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Abstract
We consider the problem of privately releasing a low dimensional approximation to a set of data

records, represented as a matrix A in which each row corresponds to an individual and each column to
an attribute. Our goal is to compute a subspace that captures the covariance of A as much as possible,
classically known as principal component analysis (PCA). We assume that each row of A has `2 norm
bounded by one, and the privacy guarantee is defined with respect to addition or removal of any single
row. We show that the well-known, but misnamed, randomized response algorithm, with properly tuned
parameters, provides nearly optimal additive quality gap compared to the best possible singular subspace
of A. We further show that when ATA has a large eigenvalue gap – a reason often cited for PCA –
the quality improves significantly. Optimality (up to logarithmic factors) is proved using techniques
inspired by the recent work of Bun, Ullman, and Vadhan on applying Tardos’s fingerprinting codes to
the construction of hard instances for private mechanisms for 1-way marginal queries. Along the way
we define a list culling game which may be of independent interest.

By combining the randomized response mechanism with the well-known following the perturbed
leader algorithm of Kalai and Vempala we obtain a private online algorithm with nearly optimal regret.
The regret of our algorithm even outperforms all the previously known online non-private follow the
perturbed leader type of algorithms. We achieve this better bound by, satisfyingly, borrowing insights
and tools from differential privacy!

1 Introduction

In areas as diverse as machine learning, statistics, information retrieval, earth sciences, archaeology, and
image processing, given a data set represented by a matrix A ∈ Rm×n, it is often desirable to find a good
approximation to A that has low rank. Working with low-rank approximations improves space and time
efficiency. Other benefits include removal of noise and extraction of correlations, useful, for example, in
(approximate) matrix completion from a small set of observations – an impossible task if A is arbitrary but
potentially feasible ifA enjoys a good low rank approximation. The problem of low-rank approximation has
also received substantial attention in the differential privacy literature [4, 15, 31, 26, 10, 21, 22]. If we think
of the matrix A ∈ Rm×n as containing information about n attributes of m individuals, the goal is to learn
“about” A (we intentionally remain vague, for now) without compromising the privacy of any individual.
That is, the literature focuses on being able to do, in a differentially private way, whatever is achieved by
low-rank approximation in the non-private literature. Our work continues this line of research.

Existing differentially private algorithms can have errors with an unfortunate dependence on the ambient
dimension n of the data. This bad dependence may sometimes be due to the suboptimality of our algorithms,
∗Supported in part by the Sloan Foundation
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sometimes due to the inherent difficulty of the problem. A driving motivation for our work is to extract better
performance from these algorithms when the inherent dimensionality of the input is much lower than the
ambient dimension. For example, the data may be generated according to a low dimensional model and the
measurements may be noisy.

The standard method of the principal component analysis (PCA) for low rank approximation is to compute a
best low-dimensional eigen-subspaceB of the matrixATA =

∑m
i=1 a

T
i ai (recall that the ai are row vectors).

The underlying intuition is that the projection ontoB preserves the important features of the data rows while
projecting away the noise. We will focus on a private mechanism for computing B. By (1) privately finding
a low-rank subspace B capturing most of the variance in A, and then (2) running the existing differentially
private algorithm on the projection of A onto B, the hope is that poor dependence on the dimension in the
second step is mitigated by the dimension reduction obtained in the first.

Because it was found in a privacy-preserving fashion, B can safely be made public. A key point is that
the two-step procedure just described does not require publication of the projection. This, then, will be our
approach: the projector (ΠB) will be public, the projection (ΠB(A)) will not be released. 1.

The literature sometimes focuses on the case of m � n, and at other times assumes m � n. In the first
case, the rows of the data matrix are often assumed to be normalized to have norm at most 1, as is done here;
when m � n the row norms may be unbounded [21, 22]. The literature also varies in terms of granularity
of the privacy guarantee, protecting, variously, the privacy of each row in its entirety [4, 15, 26, 10], which
is what we do here, or individual entries [31, 22], or norm 1 changes to any row [21]. Finally, the literature
varies on the nature of differential privacy offered: so-called pure, or (ε, 0)-differential privacy [15, 26, 10]
and approximate, or (ε, δ), differential privacy [4, 31, 21, 22], which is the notion used in our work.

