |λ|2||ω||2L2(Ω2)

≤ ε|λ|2||U ||2H + Cε||F ||2H.

Proof. Multiplying equation (2.10) by iλθ in L2(Ω1) and (2.11) by iλω in L2(Ω2), we

obtain

|λ|2c1||θ||2L2(Ω1)
− iκ1λ

∫

Γ0

∂θ

∂ν
θdΓ− iκ1λ||∇θ||2L2(Ω1)

− iα1λ

∫

Γ0

∂z

∂ν
θdΓ

−iα1λ

∫

Ω1

∇z∇θ dxdy = −iλc1

∫

Ω1

f5θ dxdy

and

|λ|2c2||ω||2L2(Ω2)
− iκ2λ

∫

Γ0

∂ω

∂ν
ωdΓ− iκ2λ||∇ω||2L2(Ω2)

− iα2λ

∫

Γ0

∂y

∂ν
ωdΓ

−iα1λ

∫

Ω2

∇y∇ω dxdy = −iλc1

∫

Ω2

f6ω dxdy,

respectively. Therefore, adding the last two equalities and using the transmission condi-

tions (1.11)-(1.13), we have

|λ|2
[
c1||θ||2L2(Ω1)

+ c2||ω||2L2(Ω2)

]
≤ C|λ|||U ||H||F ||H + α1|λ|||∇z||L2(Ω1)||∇θ||L2(Ω1)

+α2|λ|||∇y||L2(Ω2)||∇ω||L2(Ω2). (3.2)

To complete the proof we will now estimate ||∇z||L2(Ω1) and ||∇y||L2(Ω2) in (3.2). In

fact, from (2.6) and (2.7) we get

||z||H2(Ω1) ≤ |λ|||u||H2(Ω1) + ||f1||H2(Ω1) (3.3)

||y||H2(Ω2) ≤ |λ|||v||H2(Ω2) + ||f2||H2(Ω2). (3.4)

On the other hand, using Gagliardo-Nirenberg inequalities we have

||z||H1(Ω1) ≤ C||z||1/2H2(Ω1)
||z||1/2L2(Ω1)

(3.5)

||y||H1(Ω2) ≤ C||y||1/2H2(Ω2)
||y||1/2L2(Ω2)

. (3.6)
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Then, applying (3.3) into (3.5) and (3.4) into (3.6) respectively, we deduce the following

estimates:

||z||H1(Ω1) ≤ C|λ|1/2||U ||H + C||U ||1/2H ||F ||1/2H (3.7)

||y||H1(Ω1) ≤ C|λ|1/2||U ||H + C||U ||1/2H ||F ||1/2H . (3.8)

Finally, using (3.7) and Lemma 2.3, for each ε > 0 we have

α1|λ|||∇z||L2(Ω1)||∇θ||L2(Ω1) ≤ ε

16C2
|λ|||z||2H1(Ω1)

+ Cε|λ|||∇θ||2H1(Ω1)

≤ ε

8
|λ|2||U ||2H + Cε|λ|||U ||H||F ||H

≤ ε

4
|λ|2||U ||2H + Cε||F ||2H;

this is

α1|λ|||∇z||L2(Ω1)||∇θ||L2(Ω1) ≤ ε

4
|λ|2||U ||2H + Cε||F ||2H. (3.9)

Similarly, using (3.8) and Lemma 2.3 we have

α2|λ|||∇y||L2(Ω2)||∇ω||L2(Ω2) ≤ ε

4
|λ|2||U ||2H + Cε||F ||2H. (3.10)

Therefore, applying (3.9)-(3.10) into (3.2) our result follows. �
As a consequence of Proposition 3.1 we now formulate and prove the following lemma,

which will play an important role in the proof of Proposition 3.3.

Lemma 3.2. With the same hypotheses as in Proposition 3.1, for any ε > 0 and for any

|λ| ≥ 1, the following inequality

||∇z||2L2(Ω1)
+ ||∇y||2L2(Ω2)

≤ εC|λ|||U ||2H + Cε
1

|λ| ||F ||2H

holds.

