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The Internet of Things (IoT) envisions a world-wide, interconnected network of smart physical entities. These
physical entities generate a large amount of data in operation and as the IoT gains momentum in terms of
deployment, the combined scale of those data seems destined to continue to grow. Increasingly, applications for
the IoT involve analytics. Data analytics is the process of deriving knowledge from data, generating value like
actionable insights from them. This article reviews work in the IoT and big data analytics from the perspective
of their utility in creating e�cient, e�ective and innovative applications and services for a wide spectrum
of domains. We review the broad vision for the IoT as it is shaped in various communities, examine the
application of data analytics across IoT domains, provide a categorisation of analytic approaches and propose a
layered taxonomy from IoT data to analytics. This taxonomy provides us with insights on the appropriateness
of analytical techniques, which in turn shapes a survey of enabling technology and infrastructure for IoT
analytics. Finally, we look at some tradeo�s for analytics in the IoT that can shape future research.
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1 INTRODUCTION

The Internet of Things (IoT) has been gaining momentum in both the industry and research
communities due to an explosion in the number of smart mobile devices and sensors and the
potential applications of the data produced from a wide spectrum of domains. In their 2013 report,
McKinsey note a 300% growth in connected IoT devices in the last �ve years and rate the potential
economic impact of the IoT at $2.7 trillion to $6.2 trillion annually by 2025 [126]. These �gures grew
to $4 trillion and $11 trillion in 2015 [125]. A study of Gartner’s 2010 to 2017 hype cycle reports,
which we aggregate in Fig. 1, shows the advent of the IoT, steady growth, expansion and creation
of new technology areas like the IoT platform. Another interesting technology that exceeds the IoT
in momentum on the hype cycle is that of big data, which the IoT serves as a source and sink of.
Big data is data that are too big (volume), too fast (velocity) and too diverse (variety) [122]. In

the context of the IoT, we see an example of volume in the DEBS 2014 Grand Challenge [218],
where data from 40 houses with smart plugs produced 4 billion events in a month [60], given that
a 2011 census showed that there were 26.4 million households in the United Kingdom [142], the
projected data size of 2.64 quadrillion (short scale) per month if every house had a meter, is a good
example of too big data. In the IoT use cases of intelligent transportation systems [143, 195] and
telecommunication, data streams can come in too fast for processing, representing a data velocity
problem. Finally, too diverse is the catchall term used to describe the presence of heterogenous data
sources in the IoT that make it di�cult for existing tools to analyse them. In a 2014 survey of data
scientists, 71% interviewed said that analytics is becoming increasingly di�cult due to the variety
and types of data sources [147]. An example is in the personal health care use case of the IoT [141],
where unstructured textual electronic health records, connected mobile devices and sensors [11]
all add to the variety problem.
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Fig. 1. Aggregated Gartner Hype Cycle of Technologies from 2010 [61, 145, 152–154, 169–171]

Analytics is the science or method of using analysis to examine something complex [144]. When
applied to data, analytics is the process of deriving (the analysis step) knowledge and insights
from data (something complex). The evolution to the concept of analytics we see today can be
traced back to 1962. Tukey �rst de�ned data analysis as procedures for analysing data, techniques
for interpreting the results, data gathering that makes analysis easier, more precise and accurate
and �nally, all the related machinery and statistical methods used [192]. In 1996, Fayyad et al.
published an article explaining Knowledge Discovery in Databases (KDD) as “the overall process
of discovering useful knowledge from data” where data mining serves aa a step in this process -
“the application of speci�c algorithms for extracting patterns from data” [59]. In 2006, Davenport
introduced analytics as quantitative, statistical or predictive models to analyse business problems
like �nancial performance or supply chains and stressed its emergence as a fact-based decision-
making tool in businesses [50]. In 2009, Varian highlighted the ability to take data and “understand
it, process it, extract value from it, visualise it and communicate it”, as a hugely important skill in
the coming decade [197]. In 2013, Davenport introduced the concepts of Analytics 1.0, traditional
analytics, 2.0, the development of big data technology and 3.0 where this big data technology is
integrated agilely with analytics, yielding rapid insights and business impact [51].

To better understand each of these areas, the IoT, Big Data and Analytics, and their intersection,
we look chronologically at the existing reviews and surveys on these topics. This will help to
establish the need for our review from the new dimension of analytics on the IoT especially in big
data scenarios. A summary of the reviews is shown in Table 1.
In 2010, Atzori et al. [16] survey the vision of the IoT, the enabling technologies and potential

applications while identifying three perspectives: Things, Semantics and Network. Sharma et al.
[182] study analytics applications in the industry and propose a framework of how business
analytics can be applied to processes for organisations to gain a sustainable, competitive advantage.
In 2012, Miorandi et al. [133] survey the IoT mainly from the perspective of the key issues and

research challenges and some initiatives going on to address them. Barnaghi et al. [21] look at
developments in the semantic web community, analysing the advantages of semantics but also
highlighting the challenges they face and review work on applying semantics to the IoT. Chen
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Table 1. Chronological Summary of Previous Surveys in the IoT, Big Data and Analytics

Year Reference I B A Description

2010 Atzori et al. [16] ✓ Vision, Apps
Sharma et al. [182] ✓ Business Analytics

2012 Miorandi et al. [133] ✓ Vision, Challenges
Barnaghi et al. [21] ✓ Semantics
Chen et al. [36] ✓ Business Analytics

2013 Sagiroglu et al. [173] ✓ Problems, Techniques
Vermesan et al. [199] ✓ Vision, Apps, Governance

2014 Perera et al. [151] ✓ Context-aware
Zanella et al. [216] ✓ Smart Cities
Xu et al. [208] ✓ Industries
Zhou et al. [217] ✓ ✓ Big Data Analytics Challenges
Kambatla et al. [103] ✓ ✓ Big Data Analytics Trends
Chen et al. [38] ✓ ✓ ✓ Big Data Analytics
Stankovic [188] ✓ Directions

2015 Al-Fuqaha et al. [7] ✓ ✓ Protocols,Challenges,Apps
Granjal et al. [72] ✓ Security Protocols, Challenges

2016 Ray [166] ✓ ✓ IoT Architectures
Razzaque et al. [168] ✓ Middleware for IoT

2017 Akoka et al. [6] ✓ Big Data Research Trends
Lin et al. [116] ✓ Fog Computing Architecture
Farahzadia et al. [58] ✓ ✓ Middleware for Cloud IoT
Sethi et al. [181] ✓ IoT Architectures, Apps

Legend: I=IoT, B=Big Data, A=Analytics

et al. [36] study, using bibliometrics, some of the key research areas in business intelligence and
analytics, some application areas and propose a framework to classify them.
In 2013, Sagiroglu et al. [173] give an overview of the big data problem, methods to handle the

big data, analysis techniques and challenges. Vermesan et al. [199] look at the vision, applications,
governance and challenges of the IoT and some proposed solutions like semantics.
In 2014, Perera et al. [151] present a study of context-aware computing and discuss how it can

be applied to the IoT. Zanella et al. [216] survey the enabling infrastructure and architecture for
the Internet of Things in an urban, connected, smart city scenario while Xu et al. [208] review the
development of IoT technologies for industries. Zhou et al. [217] discuss the challenges brought to
data analytics by big data from the perspective of various applications while Kambatla et al. [103]
discuss trends with a focus on hardware and software platforms, virtualisation and application
scopes for analytics. Another big data survey is done by Chen et al. [38] who look at challenges and
work done from each stage of “data generation, data acquisition, data storage, and data analysis”.
They also look at applications of big data brie�y, where one such area is the IoT. Finally, Stankovic
[188] proposes a set of research directions and considerations for future research on the IoT.
In 2015, Granjal et al. [72] survey existing protocols for protecting communications on the IoT,

comparing against a set of fundamental security requirements, and highlight the open challenges
and strategies for future research work. Al-Fuqaha et al. [7] focus on giving a thorough summary
of protocols for the IoT and how they work together for applications in big data scenarios.
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In 2016, Ray [166] surveys domain-speci�c architectures for the IoT providing a brief summary of
whether cloud platforms in the IoT support data analytics. Razzaque et al. [168] survey middleware
platforms for the IoT against a set of comprehensive service and architectural requirements.