Refined Randomization: Blum et al. were the first to suggest privately releasing ATA by adding indepen-
dent noise to each of the n2 entries of this matrix [4]. The data analyst is then free to compute best rank k
approximations to the privacy preserving, noisy, ÂTA for any and all k. This naı̈ve noising approach, which
has somewhat erroneously become known as randomized response, was refined in [15] to add less noise;
our main algorithmic result is a careful analysis of a version of this refinement. Specifically, we will use the
Gaussian mechanism [13], which adds independently chosen Gaussian noise to each entry of ATA. When
there is a gap in the singular values of A, or even a gap between singular values whose indices are not
adjacent (formally σ2

k − σ2
k′ ∈ ω(

√
n/(k + k′))), we see a clear improvement, in captured variance, over

previously published results. In this case, the analysis further shows, the space spanned by the top k right
singular vectors of the (refined) noisy version of ATA is very close to the space spanned by the top k right
singular vectors of A, with the spectral norm of the difference in projectors being independent of k.

When there is no gap the algorithm performs no worse than the best in the literature; when m � n we do
expect such a gap: the more data, the better the algorithm’s utility. The algorithm approaches the correct
subspace of ATA at a rate faster than 1/m, meaning that as we increase the number of samples the total
error decreases.

Optimality: Our version of the refined noisy release of ATA is, up to logarithmic factors, optimal for
approximate differential privacy. Pursuing a connection between differentially private algorithms and cryp-
tographic traitor-tracing schemes [17], Bun, Ullman, and Vadhan [6] established lower bounds on errors for
approximately differentially private release of a class of counting queries that are tight to within logarithmic
factors. Their query class is based on a class of fingerprinting codes [5] due to Tardos [43]. We show that

1This was exploited by McSherry and Mironov in their work on differentially private recommendation systems [31]: in many
non-private recommendation systems, recommendations made to individual i depend only on the item covariance information
and the individual’s own item ratings. In our terms, the recommendations to user i depend only on row i of the input matrix A
and on ATA. It makes no sense to hide the user’s own ratings from himself, so it is sufficient that ATA be approximated in a
privacy-protective fashion.
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their result translates fairly easily to a lower bound for private approximation of the top singular vector. We
also extend this to obtain lower bounds for rank k subspace estimation even for k ∈ Ω(n), a much more
challenging task. Intuitively, for k > 1, we construct k “clusters” of fingerprinting codes. We have to over-
come some difficulties to show that these clusters do not interfere much and to identify a “privacy-violating”
vector hidden in a subspace. For the first we prove a stronger property of Tardos’s codes, and for the second
we introduce a game, called the list culling game, in which one player, using “planted questions”, has to
identify a good answer promised in a large set of answers provided by the other player. We propose a strat-
egy for discovering the good answer with high success probability and apply it to constructing the privacy
lower bound. Both results might be of independent interest.

Online Algorithms: Our third contribution merges two lines of research: differentially private regret min-
imization in online algorithms [16, 38] inspired by the Follow the Perturbed Leader (FPL) algorithm of
Kalai and Vempala [25], and non-private online algorithms for principal components analysis [44]. A folk
theorem says that differential privacy provides stability and hence reduces generalization error. We make
this connection explicit in the online setting.

In the online model, computation proceeds in steps. At each time step t a rank k subspace Vt is output,
a single data row At of A is received, and a reward is earned equal to ||AtVt||22. Regret is the difference
between the sum of the earned rewards and the corresponding quantity for the best rank k matrix V chosen
in hindsight (call it OPT). It is known, thanks to the pioneering work of [28], that the stability of an
online algorithm is useful for achieving the low regret bound2. In [25], the FPL algorithm achieves stability
by the addition of Laplace noise and is shown to have low regret. This technique has been successfully
applied to several online algorithms. Indeed, for the online PCA problem, the previously best known FPL
algorithm [44, 23] achieves a regret bound of Õ(

√
knOPT). Our main observation is that a differentially

private algorithm achieves similar stability to that of the FPL algorithm. With this insight, and borrowing
tools from differential privacy, we show that, rather than adding Laplace noise, which might be unnecessarily
large, one can instead add Gaussian noise, leading to an improved regret bound of only Õ(

√
kOPTn1/4).

In addition, by adding carefully correlated noise as in [16], we can make the entire algorithm private by
incurring only a polylogarithmic factor in regret.