Proof. First, replacing ε > 0 by ε2 > 0 in Proposition 3.1, we have

|λ|||θ||2L2(Ω1)
+ |λ|||ω||2L2(Ω2)

≤ ε2|λ|||U ||2H + Cε
1

|λ| ||F ||2H (3.11)

for any |λ| ≥ 1. On the other hand, multiplying (2.10) by z in L2(Ω1) and (2.11) by y in

L2(Ω2) respectively, we obtain

iλc1

∫

Ω1

θz dxdy +

∫

Γ0

[
κ1

∂θ

∂ν
+ α1

∂z

∂ν

]
zdΓ + κ1

∫

Ω1

∇θ∇z dxdy

+α1||∇z||2L2(Ω1)
= c1

∫

Ω1

f5z dxdy (3.12)
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and

iλc2

∫

Ω2

ωy dxdy −
∫

Γ0

[
κ2

∂ω

∂ν
+ α2

∂y

∂ν

]
ydΓ + κ2

∫

Ω2

∇ω∇y dxdy

+α2||∇y||2L2(Ω2)
= c2

∫

Ω2

f6y dxdy, (3.13)

respectively. Now we will estimate some terms of (3.12) and (3.13). In fact, by Lemma

2.3, we have the following inequalities:∣∣∣∣κ1

∫

Ω1

∇θ∇z dxdy

∣∣∣∣ ≤ C||U ||H||F ||H +
α1

3
||∇z||2L2(Ω1)

≤ ε|λ|||U ||2H + Cε
1

|λ| ||F ||2H +
α1

3
||∇z||2L2(Ω1)

for any |λ| ≥ 1. This is
∣∣∣∣κ1

∫

Ω1

∇θ∇z dxdy

∣∣∣∣ ≤ ε|λ|||U ||2H + Cε
1

|λ| ||F ||2H +
α1

3
||∇z||2L2(Ω1)

. (3.14)

Analogously we have∣∣∣∣κ2

∫

Ω2

∇ω∇y dxdy

∣∣∣∣ ≤ ε|λ|||U ||2H + Cε
1

|λ| ||F ||2H +
α2

3
||∇y||2L2(Ω1)

(3.15)

for any |λ| ≥ 1. Also, applying (3.11) we deduce that
∣∣∣∣iλc1

∫

Ω1

θz dxdy

∣∣∣∣ ≤ 1

ε
|λ|||θ||2L2(Ω1)

+ ε|λ|||z||2L2(Ω1)

≤ ε|λ|||U ||2H + Cε
1

|λ| ||F ||2H + ε|λ|||U ||2H;

this is ∣∣∣∣iλc1
∫

Ω1

θz dxdy

∣∣∣∣ ≤ 2ε|λ|||U ||2H + Cε
1

|λ| ||F ||2H. (3.16)

Similarly we get ∣∣∣∣iλc2
∫

Ω2

ωy dxdy

∣∣∣∣ ≤ 2ε|λ|||U ||2H + Cε
1

|λ| ||F ||2H. (3.17)

Therefore, adding the equalities (3.12)-(3.13), using the transmission conditions (1.11)-

(1.13) and estimates (3.14)-(3.17), our conclusion follows immediately. �
The aim of the next proposition is to obtain estimates to |λ|||z||L2(Ω1) and |λ|||ω||L2(Ω2).

As mentioned previously, the key tool is Lemma 3.2; more precisely, that Lemma will be

used in the proof of inequality (3.27).

Proposition 3.3. Let U = (u, v, z, y, θ, ω)′ ∈ D(A) be a solution of the system (2.6)-

(2.11) with F = (f1, f2, f3, f4, f5, f6)′ ∈ H. Then, for any ε > 0 there exists Cε > 0

such that

|λ|2||z||2L2(Ω1)
+ |λ|2||y||2L2(Ω2)

≤ εC|λ|2||U ||2H + Cε||F ||2H. (3.18)
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Proof. First we set z = z1 + z2 and y = y1 + y2, where z1, y1 satisfy

iλρ1z1 −Δz1 = ρ1f
3 in Ω1 (3.19)

iλρ2y1 −Δy1 = ρ2f
4 in Ω2 (3.20)

with boundary–transmission conditions

z1 =
∂z1
∂ν

= 0 in Γ1 , y1 =
∂y1
∂ν

= 0 in Γ2,

z1 = y1 in Γ0 ,
∂z1
∂ν

=
∂y1
∂ν

in Γ0,

and hence z2, y2 satisfy

iλρ1z2 = −γ1Δ
2u−Δz1 − α1Δθ (3.21)

iλρ2y2 = −γ2Δ
2v −Δy1 − α2Δω. (3.22)

From (3.19)-(3.20) we deduce that

|λ|||z1||L2(Ω1) + ||z1||H2(Ω1) ≤ C||f3||L2(Ω1) (3.23)

|λ|||y1||L2(Ω2) + ||y1||H2(Ω2) ≤ C||f4||L2(Ω2), (3.24)

which implies that z1, y1 satisfy inequality (3.18). Therefore, to complete the proof,

it is only necessary to verify that z2, y2 also satisfy inequality (3.18). In fact, from

(3.21)-(3.22) we find

|λ|||z2||H−2(Ω1) ≤ C
[
||Δu||L2(Ω1) + ||z1||L2(Ω1) + ||θ||L2(Ω1)

]

|λ|||y2||H−2(Ω2) ≤ C
[
||Δv||L2(Ω2) + ||y1||L2(Ω2) + ||ω||L2(Ω2)

]
.