In 2017, Akoka et al. [6] perform a systematic mapping study, a method for structuring a research
�eld, to classify big data academic research and identify trends in the research. Both analytics
and the IoT were identi�ed as popular topics. Reviews by Lin et al. [116] and Farahzadia et al.
[58] focus on speci�c IoT research areas of fog computing architectures and middleware for cloud
computing platforms. Sethi et al. [181] take the approach of surveying IoT architectures, protocols
and applications which help them organise a taxonomy of IoT research.
One can see that the vision of the IoT through these surveys is still very much about intercon-

necting physical objects with protocols, however, the introduction of Big Data and Analytics has
meant that there has been a broadening of focus from communications technologies to applications
with impact, scalability and utilising context within cross-domain use cases like the smart city
while also coalescing around fog computing and edge technologies, middleware platforms and the
cloud. Information rather than data is increasingly envisioned as the new language of the IoT, while
infrastructure and enabling technologies have shifted towards dealing with Big Data use-cases
with high scalability or within distributed systems.

Given the traction of big data analytics in the industry and the IoT’s potential to become a
“dominant source” of big data [39], while also a consumer of insights and optimisation drawn
from analytics, we foresee that researchers will be looking to understand the process of deriving
analytical insights from the IoT. This is further justi�ed by the argument of Akoka et al. [6] that
“data of IoT is useful only when analyzed”. As we have noted in our chronological study of previous
reviews, this particular combination of areas, with a focus on IoT analytics, to the best of our
knowledge, has not been explored in depth. The contribution of this paper is then to:

(1) review IoT analytics applications and research from a variety of domains,
(2) propose a classi�cation and taxonomy for IoT analytics to guide future work and
(3) review the enabling infrastructure for analytics in the context of big data and examine the

tradeo�s to shape research directions.

The methodology used and organisation of the rest of the article is explained next (Section 2).

2 METHODOLOGY AND ORGANISATION OF ARTICLE

Section 3 starts by introducing the IoT vision and application domains, highlighting how this
motivates this paper, which is then followed by the main survey content of the paper. The approach
employed for the survey follows that of an evidence-based systematic review [108]. Firstly, two
research questions (RQ) were framed:

RQ1 What IoT analytics research/applications are being published?
RQ2 What enabling infrastructure is required for big data IoT analytics applications?

Next, we employed an approach of identifying relevant articles through search on the Web
of Science platform that indexed an extensive list of multi-disciplinary journals and conferences
across multiple databases. The search criteria included the keywords ‘big data’ or ‘analytics’,
�ltered by ‘internet of things’. 460 articles were retrieved from 2011 to 2015. This was updated
with 311 articles from 2016 and 2017 when the paper was revised.

The articles were further screened manually following an inclusion criteria that mandated they
1) were from original research, 2) described actual designs, implementations and results, 3) applied
analytics and 4) served IoT use-cases. The highest ranked 6 papers were chosen from each of 5
IoT application domains determined from IoT literature, forming a high-quality pool of 30 papers
according to the systematic review method. This addressed RQ1 and is presented in Section 4. The
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ranking was decided proportionately by the number of citations and a qualitative score from 0 to 5
of the technological complexity and completeness of the application (mitigating recency bias).

This understanding of IoT applications was combined with business analytics literature, which
has successfully drawn insights from data to optimise business processes, to propose a classi�cation
for analytics in Section 5. This classi�cation will help us to better de�ne and target research through
an IoT analytics taxonomy as part of the summarisation step of a systematic review.
Finally, we go on to review the current state-of-the-art in IoT infrastructure in Section 6 that

answers RQ2. We used the survey and applications publications previously retrieved on the IoT
and identi�ed, by manual inspection, groups of work in cloud, middleware, distributed and fog
computing and expanded the search through these keywords to retrieve relevant articles for
IoT scenarios as part of the ‘interpreting the �ndings’ step. Our goal was to consider analytics
infrastructure from the perspective of data generation, collection, integration, storage and compute.
The rest of the paper consists of research challenges (Section 7) and a conclusion (Section 8).

3 THE INTERNET OF THINGS VISION AND APPLICATION DOMAINS

3.1 IoT Definition and Common Vision

Both the European Commission and the UK Government O�ce of Science have a similar vision of
the IoT as “a world in which everyday objects are connected to a network so that data can be shared”,
greatly impacting society [57, 202]. The International Telecommunication Union (ITU) calls the IoT
“a global infrastructure for the information society, enabling advanced services by interconnecting
things based on existing and evolving interoperable information and communication technologies”
[91] and from a broader perspective, “a vision with technological and societal implications”, which
draws its language from a report by the World Economic Forum [206].
Common to each of these visions are four principles that are well-de�ned in IoT literature:

(1) The IoT exists at a global scale [113, 199, 200],
(2) consists of uniquely identi�able Things with sensing or actuating capabilities linked to the

physical world [16, 110, 213],
(3) which are interconnected by existing or future technologies so that data can be shared [7, 133]
(4) and have potential for societal impact through advanced services [181, 188, 208].

The motivation of this paper builds on the third and fourth principles to identify and understand
how analytics can enable advanced services from shared and integrated IoT data. The goal then,
from these �ndings, would be to develop various means to help determine what analytics need to
be applied and what enabling infrastructure is necessary. First though, we need to de�ne ‘advanced
services’. The next section builds on previous literature to de�ne a set of advanced services domains
that help organise the survey of analytics and ensure the paper ful�ls a broad coverage.

3.2 IoT Advanced Services and Application Domains

As the IoT develops, many more potential applications and use cases for the IoT will emerge,
providing advanced services which o�er positive externalities [85]. A range of advanced service
application areas were elicited from each of the surveys describing applications from the 22 in
Table 1 in Section 1. They were then classi�ed under their impact to the themes of environment,
society and economy which are the drivers of sustainable development used for analysing medium
to long term development issues at a large scale [65]. Fig. 3 shows the categorisation of the various
application areas according to their economic, environmental and societal impact.

From these applications areas, a range of application domains including health, transport, living,
environment and industry are used to group them, forming the hierarchical classi�cation shown
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Fig. 3. Application Themes, Domains and Areas Hierachy

in Fig. 3. Certain IoT research topics like Smart Cities [30], Smart Transportation [186], Smart
Buildings and Smart Homes [32] which impact multiple themes are also listed.
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This classi�cation of advanced service application domains elicited from previous literature
serves to advice, organise and ensure the broad coverage of the following survey on IoT analytics
applications and infrastructure in Sections 4, 5 and 6.

4 IOT APPLICATIONS WITH ANALYTICS

An important question to ask following our de�nition of the IoT and its vision is the advantage that
connected ‘things’ o�er over isolated devices. For example, what is the bene�t of deploying a smart
parking system as compared to having isolated sensors in a car park using visual signals of green or
red on the ceiling to indicate whether a parking lot is empty or occupied? Analytics adds value to
integrated data and context from the IoT, producing higher value insights. The analytics-powered
smart parking system has a much wider observation space and also guides the user to the available
parking lot e�ciently, without human intervention, reducing tra�c and pollution [17, 175].
Research publications of IoT applications that make use of analytics from 2011 to 2017 were

surveyed and the top 6 based on the systematic review methodology (Section 2) from each applica-
tion domain introduced in Section 3.2 is presented. This is described as follows and summarised in
Table 2, which includes the analytics techniques employed, data sources used, and the currency of
the data. Currency refers to whether analytics was applied mainly on historical or real-time data.