Granularity of Privacy: Two works of Hardt and Roth aim to exploit low coherence of the data matrix, a
phenomenon of substantial interest in the (non-private) compressed sensing and matrix completion litera-
ture [7, 8, 36, 41, 34], to (privately) obtain good low rank approximations to the data matrix [21, 22]. There
are several definitions of matrix coherence; roughly speaking coherence measures the extent to which the
singular vectors are correlated with the standard basis. In the case of matrix completion, where the samples
are intimately tied to the basis in which the data matrix is naturally represented, low coherence says that
information is holographically embedded throughout the rows. The two definitions in [21] deal with row
norms, either of the data matrix A or of U , when expressing A = UΣV T in its singular value decompo-
sition. There is an interplay between the granularity of the privacy guarantee and the specific coherence
measure. The algorithms in [21], which are interesting when n ≥ m, protect the rows in A up to any pertur-
bation of Euclidean norm at most one. In this case the coherence conditions and the privacy granularity are
rotationally invariant. In contrast, in [22] the coherence notion deals with the maximum entries of U and V ,
and the privacy granularity is for changes of magnitude at most one to a single entry of the data matrix. In
this case neither the coherence condition nor the privacy granularity is rotationally invariant.

In our privacy definition, we protect the privacy against any individual row change. This is a natural choice
for us as in many applications of PCA, each row corresponds to an individual. But for such a strong privacy
notion (compared to single entry change or change of bounded norm), it is also more challenging to provide

2Roughly speaking, in this context stability means that the output of the online algorithm does not change significantly between
adjacent steps.

3



good utility. Indeed, we cannot achieve meaningful utility if we allow arbitrary A, for instance if one row
has arbitrarily large norm. But in practice, allowing such “overpowering” individuals often goes against the
purpose of PCA for discovering the global structure of many data records, and row normalization is often
recommended before applying PCA. For example, in face recognition each individual image (a row in A) is
typically normalized to have unit variance [2, 45]. Motivated by such practical considerations, we assume
each row to have at most unit `2 norm3.

For detailed comparison to previous work, see Section 2.5.

2 Preliminaries

2.1 Notations and definitions

We treat vectors as column vectors (unless explicitly mentioned). For a given matrix A ∈ <m×n, we denote
the i-th row of A by Ai, which in this case is a row vector. For a vector x ∈ <n, ‖x‖ denotes the `2 norm.
For a matrix A ∈ <m×n, the spectral norm is defined as ‖A‖2 = max

x∈<n,‖x‖2=1
‖Ax‖2; the Frobenius norm is

defined as ‖A‖F =
√ ∑
i∈[m],j∈[n]

a2
ij , where aij are the entries of the matrix A. For a square matrix, the trace

tr(·) is defined as the sum of its diagonal elements. So ‖A‖2F = tr(ATA) = tr(AAT ). Slightly abusing
terminology we will refer to ATA as the covariance matrix of A.

For a matrix A, the singular value decomposition of A is defined as A = UΣV T , where U ∈ <m×m and
V ∈ <n×n are unitary matrices and called the left and right singular subspaces, respectively. The matrix
Σ ∈ <m×n is a diagonal matrix with non-negative entries σ1, . . . , σmin(m,n) along the diagonal, called the
singular values. In this paper, we assume they are ordered decreasingly, i.e σ1 ≥ σ2 ≥ . . .. Suppose that
V = (v1, . . . , vn). We define Vk = (v1, . . . , vk) and call it the principal (or top) k right singular subspace.
It is well known that ‖A‖2 = σ1, ‖A‖2F =

∑
i σ

2
i , and ‖AVk‖2F =

∑k
i=1 σ

2
i = maxP∈Pk ‖AP‖2F .

Each row ai ∈ <n, 1 ≤ i ≤ m, of the data matrix A ∈ <m×n represents the attributes of a single user. As
discussed above, we assume each row has at most unit `2 norm. The set of all such matrices is denoted A.

Given the data matrix A, our objective is to output a subspace that preserves privacy and captures the
variance ofA as much as possible. To define privacy, we call two matricesA,A′ ∈ A neighbors if they differ
in exactly one row, as each row in A corresponds to an individual user. We will ensure (ε, δ)-differential
privacy.