Then, using inequalities (3.23)-(3.24), we deduce that

|λ|||z2||H−2(Ω1) + |λ|||y2||H−2(Ω2) ≤ C||U ||H +
C

|λ| ||F ||H. (3.25)

The next steps are directed to obtain estimates to z1, y1 in L2(Ω1), L
2(Ω2). To this aim

we will establish estimates in the H−1 and H1 norms, and we will apply interpolation to

obtain the desired L2–estimates.

In fact, first note that by applying interpolation results, estimates (3.23)-(3.24) lead

to

||z1||H1(Ω1) + ||y1||H1(Ω2) ≤ C
1

|λ|1/2 ||F ||H. (3.26)
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Then, applying interpolation again, from estimate (3.26) and Lemma 3.2 we deduce

||z2||H−1(Ω1) ≤ C||z2||2/3H−2(Ω1)
||z2||1/3H1(Ω1)

≤ C||z2||2/3H−2(Ω1)

(
||z1||H1(Ω1) + ||z||H1(Ω1)

)1/3

≤ C||z2||2/3H−2(Ω1)

(
ε|λ|1/2||U ||H + Cε

1

|λ|1/2 ||F ||H
)1/3

. (3.27)

Therefore, applying (3.25) into (3.27), we have

||z2||H−1(Ω1) ≤ C

(
1

|λ| ||U ||H +
C

|λ|2 ||F ||H
)2/3 (

ε|λ|1/2||U ||H + Cε
1

|λ|1/2 ||F ||H
)1/3

≤ εC
1

|λ|1/2 ||U ||H + Cε
1

|λ|3/2 ||F ||H;

this is

||z2||H−1(Ω1) ≤ εC
1

|λ|1/2 ||U ||H + Cε
1

|λ|3/2 ||F ||H. (3.28)

Analogously we find

||y2||H−1(Ω2) ≤ εC
1

|λ|1/2 ||U ||H + Cε
1

|λ|3/2 ||F ||H. (3.29)

Also, applying (3.26) and Lemma 3.2, we have

||z2||H1(Ω1) + ||y2||H1(Ω2) ≤ ε|λ|1/2||U ||H + Cε
1

|λ|1/2 ||F ||H. (3.30)

Finally, using interpolation, the inequalities (3.28) and (3.30) lead to

||z2||L2(Ω1) ≤ C||z2||1/2H−1(Ω1)
||z2||1/2H1(Ω1)

≤ C

(
ε

1

|λ|1/2 ||U ||H + Cε
1

|λ|3/2 ||F ||H
)1/2(

ε|λ|1/2||U ||H + Cε
1

|λ|1/2 ||F ||H
)1/2

≤ Cε||U ||H + Cε
1

|λ| ||F ||H,

or equivalently

|λ|||z2||L2(Ω1) ≤ εC|λ|||U ||H + Cε||F ||H. (3.31)

Similarly, inequalities (3.29)-(3.30) lead to

|λ|||y2||L2(Ω2) ≤ εC|λ|||U ||H + Cε||F ||H. (3.32)

As mentioned previously, z1 and y1 verify inequalities like (3.31) and (3.32), respectively.

Therefore, we deduce that

|λ|2||z||2L2(Ω1)
≤ εC|λ|2||U ||2H + Cε||F ||2H

|λ|2||y||2L2(Ω2)
≤ εC|λ|2||U ||2H + Cε||F ||2H,
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which leads to (3.18). �
Finally, we estimate |λ|||Δu||L2(Ω1) and |λ|||Δv||L2(Ω2) by the following Proposition.

Proposition 3.4. Let U = (u, v, z, y, θ, ω)′ ∈ D(A) be a solution of the system (2.6)-

(2.11) with F = (f1, f2, f3, f4, f5, f6)′ ∈ H. Then, for any ε > 0, there exists Cε > 0

such that

|λ|2||Δu||2L2(Ω1)
+ |λ|2||Δv||2L2(Ω2)

≤ εC|λ|2||U ||2H + Cε||F ||2H.