4.1 Health: Ambient Assisted Living, Neo-natal care, Prognosis, Monitoring

Mukherjee et al. [136] review the use of data analytics in healthcare information systems. Two
analytics applications are Ambient Assisted Living (AAL) [56] and neo-natal care. In AAL, rules are
applied to IoT data collected from smart objects in the homes of elderly or chronic disease patients
while advanced solutions take into consideration contextual information and apply inferencing
using ontologies to give health advisories to users, update care-givers or contact the hospital in
emergencies. By analysing contextual knowledge in connection with physiological data and being
sensitive and adaptive to parameters that vary less frequently, such systems are able to provide
descriptive analytics to care-givers and a form of discovery analytics to detect anomalies to trigger
emergency warnings. Neo-natal care involves the care of newborn babies where data mining is
applied to multiple data streams to �nd relationships and patterns and to diagnose any possible
medical conditions in infants who are not able to give the doctors verbal feedback.
Analysing the content of video data to aid the elderly and visually handicapped for AAL and

navigation respectively is another IoT healthcare application of analytics [117].
In their work, Chen et al. [37] design a smart clothing monitoring system with visualisations

of wearable sensor data through a mobile application for use cases like baby, elderly and �tness
monitoring. This data is also stored on a ‘health cloud’ integrated with a machine learning library
for diagnostic and predictive analytics of medical conditions and users health trends respectively.
Hossain and Muhammad [86] show how electro-cardiogram (ECG) and other healthcare data

collected from wearable IoT devices and sensors can be watermarked to ensure integrity and sent to
the cloud for analysis through feature extraction and classi�cation with a support vector machine
(SVM) in real-time. Abnormal patterns are discovered and healthcare professionals alerted.

Analytics can also be applied in the form of prognosis, the science of predicting the future
medical condition of a patient, to help healthcare professionals make more informed decisions [87].
Health indicators collected from sensors of a patient can be compared with data of similar patients
and combined with domain knowledge and medical research to make conjectures.

Banos et al. [20] developed a digital health and wellness framework that collects data streams of
IoT health data forming a ‘life-log’ for each user and includes descriptive analytics visualisations of
activities. A human activity recogniser combines signal processing, SVM and Gaussian Mixture
Models to distinguish activities and recommends activities using rule-based reasoning.
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Table 2. Summary of Analytics Applications by Domains

Application Data Sources Technique Currency

Health

Neo-natal Care & AAL [136] Sn+Mr Data mining, Rules R
AAL & Navigation [117] Video Video Analytics R

Smart Clothing Monitoring [37] Sn Visualisation + ML H
ECG Health Monitoring [86] Sn Watermark + Classi�er R

Prognosis [87] Sn+Mr Data mining H
Wellness Recommendations [20] Sn Classi�er + Rules H

Transport

Tra�c Control [124] Video Video Analytics R
Pedestrian & Car Detection [47] Sn+Video Video Analytics + CV R

Behaviour & Tra�c Prediction [99] Sn Visualisation + Model H
Travel Routing [115] Sn CRF, A*Search R
Smart Parking [82] Sn Model R

Parking Anomaly Detection [155] Sn Self-Organising Maps H

Living

Cultural Behaviour [41] Sn+Sm Visualisation + Model H
Police Situational Awareness [167] Sn Visualisation H

Public Safety Monitoring [66] Video Video Analytics R
Smart Building Heating [157] Sn Anomaly Detection R
Memory Augmentation [75] IoT Data Data mining H

Wearable Lifestyle Monitor [138] Sn Anomaly Detection R

Environment

Disaster Detection & Warning [178] Sn+Sm Anomaly Detection R
Urban Disaster Storytelling [210] Sm Data mining R

Wind Forecasting [135] Sn ANN H
Energy Usage Recommendations [9] Sn ML + Rules H

Energy Policy Planning [4] Sn Classi�er + Models H
Smart Energy System [64] Sn Data mining H

Industry

On Shelf Availability [196] Video+Sn Video Analytics R
SCM Environment Control [140] Sn+Tra�c CEP R

SCM 4PL [172] Sn Ontologies R
Floricultural SCM [198] Sn+Tra�c CEP R
Smart Farming [104] Sn CEP + Ontologies R

Chemical Process Monitoring [42] Sn ML (ANN, Gaussian) R

Legend: AAL=Ambient Assisted Living, ANN=Arti�cial Neural Network, CEP=Complex Event Processing,
CRF=Conditional Random Fields, CV=Computer Vision, H=Historical, MDP=Markov Decision Process, ML=Machine

Learning, Mr =Medical Records, R=Real-time, SCM=Supply Chain Management, Sn=Sensors, Sm=Social Media
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4.2 Transport: Tra�ic Control and Routing, Pedestrian Detection, Smart Parking

Applying analytics on video content has a variety of applications in di�erent �elds. In their review
paper, Liu et al. [117] looked at the latest technologies and applications of video analytics and
intelligent video systems. Video analytics has been successfully applied in tra�c control systems to
detect tra�c volume for planning, highlighting incidents and enhancing safety by enforcing tra�c
rules [124]. Another set of applications is for intelligent vehicles to assist the driver. Danner et al.
[47] introduce their Precedent-Aware Classi�cation (PAC) technique which combines information
from previously traveled routes and minimal classi�cation features from sensors to computer vision
analytics for pedestrian and car detection on constrained IoT platforms.

Jara et al. [99] derive insights about human dynamics by analysing the correlation between tra�c,
temperature and time using IoT sensor data from the SmartSantander smart city testbed [176].
They apply visual analytics to understand and discover insights on human behaviour and use a
poisson model to interpolate and predict tra�c density. Liebig et al. [115] go further by prescribing
good routes in travel planning using analytical techniques (a spatiotemporal random �eld based
on conditional random �elds [149] for tra�c �ow prediction and a gaussian process model to �ll
in missing values in tra�c data) to predict the future tra�c �ow and to estimate tra�c �ow in
areas with limited sensor coverage. These were then used to provide the cost function for the A*
search algorithm [80] that uses the combination of a search heuristic and cost function to prescribe
optimal routes (provided the heuristic is admissible and predicted costs are accurate).
He et al. [82] develop a smart parking service that combines geographic location information,

parking availability, tra�c and reservation information. The parking process is modelled as a
birth-death stochastic process which allows prediction and optimisation of parking availability.
Piovesan et al. [155] describe the application of their unsupervised form of self-organising maps
(SOM) clustering to the classi�cation of parking spaces according to spatio-temporal patterns. This
type of analytics automatically discovers outliers for sensor maintenance and usage anomalies.

4.3 Living: Cultural Behaviour, Public Safety, Smart Buildings, Memory

Augmentation, Lifestyle Monitoring

Chianese et al. [41] describe a system for cultural behaviour analysis. They combine models and
proximity evaluation algorithms to classify movement in museums from sensors with semantic
enrichment from knowledge bases of cultural exhibits and social media of cultural tourism to
analyse cultural behaviour using visualisations within an associative model.

Visualisation that taps the human cognitive ability to recognise patterns has also been employed
by Razip et al. [167] in helping law enforcement o�cers increase their situational awareness.
O�cers are equipped with mobile devices that tap into crime data and spatio-temporal sensor data
to show interactive alerts of hotspots, risk pro�les and on demand chemical plume models.
Additionally, there are public safety and military applications that apply video analytics in

detecting movement, intruders or targets. The public safety use case is elaborated on by Gimenez
et al. [66] where they discuss how given the big data problem of having huge amounts of video
footage, smart video analytics systems can proactively monitor, automatically recognise and bring
to notice situations, �ag out suspicious people, trigger alarms and lock down facilities through the
recognition of patterns and directional motion, recognising faces and spotting potential problems
by tracking, with multiple cameras, how people move in crowded scenes.
Ploennigs et al. [157] show how analytics can be applied to energy monitoring used in heating

for smart buildings. The system is able to diagnose anomalies in the building temperature, for
example, break downs of the cooling system, high occupancy of rooms, or open windows causing
air exchange with the external surroundings. Using a semantics based approach, the Building
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Automation and Control Systems (BACS) [15] could, from the sensor de�nitions, automatically
derive diagnosis rules and behaviour of a speci�c building, making it sensitive to new anomalies.
Guo et al. [75] look at discovering various insights from mining the digital traces left by IoT

data from cameras, wearables, mobile phones and smart appliances. Resulting applications are life
logging systems to augment human memory with recorded data, real world search for objects and
interactions with people and a system to improve urban mobility systems by studying large-scale
human mobility patterns.
Mukherjee et al. [138] present a fast algorithm for detecting anomalies and also for classifying

high dimensional data. These were tested with accelerometer data from a wearable personal digital
assistant to recognise human activity in real time but can be generalised to other types of high
dimensional data. The importance of such algorithms in detecting anomalies and discovering
patterns to classify activity from sensor data are analytical tools that form a basis for smart and
intelligent devices and in this example, for activity tracking and monitoring.

4.4 Environment: Disaster Detection & Response, Wind Forecasting, Smart Energy

Schnizler et al. [178] describe a disaster detection system that works on heterogenous streams
of sensor data. Their method includes Intelligent Sensor Agents (ISAs) that produce anomalies,
low level events with location and time information e.g. an abnormal change in mobile phone
connections at a ISA in a telecom cell or base station, a sudden decrease in tra�c, increase in twitter
messages, change in water level or change in the volume of moving objects at a certain location.
These anomaly events then enter Round Table (RT) components that fuse heterogenous sources
together by mapping them to a common incident ontology through feedback loops that might
involve crowdsourcing, human-in-the-loop or adjusting parameters of other ISAs to �nd matches.
The now homogenous incident stream, can then be processed by a Complex Event Processing
(CEP) [120] engine to complete the situation reconstruction by doing aggregation and clustering
with higher-level semantic data, simulation and prediction of outcomes and damage. The resultant
incident stream can provide early warning e�ecting early disaster response.

Xu et al. [210] also present a disaster detection system targeted instead at urban disasters. They
utilise social media events from multi-modal microblog posts (videos, images and text) to mine
semantic, spatiotemporal and visual information producing a story. This real-time story of urban
emergencies unfolding serves to increase the situational awareness of emergency response teams.

Another environmental application is wind forecasting [135]. Data is collected from wind speed
sensors in wind turbines and an Arti�cial Neural Network is used on this data and historical data
to perform the forecasting. This is useful for energy provision and planning.
Ghosh et al. [64] have implemented a localised smart energy system that uses smart plugs and

data analysis to actively monitor energy policy and by performing pattern recognition analysis
on accumulated data, spot additional opportunities to save energy. This resulted in saving on
electricity bills especially by reducing the amount of power wasted in non-o�ce hours from
appliances, desktops and printers.
Similar work by Alonso et al. [9] works on using machine learning and an expert system (rule-

based) to provide personalised recommendations, based on energy usage data collected in Smart
Homes, that help a user to more e�ciently utilise energy. They go one step further to provide
recommendations through predicting cheaper options by detecting similar patterns in big data
collected from other homes. Ahmed [4] applies similar analysis on combined consumption data
for use in organisations to help in energy policy planning. He develops a model to classify the
energy e�ciency of buildings and the seasonal shifts in this classi�cation and using more detailed
appliance speci�c data, forecasts future energy usage.
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4.5 Industry: Supply Chain Management, Smart Farming, Chemical Process

Vargheese et al. [196] propose a system that improves shoppers’ experience by enhancing the On
the Shelf Availability (OSA) of products. Furthermore, the system also looks to forecast demand and
provide insights on buyers’ behaviour. A multi-tiered approach is employed, where sensors like
video cameras, process video streams locally and analyse the products on the shelf, this data is then
veri�ed by other sensors like light, infra-red and RFID sensors and the metadata produced is sent
to the the cloud to be further processed. In the cloud, this real time data is combined with models
from learning systems, data from enterprise Point of Sale (POS) systems and inventory systems
to recommend action plans to maintain the OSA of products. The sta� of the store are informed
and action is taken to restock products. Weather data, local events and promotion details are then
analysed with the current OSA to provide demand forecasting and to model buyers behaviour
which is fed back into the system.

Nechifor et al. [140] describe the use of real time data in analytics in a cold chain monitoring
[2] process. Trucks are used for transporting perishable goods and drugs that require particular
thermal and humidity conditions, sensors measure the position and conditions in the truck and of
each package, while actuators - air conditioning and ventilation can be controlled automatically.
On a larger scale, predictions can be made on delays in routes and when necessary to satisfy the
product condition needs, longer but faster routes (less congestion) might be selected.
Similarly, Verdouw et al. [198] and Robak et al. [172] examine supply chains - the integrated,

physical �ow from raw material to end products with a shared objective, and formulate a frame-
work based on their virtualisation in the IoT. At its highest level, a virtual supply chain supports
intelligent analysis and reporting. This is applied to �oricultural and a Fourth Party Logistics
(4PL) integrator respectively, where business intelligence, data mining and predictive analytics can
provide early warning in case of disruptions or unexpected deviations and advanced forecasting
about consequences of the detected changes when the product reaches destination.
In the above examples on product and supply chain management, we see a common theme

of predictive analytics being employed to business processes. This predictive analytics is often
powered by learning from data to discover models or through data mining for patterns in data.
The e�ectiveness of these algorithms bene�ts from the big data of the IoT in providing a large
observation space for discovering patterns and trends. Real time data from sensors then provide
the information required to immediately control actuators to rectify problems like products being
out of stock on the shelf or conditions in trucks being unsuitable for perishable food.
Kamilaris et al. [104] describe the use of a Complex Event Processing (CEP) engine to discover

signi�cant events on semantically-enriched data streams from sensors within two smart farming
scenarios. One scenario included detecting the fertility of cows from temperature readings and
other information on a dairy farm to suggest the best insemination timings. The other was to
adaptively control the soil conditions for crop cultivation.

The chemical process industry deploys inferential industrial IoT sensors to process monitoring
chains [42]. Some techniques applied by sensors include linear regression, arti�cial neural networks
(ANN) and Gaussian process regression which predict variables using available process data. These
predictions enable quality monitoring and advance control systems in plants to automatically react
and prescribe process modi�cations “to prevent o�-grade products”.

5 TYPES OF ANALYTICS AND THEIR IMPORTANCE

Following the study of the current work in analytics in the IoT, we explore a classi�cation of
analytics that is applicable to these domains. We derive a categorisation of analytical capabilities
from business analytics literature, which the term analytics comes from. Bertolucci et al. [26]
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Table 3. Summary of Application References by their Domains and Analytical Capabilities

Domain
Capability Descriptive Diagnostic Discovery Predictive Prescriptive

Health [37, 136] [37, 117] [20, 86, 136] [87] [37]

Transport [124] [47, 99, 155] [82] [115]

Living [41, 167] [157] [41, 66, 75, 138]

Environment [210] [64, 178] [4, 9, 135]

Industry [172, 198] [42, 140, 198] [42, 104, 196]

propose descriptive, predictive and prescriptive categories while Gartner [105] [33] proposes
the extra category of diagnostic analytics. Finally, Corcoran et al. [45] introduce the additional
category of discovery analytics. We build upon these to form a comprehensive classi�cation of
analytic capabilities consisting of �ve categories: descriptive, diagnostic, discovery, predictive and
prescriptive analytics. Each category is described in detail in Section 5.1 and we also summarise how
each IoT application surveyed in the previous section is categorised in Table 3. Each application
domain has applications which support multiple analytical capabilities. We also note that all the
categories of capabilities are well-represented in the literature survey, while mature domains like
the industrial IoT focus on high value analytics.

Description

Diagnosis

Discovery

Prediction

Prescription

Information

Knowledge

Wisdom

Knowledge Hierachy

Data

Hindsight

Foresight

Insight

Value

Fig. 4. Analytics and the Knowledge and Value Hierachies

Fig. 4 looks at how each analytical capability �ts within the Knowledge Hierarchy [24] which is
a common framework used in the Knowledge Management domain. This categorisation of analytic
capabilities enables us to establish what the aim of analysis is and allows us to relate to the vision
of IoT deployment as often expressed in research roadmaps. The value of each capability, is also
highlighted in the �gure. The knowledge hierarchy starts with data at the base, examples of which
are facts, �gures and observations (e.g. the raw data produced by IoT ’things’). Information is
interpreted data with context, for example, temperature as represented by descriptive analytics: an
average over a month or a categorical description of the day being sunny and warm. Knowledge is
information within a context with added understanding and meaning, perhaps possible reasons for
the high average temperature this month. Finally, wisdom is knowledge with insight, for example,
discovering a particular trend in temperature and projecting it across future months while providing
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cost saving energy management solutions for heating a smart home based on these predictions.
Each component of the knowledge hierarchy builds on the previous tier and we can see something
similar with analytical capabilities. To add a practical view from business management literature to
our discussion, a review of organisations adopting analytics [112] categorised them as Aspirational,
Experienced and Transformed. Aspirational organisations were seen to use analytics in hindsight
as a justi�cation for actions, utilising the data, information and knowledge tiers in the process.
Experienced organisations utilised insights to guide decisions and transformed organisations were
characterised by their ability to use analytics to prescribe their actions, e�ectively applying foresight
in their decision making process.