Proof. Multiplying equation (2.8) by z in L2(Ω1) and (2.9) by y in L2(Ω2), we have

iλρ1||z||2L2(Ω1)
− γ1

∫

Γ0

∂Δu

∂ν
zdΓ + γ1

∫

Γ0

Δu
∂z

∂ν
dΓ− α1

∫

Γ0

∂θ

∂ν
zdΓ

−α1

∫

Ω1

∇θ∇z dxdy + γ1

∫

Ω1

ΔuΔz dxdy

︸ ︷︷ ︸
:=I1

= ρ1

∫

Ω1

f3z dxdy

and

iλρ2||y||2L2(Ω2)
− γ2

∫

Γ0

∂Δv

∂ν
ydΓ− γ2

∫

Γ0

Δv
∂y

∂ν
dΓ + α2

∫

Γ0

∂ω

∂ν
ydΓ

−α2

∫

Ω2

∇ω∇y dxdy + γ2

∫

Ω2

ΔvΔy dxdy

︸ ︷︷ ︸
:=I2

= ρ2

∫

Ω2

f4y dxdy,

respectively. Substituting z given by (2.6) into I1 and y given by (2.7) into I2 we deduce

that

iλρ1||z||2L2(Ω1)
− iλγ1||Δu||2L2(Ω1)

−
∫

Γ0

[
γ1

∂Δu

∂ν
+ α1

∂θ

∂ν

]
zdΓ + γ1

∫

Γ0

Δu
∂z

∂ν
dΓ

−α1

∫

Ω1

∇θ∇z dxdy = ρ1

∫

Ω1

f3z dxdy + γ1

∫

Ω1

ΔuΔf1 dxdy (3.33)

and

iλρ2||y||2L2(Ω2)
− iλγ2||Δv||2L2(Ω1)

+

∫

Γ0

[
γ2

∂Δv

∂ν
+ α2

∂ω

∂ν

]
ydΓ + γ2

∫

Γ0

Δv
∂y

∂ν
dΓ

−α2

∫

Ω2

∇ω∇y dxdy = ρ2

∫

Ω2

f4y dxdy + γ2

∫

Ω2

ΔvΔf2 dxdy. (3.34)

Adding equalities (3.33)-(3.34) and using transmission conditions (1.11)-(1.13), we obtain

−iλ
[
γ1||Δu||2L2(Ω1)

+ γ2||Δv||2L2(Ω1)

]
= −iλ

[
ρ1||z||2L2(Ω1)

+ ρ2||y||2L2(Ω2)

]

+α1

∫

Ω1

∇θ∇z dxdy + α2

∫

Ω2

∇ω∇y dxdy + ρ1

∫

Ω1

f3z dxdy + γ1

∫

Ω1

ΔuΔf1 dxdy

+ρ2

∫

Ω2

f4y dxdy + γ2

∫

Ω2

ΔvΔf2 dxdy.
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Therefore, multiplying the last equality by iλ and using Proposition 3.3 we obtain

|λ|2
[
γ1||Δu||2L2(Ω1)

+ γ2||Δv||2L2(Ω1)

]
≤ εC|λ|2||U ||2H + Cε||F ||2H

+C|λ|||∇θ||L2(Ω1)||∇z||L2(Ω2)

+C|λ|||∇ω||L2(Ω1)||∇y||L2(Ω2). (3.35)

Note that, by Lemmas 2.3 and 3.2, we have

|λ|||∇θ||L2(Ω1)||∇z||L2(Ω2) ≤ εC|λ|2||U ||2H + Cε||F ||2H

|λ|||∇ω||L2(Ω1)||∇y||L2(Ω2) ≤ εC|λ|2||U ||2H + Cε||F ||2H.

Finally inserting these inequalities into (3.35), our conclusion follows. �
We are now in position to establish the main theorem of this paper.

Theorem 3.5. The semigroup generated by the linear operator A given by (2.2) and

associated to system (1.6)-(1.13) is of analytic type.

Proof. By Theorem 2.2 it is enough to show that the operator A verifies conditions

(2.3)-(2.4). It’s not difficult to verify condition (2.3) (see [6]). In order to verify condition

(2.4), let U ∈ D(A) and F ∈ H such that

(iλI −A)U = F in H.

Then, by Propositions 3.1, 3.3 and 3.4, we obtain

|λ|2||U ||2H ≤ εC|λ|2||U ||2H + Cε||F ||2H.

Choosing ε small enough, we deduce that there exists M > 0 such that

|λ|||U ||H ≤ M ||F ||H;

this is

||λ(iλI −A)−1||L(H) ≤ M , ∀|λ| ≥ 1.

Then

lim
|λ|→∞

||λ(iλI −A)−1||L(H) < ∞,

which completes the proof. �
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