5.1 Five Categories of Analytics Capabilities

5.1.1 Descriptive Analytics. It helps us to answer the question, “what happened?”. It can take
the form of describing, summarising or presenting raw IoT data that has been gathered. Data are
decoded, interpreted in context, fused and then presented so that it can be understood and might
take the form of a chart, a report, statistics or some aggregation of information.

5.1.2 Diagnostic Analytics. It is the process of understanding why something has happened.
This goes one step deeper then descriptive analytics in that we try to �nd out the root cause and
explanations for the IoT data. Both descriptive and diagnostic analytics give us hindsight on what
and why things have happened.

5.1.3 Discovery in Analytics. Through the application of inference, reasoning or detecting non
trivial information from raw IoT data, we have the capability of Discovery in Analytics. Given the
acute problem of volume that big data presents, Discovery in Analytics is also very valuable in
narrowing down the search space of analytics applications. Discovery in Analytics on data tries to
answer the question of what happened that we don’t know about and the outcome is insight into
what happened. What di�erentiates this from the previous types of analytics is using the data to
detect something new, novel or di�erent (e.g. trends, exceptions or clusters) rather than describing
or explaining it.

5.1.4 Predictive Analytics. For the �nal two categories of analytics, we move from hindsight and
insight to foresight. Predictive Analytics tries to answer the question: “what is likely to happen?”.
It uses past data and knowledge to predict future outcomes [76] and provides methods to assess
the quality of these predictions [184].

5.1.5 Prescriptive Analytics. It looks at the question of what should I do about what has happened
or is likely to happen. It enables decision-makers to not only look into the future about opportunities
(and issues) that are potentially out there, but it also presents the best course of action to act on
foresight in a timely manner [22] with the consideration of uncertainty. This form of analytical
capability is closely coupled with optimisation, answering ‘what if’ questions so as to evaluate and
present the best solution.

5.2 Specific Types of Analytics

Having looked at analytical capabilities which help to de�ne the aims of analytics, we look at speci�c
analytics that can guide stakeholders involved in the deployment of analytics on IoT applications.
A summary of the speci�c types of analytics and their corresponding analytical capabilities can be
found in Fig. 5.

5.2.1 Visual Analytics. Visual analytics combines interactive visualisations with data analytics
techniques “for an e�ective understanding, reasoning and decision making on the basis of very
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Fig. 5. Classification of Types of Analytics

large and complex data sets” [106]. Hence, visual analytics can contribute to not only describing and
diagnosing what happened but also help users to discover new insights. In the work by Zhang et.
al [? ], we see visual analytics being applied to health care data and describing, through answering
of questions like “What is the distribution of pregnancy age?”, diagnosing, through hypothesising
two disease patterns due to “diarrhoea” and “fever” not being correlated and discovery, through
detecting the delayed outbreak of two diseases.

5.2.2 Data Mining. Data Mining is part of the Knowledge Discovery from Data (KDD) process
in which interesting patterns and knowledge are discovered from large amounts of data [79]. The
IoT is a source for a large amount of data in which the techniques of data mining can be applied.
These include:

Multi-dimensional data summary is often associated with Online analytical processing (OLAP)
operations that make use of background knowledge of the domain to allow presentation of data at
di�erent levels of abstraction. For example, you could drill-down and roll-up data to present it at
di�erent degrees of summarisation.

Association & correlation is the process of �nding the relationship between two variables which
vary according to some pattern. This could allow us to �nd out whether buying product A, led to
buying product B with a degree of con�dence and support.

Classi�cation is the process of �nding some model or function that has the ability to distinguish
between data classes or concepts.

Clustering is the process of grouping data objects into classes without labels. The clustered data
objects have maximum similarity to in-class objects and minimum similarity between objects from
other classes.
Pattern discovery is the process of detecting and extracting interesting patterns from data, an

example of which are frequent item sets, a set of items that often appear together in a transactional
data set. Anomaly detection refers to the problem of “�nding patterns in data that do not conform
to expected behaviour” [34].

5.2.3 Content and Text Analytics. Content Analytics is the broad area of which analytical tech-
niques are applied to digital content. Text analytics is the derivation of high quality information
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from unstructured text, for example, extracting named entities and relations, analyse sentiment,
extract events and time series information, etc.

5.2.4 Video Analytics. Video Analytics (VA) is about the use of specialised software and hardware
“to analyse captured video and automatically identify speci�c objects, events, behaviour or attitudes
in video footage in real-time” [66].

5.2.5 Trend Analytics. Trend analytics is concerned with looking at data and events across time,
understanding it and making predictions to future trends and providing early warning systems.
Trend analytics is also closely related to the analysis of time-series information [35], where looking
at a time-series we try to �nd a ‘long-term change in the mean level’.

5.2.6 Business Analytics. Business Analytics is the practice of using an organisations data to
gain insights through analytical techniques that can better inform business decisions and automate
and optimise business processes.

5.3 A Layered Taxonomy of Data, Analytics and Applications for the IoT

Fig. 6 shows a layered taxonomy of analytics for the IoT that summarises our survey with respect to
analytics capabilities and speci�c analytics. There are three layers in the taxonomy: data, analytics
and applications. Within each layer are various concepts, classes and techniques which are well-
de�ned in background literature and gathered from reviews in each area.

In the analytics layer, visual analytics processes are de�ned by Keim et al. [107] while techniques
for each data type are summarised in surveys [5, 134, 189]. Data mining [67, 114, 183], text analytics
[3] and video analytics [117] each are well-described in the referenced authoritative texts. Time-
series forecasting [123], analysis and control [29] have also been reviewed in detail. Literature also
covers business analytics processes [111], prescriptive analytics [22] and techniques [193].
In the application layer, themes and domains are from Section 3.2 while the IoT applications

from each domain surveyed in Section 4 are shown connected to their various analytics capabilities.
Analytics techniques can then be referenced under each capability.

In the data layer, big data as de�ned in Section 1 is summarised along with terms used throughout
the survey including currency, types of data and their sources. Two other terms for big data, veracity
and variability are introduced for completeness. Veracity is concerned with the noise within data
and how accurate the data is for whatever purpose it is to serve. Variability is concerned with
data whose meaning changes due to di�erences in interpretation of data within a speci�c context.
Finally, processes, distribution levels and distributed technologies for storage and compute are
covered in Section 6 that follows this.

6 ENABLING INFRASTRUCTURE FOR IOT ANALYTICS

In the previous section we looked at classifying analytics and building a taxonomy for understanding
analytics. In this section, we will review work that enables analytics to be applied on IoT data.

Enabling infrastructure for analytics on the IoT are components, techniques and technology that
contribute to the process whereby data is utilised in analytics applications. Fig. 7 shows the process
of how data goes through the steps of generation and collection, aggregation and integration and
�nally is applied in analytics applications [38]. Storage and compute are abstract processes involved
with each step of this data �ow. In practice, data could be pipelined from one step to another, hence,
need not necessarily be stored, physically, in a separate location. Compute could also be done on
the device or in transit and need not imply a separate compute component.
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Fig. 6. Layered Taxonomy of Analytics From Data to Application

The following sections elaborate on each step of the data �ow in IoT analytics from data gen-
eration and collection to aggregation and integration with storage and compute alongside. Fig. 8
summarises the technologies covered.
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Fig. 8. IoT Enabling Infrastructure for Analytics: Generation, Collection, Aggregation, Storage, Compute
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6.1 Data Generation: Sensors and Tags, Hardware and OS, Power

A major source of data in the IoT is generated from sensors including many types of environmental,
spatial sensors and health sensors [165]. Tags also generate data and can be passive like QR code
and barcode patterns which require a device to scan or be active like iBeacon [13] and UriBeacon
[69] technologies which project signals to mobile applications. RFID tags can be either passive or
active, the active type requiring a power source to broadcast signals, and can be UHF (Ultra High
Frequency), HF (High Frequency), or LF (Low Frequency). A list of hardware platforms for sensors
or base stations receiving the generated data and a list of lightweight operating systems for the IoT
are discussed in the surveys by Ray [166] and Razzaque et al. [168] respectively.

Remotely-deployed IoT sensors also require power especially for the energy consuming process
of wirelessly transmitting data. Wolf [205] describes a number of energy scavenging systems that
harvest energy from the environment, while wireless charging technologies like ubeam [194] and
motion charging like Ampy [12] are alternatives. Data is then transmitted and collected as follows.

6.2 Data Collection: Discovery, Management, Transmission, Context and Fog

A signi�cant amount of work on the IoT has been to develop middleware, the software layer that
connects various components like the device, storage, compute and network together. Middleware
in the IoT has functional requirements [19, 168] including: 1) resource discovery, 2) resource
management, 3) data management, 4) event management and 5) code management. Of these
requirements, resource discovery and management �t within the collection step while data and
event management �t within the aggregation and storage processes while code management �ts
within the compute process.

There are a number of technologies for the IoT that support the discovery of devices, Multicast
DNS (mDNS) [94], DNS Service Discovery (DNS-SD) [40], Micro Plug and Play (µPnP) [211],
Simple Service Discovery Protocol (SSDP) [92] and Multicast CoAP (MC-CoAP) [95]. One means
of managing the discovered resources is through Thing Directories that serve as catalogues of
resources. HyperCat [8], CoRE Resource Directory [96], Sensor Instance Registry (SIR) [101] and
digrectory [98] are various implementations supporting resource lookup and search.

Another important process in data collection is the transmission of generated data. We divide the
transmission technologies into those for communication within sensor networks like Zigbee and
those for communication within gateway networks and the wider IoT like LTE and GSM. These
technologies are discussed in the survey by Ray [165] on IoT architecures. Network and transport
layer protocols like IPv4/v6 and TCP/UDP are well-de�ned in literature. IPSec [93] is a security
protocol suite for the network layer that authenticates and encrypts packet data while 1888.3 [90]
is a security standard for the IEEE Ubiquitous Green Community Control Network.
Context-based computing is a research area within the IoT that involves the detection, sharing

and grouping of devices according to context in the IoT. Context from the conceptual perspective,
as described by Perera et al. [151], refers to the location, time, activity and identity related to
data collected. Grim et al. [73] design a bloom �lter [28] inspired data structure that summarises
this context and identi�es set membership in a probabilistic way so resources can be discovered
and grouped. Perera et al. [150] implement resource search and management on a context-based
framework. A Comparative Priority-basedWeighted Index is generated for each resource, combining
priorities like accuracy, reliability, energy, cost and availability which optimises the selection process
for the aggregation of data sources.
Chiang et al. [43] de�ne fog computing as an “end-to-end horizontal architecture” for the IoT

that distributes the compute and storage, control and communication planes nearer to users “along
the cloud-to-thing continuum”. Aazam and Huh [1] describe speci�cally how this vision can be
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realised in terms of additional security, storage, processing and monitoring sub-layers between the
physical layer and the transport layer of an IoT architecture. Hence, Fog Computing extends to the
data aggregation layer and can even extend to the analytics process.

6.3 Data Aggregation and Integration: Interoperability

Besides the functional requirements of middleware de�ned in the previous section, the survey
by Razzaque et al. [168] also describes architectural requirements, design approaches and non-
functional requirements of middleware, as shown in Fig. 8, along with a detailed review of various
software and publications. Interoperability is one of the architectural requirements and is essential
for the data aggregation and integration process. McKinsey [125] estimate that such interoperability
will unlock an additional 40 to 60 percent of the total projected future IoT market value.

Berrios et al. [25] describe how various cross-industry consortia concerned with the IoT are
converging on semantic interoperability within the application layer which they split into interop-
erability of business semantics, device semantics, unit of measure semantics and API and service
standards. All the consortia involved are working on device semantics for interoperability while at
least one consortium has de�ned standards for each of the home & buildings, retail, healthcare, trans-
port & logistics and energy industries. The series of articles, co-authored by representatives from
each consortia, also recommended a top-level ontology, an ontology representing the intersection
of business and device semantics and a common data format.

Milenkovic [132] also argue for a common representation for metadata, that provides context to
the data collected. Linked Data, which is de�ned as “a set of best practices for publishing data on the
Web so that distributed structured data can be interconnected and made more useful by semantic
queries” [27], is seen as one means. Barnaghi et al. [21] argue that Linked Data and semantic
technologies can serve to facilitate interoperability, data abstraction, access and integration with
other cyber, social or physical world data. RDFS, which inspired the popular schema.org vocabulary
that allows persons, events, places and products to be de�ned on the web and the Web Ontology
Language (OWL) for complex modelling and non-trivial automated reasoning in ontologies are
related technologies that allow metadata to be represented. There are also proposals for other data
models like YANG [179], JSON Schema [62] and JSON Content Rules [46] to be adopted.

6.4 Architectures for Storage and Compute

At a high level, architectures help to de�ne how to build infrastructures and how to handle big IoT
data in the storage and compute components for analytics. One such architecture is the lambda
architecture by Marz et al. [128] which consists of a speed, a serving and a batch layer. The idea
is that for huge datasets it is necessary to precompute batch views in the batch layer and update
them in the serving layer, at the same time a speed layer compensates for the high latency of the
batch computations by looking at recent data and doing fast incremental updates.
This big data architecture is useful in providing us with a general idea of how analytics can

scale to the volume of IoT data. Ye et al. [212] implement a service for big data analytics (using
R and Hadoop for e�cient parallel processing [48]) in the batch layer to do data mining tasks
like clustering. Products like Onix [185], which do analytics on streams, work on implementing
solutions for the speed layer while industry players like MapR [127] have also proposed the Lambda
Architecture as part of their data processing architecture. The Lambda Architecture has also been
used in an IoT context by Villari et al. [201], who apply it to a Smart Environment use case.

Baldominos et al. [18] also propose a design that is similar in structure to the Lambda architecture
and is another example of how an analytics system, for doing machine learning and recommen-
dations in this case, can be implemented with this separation of batch (batch machine learning
module/storage), speed (stream machine learning module) and serving (dashboard) layers.
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The Hadoop and Spark ecosystems are two other big data processing architectures. Hadoop
consists of twomain parts, a Distributed File System (DFS) like HDFS and a distributed programming
model like MapReduce. The Hadoop ecosystem1 consists of various technologies built on top and
around these two parts includingwarehousing like Hive, NoSQL databases like HBase, data ingestion
pipes like Flume and machine learning libraries like Mahout and a host of other technologies2.
The Spark ecosystem is built on Spark Core and consists of components like SparkSQL, Spark

Streaming, MLLIB and GraphX amongst others. Spark is described in more detail in Section 6.6.
The Lambda architecture, Hadoop and Spark ecosystems, however, are suited for big data systems

in which compute and storage are in centralised or cloud-based clusters rather than decentralised
fog and edge based computing. The next two sections describe storage and compute technologies
which can be used for the IoT and big data analytics including fog computing technologies. Table 4
summarises the distributed storage and compute technologies and their references.

6.5 Storage Technologies

Storage �le systems need to cope with the huge amount of data from the IoT and work on ‘exascale’
�lesystems by Raicu et al. [161] look to address issues of scalability to millions of nodes and billions
of concurrent input/output requests. The idea is to combine advances in non-volatile storage with
those of distributed �le systems. These include themanagement of distributedmetadata, partitioning
and knowledge of data access patterns to maximise data locality, resilience and high availability,
data indexing and cooperative caching. An implementation exists in the form of FusionFS [162]
which implements a zero-hop distributed hash-table (ZHT) for metadata management.

Similar decentralised distributed �le systems (DFS) like Ceph [204] and GlusterFS also manage
metadata in a distributed way while other DFS like HDFS, which is part of the Hadoop ecosystem
from Section 6.4, iRODS and Lustre [121] are centralised with a single or replicated metadata
servers. This group of DFS are classi�ed as locally managed DFS and are compared in a survey
by Depardon et al. [53]. Another group of DFS are remote access DFS like cloud storage from
Google Cloud Storage [68], S3 [10] and Azure Blob [131]. Another interesting dimension to remote
access DFS is the emerging Container Storage Interface (CSI) speci�cation [83] for provisioning
and managing storage, including cloud DFS like Quobyte [160], from container applications.
Bent et al. [23] have designed a distributed, federated database architecture, Gaian Databases,

that uses biologically-inspired, self-organising principles to organise a network of heterogenous
relational or �at �le databases and enable queries across them through query �ooding. The work has
become part of IBM’s Smarter Planet [89] project - an IoT-related vision of the planet that together
with Edgware Fabric [88] form a middleware layer for analytics and intelligence. The advantage of
Gaian Databases is that through minimising network diameter and maximising connections to �t
nodes, analytical queries on distributed data can be performed quickly and reliably.

LinkedDatawas seen as an approach to the aggregation step previously andwork to access Linked
Data across distributed sources has led to the area of federated querying. FedX [180], SPLENDID
[70], LHD [203] and DARQ [159] are all engines that optimise federated query performance. They
achieve improved performance by optimising the join order in queries. FedX takes a heuristic
approach while the other engines take statistical approaches. Saleem et al. [174] and Hartig [81]
review and evaluate the systems. More speci�c performance bottlenecks like data distribution [163]
and other challenges [164] for federated engines have still to be addressed though.
A message broker is an intermediary that routes a message from publishers to subscribers. A

message broker can serve as a storage and interoperability technology in distributed systems as it can

1Available from http://thebigdatablog.weebly.com/blog/the-hadoop-ecosystem-overview
2Available from https://hadoopecosystemtable.github.io/
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Table 4. Summary of Distributed Storage and Compute Technologies

Technology Product Remark

Locally managed DFS GFS/HDFS [63] Centralised Block Storage
Lustre [121] Centralised Object Storage
Ceph [204] Decentralised Object Storage
FusionFS [162] ZHT, Data Access Paritions

Remote access DFS Cloud Storage [10, 68] Google Cloud Storage, S3, Azure Blob
Container Storage [83] DFS For Containers [160]

Message Brokers Apache Kafka [100] Log Structured Broker
MQTT [118] Lightweight Pub/Sub Protocol
ZeroMQ [84] Lightweight Messaging Library
Edgware Fabric [88] IoT Service Bus (Discovery+Routing)

Gaian Databases GaianDb [23] Self-organising Network
Autonomous/ML DB Pelaton [148] Classify, Forecast, Optimise Workload

Panoply [146] ML Self-Optimisation
Federated SPARQL FedX [180] Optimise Join Order (Heuristic)

SPLENDID [70] Optimise Join Order (Statistical)
LHD [203], DARQ [159] Optimise Join Order (Statistical)

In-memory H-Store [102] Partitions, Stored Procedures
MemSQL [129] Real-time Data Warehouse
Spark [215] In-memory DAG execution

MPP/Parallel Databases Greenplum [156] Master, Segment PostgresSQL
Teradata Database [190] Shared Nothing OLTP/OLAP
Volcano [71] Exchange Meta-operator

Data Parallel Hadoop/MapReduce [52] Big Data Programming Model
Dryad [97] Data Parallel App Runtime

Graph Parallel GraphX [207] Resilient Distributed Graph Transform
GraphLab [119] Asynchronous, Dynamic Computation

Cloud Compute Virtualisation EC2 [10], Compute Engine [68]
Serverless Lambda [10], Functions [68, 131]
Container [31] Portability, Overhead, Orchestration

Edge/Fog Compute ANGELS [137] Partition Data, Schedule Fog Jobs
Eywa [187] Distributed Stream Processing
Cloudlets [177] Proximity, Virtualisation
Cisco IOx [44] Fog Director, App Host/Manage

Legend: DB=Database, DFS=Distributed File System, ML=Machine Learning, MPP=Massively Parallel Processing,
OLAP/OLTP=Online Analytical/Transaction Processing, ZHT=Zero-hop Distributed Hash Table

provide a formal message protocol for publishing and subscribing, reliable storage and guaranteed
message delivery. Log-structured storage has been utilised for high throughput distributed message
brokers like Kafka [100] or the scalable data middleware for smart grids described by Yin et al.
[214]. MQTT [118], a lightweight publish-subscribe protocol for the IoT, ZeroMQ [84], a messaging
protocol library and Edgware Fabric [88], an IoT service bus, are other examples of technologies
used in distributed message broker systems.

Autonomous or self-driving database management systems like Pelaton [148] integrate arti�cial
intelligence components to automatically classify and forecast workloads so that the database can
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optimise physical storage, data location and partitioning in distributed or cloud-based environments
and runtime resources, con�guration and query cost models. Panoply [146] is a similar machine
learning optimised autonomous data warehouse, which additionally allows the “self-preparation”
(automated transformation and integration) of ingested semi-structured data.

Massive Parallel Processing (MPP) databases are build on top of shared-nothing MPP grids where
data is sharded between nodes and nodes processes computations, queries to retrieve and process
data, in parallel. Greenplum [156], which uses a master-segment approach with each segment a
PostgresSQL database, and Teradata [190] are examples of MPP databases. Volcano [71] was an
early system that presented research on parallelising query operators through the exchange of
meta-operators.

6.6 Compute Technologies and IoT Analytics Applications

The elasticity of resources on the cloud is often considered an advantage for deploying horizontally-
scalable parallel processing paradigms that work with big IoT data. Compute on the cloud can be
divided into virtualisation, serverless computing and container technologies and orchestration.
Major vendors like the Google Cloud Platform [68], Amazon Web Services [10] and Microsoft
Azure [131] each have options for virtualisation, Compute Engine, EC2 and Azure Virtual Machines
respectively, which allow a full server to be provisioned for compute and storage tasks. Each
also supports the serverless execution of compute functions through Cloud Functions, Lambda
and Azure Functions respectively. Finally, container technologies [31] are becoming increasingly
popular as they increase application portability and reduce dependencies, have lower overhead and
faster launch times than virtual machines and the orchestration of containers allows the e�cient
provisioning, deployment and management of distributed compute clusters. Kubernetes, Docker
Compose [191] and Mesosphere [130] are such container orchestration technologies.

Various IoT infrastructures and deployments have implemented distributed cloud-based compute.
Xu et al. [209] have developed a cloud-based time-series analytics platform for the IoT that stores
and indexes time series data, analyses and mines for patterns and allows searching on patterns and
abnormal pattern discovery. Indexes speci�cally optimised for time-series data help achieve real
time analytics at a lower latency (at the cost of increased storage space). Ding et al. [55], propose
a means of doing statistical analysis on the cloud. Spatial aggregation of the area in a city where
the pollution level is above a certain threshold or parameter aggregation to calculate the average
pollution level at a certain time in a city are examples. The novel part of this approach is that
analytics is implemented within the database kernel itself, improving performance by reducing the
transfer of data (to the master node for processing).

Nastic et al. [139] have designed a high level programming model abstraction for the IoT running
on the cloud. In the model, there are abstractions called Intents and Intent Scopes which describe a
task and a group of ‘things’ respectively, from underlying distributed and heterogenous sources
that share a common context. By coupling Intents and Intent Scopes with analytics operators,
complex IoT applications can be designed, optimised on a distributed compute system, and run on
the cloud. Guazzelli et al. [74] make use of the Predictive Model Markup Language (PMML) [49], an
XML based markup language to describe data mining models, to run analytics on the cloud. Web
service calls can be made to instances on the cloud, submitting markup that then execute tasks like
running regression models, clustering, learning based on arti�cial neural networks (ANN), decision
trees, support vector machines or mining association rules.
Next, we brie�y summarise speci�c distributed compute technologies from the small program-

ming constructs and components used to build distributed compute to the large big data systems
made from these components which we divide into: in-memory and stream systems, parallel
programming models, graph parallel models and edge/fog computing systems.
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A means that nodes in a distributed compute system can communicate is through message
passing. A Remote Procedure Call (RPC) is a form of message passing and gRPC, a multiplexed,
bi-directional streaming RPC protocol, and Thrift [158], an asynchronous RPC system, are examples.
The Actor Model [77] is a message passing programming model supporting asynchronous communi-
cation in distributed compute systems the provides an abstraction enabling looser coupling among
components, allows for behaviour reasoning, and provides a lightweight concurrency primitive
across machines. Futures or Promises are another construct for asynchronous programming and are
abstractions of values that will eventually become available. They are useful for message passing
in distributed compute to reason about state changes when latency is a concern.

Distributed in-memory databases like H-store [102] and MemSQL [129] allow low latency stored
procedures and interactive querying respectively to be done on scale-out transactional databases,
hence, overcoming memory limitations by adding nodes. They are so fast that they can be used
for real-time compute tasks rather than just storage. Spark [215] is an in-memory data processing
engine with two main abstractions, an immutable, read-only collection of objects within Resilient
Distributed Datasets (RDD) (as opposed to �ne-grained Distributed Shared memory (DSM)) and
parallel operations represented as an acyclic data �ow graph. SparkSQL includes an execution
model that uses the Catalyst query optimiser [14] for both rule-based and cost-based optimisation
to form a Spark data �ow graph. D-streams is the Spark streaming abstraction where a streaming
computation is treated as series of deterministic batch computations on RDDs within small time
intervals. This type of stream processing is called micro-batch processing while Complex Event
Processing (CEP) [120] involves continuous operators on each tuple. Khare et al. [109] show how
continuous operators can work on publish-subscribe IoT sensor streams with a Functional Reactive
Programming (FRP) language. The system was tested on sensor data of a football match to aggregate
running data for each player and create descriptive analytics heat maps for players.

Data parallelism means that each node in a distributed compute system can perform independent
calculations on a meaningful subset of data. MapReduce [52], of which Hadoop MapReduce (Section
6.4) is an implementation, and Dryad [97] are both programming models for data parallel processing
on big data. Hammond et al. [78] deploy analytics in the cloud using Hadoop MapReduce. The
analytics techniques include text classi�cation using Naive Bayes, a top-K recommendation engine
based on similarity and a Random Forests classi�er to categorise data as part of Decision Support
Systems. MapReduce, however, does not scale easily for iterative graph algorithms as each iteration
requires reading and writing results to disk. Graph Parallel abstractions like those in GraphX [207],
for graph transformations, and GraphLab [119], for asynchronous computation, support these.

Finally, Fog or Edge Computing technologies like ANGELS [137] and the scheduler designed by
Dey et al. [54] propose utilising the idle computing resources of edge devices like smartphones
through a scheduler in cloud. The edge devices themselves keep track of their resource usage states,
which are formed based on user behavioural patterns, and advertise free slot availability. The cloud
servers receive analytics jobs and advertisements from edge devices and then schedule subtasks
to these devices. Distributed stream processing within a fog computing network has also been
implemented in the Eywa framework [187] using inverse-publish-subscribe for the control plane
and workload pushdown to fog nodes for projections in the data plane. Cloudlets [177] allow a
mobile user to instantiate virtualised compute tasks on physically proximate cloudlet hardware.
Cisco IOx [44] is another platform that consists of a fog director, application host and management
components, allowing fog computing tasks to be virtualised and executed on fog nodes.

6.7 Levels of Distribution of Storage and Compute

The Internet of Things, as de�ned in Section 3, comprises smart and interconnected physical
objects with varying storage and compute capabilities. Analytics processing can be done at di�erent
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Fig. 9. Technology and their Levels of Distribution for Storage and Compute

distribution levels depending on how far data from physical objects can and should travel and on
the storage and compute capabilities at each of:

(1) the device level, where devices act not just as data producers but as participants of the storage
and compute process,

(2) the network level, involving remote connections to fog computing nodes, hubs, base stations,
gateways, routers and servers and

(3) the cluster level, within a group of interconnected servers.

Enabling infrastructure and technologies are observed to address each of these levels of distribu-
tion of compute and storage to a di�erent degree. A classi�cation of the surveyed IoT enabling
technologies is proposed in Fig. 9 along the axes of storage and compute distribution.

At the cluster level, we see storage systems that are distributed within locally managed clusters.
Usually these clusters are located within data centres and connected by top-of-the-rack switches in
a hierarchical fashion (intra and inter rack). Locally managed distributed �le systems are an example.
In-memory systems distribute both processing and storage, usually by partitioning the data onto
nodes, in a centrally managed cluster and running processing on each node that corresponds with
the data on that node. Similarly, Massive Parallel Processing Databases, Data Warehouses and
Parallel/Distributed Databases are examples of systems with distributed storage and compute on
each node. Examples of compute within clusters of distributed servers include Parallel Processing
frameworks like MapReduce [52].
Cloud Computing is usually divided into private, public or hybrid clouds. Private clouds share

similarities and types of distributed storage and compute with those previously mentioned at cluster
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level. Public clouds are remotely managed and hence belong to the network level of distribution of
which Cloud Storage and Cloud Compute Engines serve storage and compute tasks respectively.
Hybrid clouds bridge both public and private clouds. Similar to cloud storage are remote access
distributed �le systems. Message brokers, message queues and log-based systems are some other
examples of network level, possibly remote access storage systems.
At the device level of storage, we have technologies like federated Linked Data endpoints and

Gaian databases where data can reside on their respective devices but be accessed by other clients.
On the device level for compute, scheduling of compute tasks on fog or edge devices, is an example.
Finally, both compute and storage distribution from the network to device level is present in Edge
and Fog computing and middleware is usually used to connect such edge systems together.

Table 4 summarises the surveyed literature on distributed storage and compute technologies to
provide a point of reference for researchers on current state-of-the-art implementations.
This review of enabling infrastructure and technologies at each part of the data �ow process,

classi�cation of the storage and compute distribution and examples of distributed storage and
compute technologies form a basis for a direction of future work towards tackling the challenges
big data analytics on the IoT.

7 RESEARCH CHALLENGES

As we have seen in our study of enabling infrastructure and present analytical applications in
the IoT, there are still some challenges that we face in aligning the vision of the IoT with that
of analytics. In particular, we argue that infrastructure for analytics in the IoT faces a tradeo�
between:

(1) Distribution & Interoperability, complicated by big data variety,
(2) Performance, complicated by the volume and velocity of the big data problem,
(3) and Analytical Value, which deals with how high the output of analytics applications is on

the knowledge hierarchy from Fig. 4.

Fig. 10 depicts the tradeo�s that IoT infrastructure for analytics applications face in terms of
these three challenges. For example, the semantic technology community argues for its utility in
the IoT [21] to encourage semantic interoperability, while semantic ontologies provide analytical
value and federation supports diverse, heterogeneous distributed sources. Performance of such
systems though are still questionable [164, 174]. Edge and fog computing is also an emerging
area of distributed technologies that promises advantages in latency for real-time processing of
streams and e�ciency due to its proximity sources [43]. However, cloud-based clusters and fast
distributed OLTP in-memory processing still o�er greater analytical value combining big data sans
the advantages of IoT distribution and interoperability.
Variety has been a less researched aspect of the big data problem but is apparent in the IoT

paradigm. Heterogenous data sources in the IoT combined with the need for analytics to also involve
a wide range of multi-modal data sources like social media, Linked Data, image and video data,
satellite and geospatial data, voice data, etc. makes the variety problem highly analogous with the
richness of insights and knowledge that can be derived in analytics applications. Predictive analytics
can be made more accurate through corroboration of independent data sources and prescription
can be optimised with more and varying knowledge inputs. Solving the variety problem can be
seen as an opportunity to enhance the value of current IoT applications.
Performance and scalability questions still exist in current systems because of the scale of the

IoT. This is not only about scaling the storage of data or of the communications layer but also
the scaling of infrastructure to do analytics processing. We see distributed analytics as a plausible
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Fig. 10. Tradeo�s in Designing for Analytics on the IoT

means of handling IoT scale-data (which is predicted to be larger and richer than web scale data)
and there is potential for more work in this area.

8 CONCLUSIONS

The Internet of Things (IoT) has huge potential to provide advanced services and applications
across many domains and the momentum that it has generated, together with its broad visions,
make it an ideal frontier for pushing technological innovation. We have shown that analytics plays
a role in many applications, across many domains, designed for the IoT and will be even more
important in the future as the enabling infrastructure develops and scales and the deployment of
devices becomes truly ubiquitous. We have applied a systematic review of analytics applications in
the IoT to the task of understanding analytics as it develops. This results in a layered taxonomy
that de�nes and categorises analytics by their capabilities and application potential for research
and application roadmaps. We then review the enabling infrastructure and discuss the technologies
from di�erent stages in the data �ow for analytics. Finally, we look at some tradeo�s for analytics
in the IoT that can shape research direction going forward.
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