Definition 1 (Differential privacy [15, 13]). A randomized mechanismM is (ε, δ)-differentially private if
for every two neighboring matrices A,A′ ∈ A and for all events O ⊆ Range(M), Pr[M(A) ∈ O] ≤
eε Pr[M(A′) ∈ O] + δ .

Let f : A → <p be a vector-valued function operating on databases. The `2-sensitivity of f , denoted ∆f , is
the maximum over all pairs A,A′ of neighboring datasets of ||f(A) − f(A′)||2. The Gaussian mechanism
adds independent noise drawn from a Gaussian with mean zero and standard deviation slightly greater than
(∆f) ln(1/δ)/ε to each element of its output.

Theorem 2 (Gaussian Mechanism [13, 12]). Let f : A → <p be a vector-valued function. Let τ =
∆f
√

2 ln(1.25/δ)/ε. The Gaussian mechanism, which adds independently drawn random noise distributed
as N (0, τ2) to each output of f(A), ensures (ε, δ)-differential privacy.

3To enforce this condition, an offending row can be divided by its own norm; this will not affect privacy.
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We are interested in the function f(A) = ATA, which may be viewed as an n2-dimensional vector. Because
we ensure that ||ai||2 ≤ 1, the sensitivity of f is at most one.

2.2 Background on matrix analysis and subspace estimation

In this paper we are primarily interested in privately recovering the top k right singular vectors of a given
matrix A ∈ <m×n, which equivalently translates to recovering the top k eigenvectors in ATA. More
formally, any real matrix A can be decomposed into UΣV T , where U is an m × m unitary matrix, Σ
is an m × n rectangular diagonal matrix with non-negative entries in the diagonals, and V is an n × n
unitary matrix. The columns of U are called the left singular vectors of A, the diagonal entries of Σ are
called the singular values of A, and the columns of V are called the right singular vectors of A. Using this
definition of singular vectors, one can easily show that ATA = V ΛV T , where Λ ∈ <n×n is a diagonal
matrix with non-zero entries corresponding to the squares of the entries in Σ, also called the eigenvalues of
ATA. We denote Vk to be an <n×k matrix, whose columns correspond to the top k right singular vectors
of A. For various algebraic manipulations throughout this paper, we will use the following two useful
inequalities. In the following useful result from matrix perturbation theory (see, for example [3]) we will
denote λ1(X) ≥ λ2(X) · · · as the eigenvalues of a symmetric matrix X .

Theorem 3 (Weyl’s inequality). Let X,Y ∈ <n×n be two real symmetric matrices. For each i ∈ [n],

λi(X) + λn(Y ) ≤ λi(X + Y ) ≤ λi(X) + λ1(Y ).

Along with recovering an approximation to Vk, we will be often interested in obtaining a rank k approxima-
tion to the matrixA orATA. LetAk be the matrix formed by picking the top k right and left singular vectors
ofA and their corresponding singular values. It is well known thatAk is the matrix that minimizes ‖A−B‖2
and ‖A−B‖F for any matrixB of rank at most k. This result is also called the matrix approximation lemma
[18].

2.3 Basic tools in differential privacy

In this section we will discuss some the basic tools commonly used in the design of differentially private
algorithms. Since we will use these tools as building blocks for designing various algorithms in this paper,
we state them briefly here.

2.3.1 Noise mechanisms

Laplace mechanism [15]. Given a data setD from some arbitrary domainD and a function f : D → <n, the
objective is to design an algorithmM that outputs an approximation to f(D) while preserving differential
privacy. One quantity that becomes very useful in the design ofM is the L1-sensitivity of the function f
which is defined as Sensitivity1(f) = max

D and D′ being neighbors
‖f(D) − f(D′)‖1. Let Lap(λ) be the standard

Laplace distribution with the scaling parameter λ, i.e., the density function is given by 1
2λe
− |x|

λ . [15] showed

that adding independent Laplace noise sampled i.i.d. from Lap
(
Sensitivity1(f)

ε

)
to f(D) satisfies (ε, 0)-

differential privacy (or simply ε-differential privacy).

Gaussian mechanism [13]. Gaussian mechanism is very similar to Laplace mechanism, except the noise
model is the Gaussian distribution. Let the L2-sensitivity of the function f is defined as Sensitivity2(f) =
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max
D and D′ being neighbors

‖f(D)− f(D′)‖2. LetN (0, σ2) be the Gaussian distribution with mean zero and stan-

dard deviation σ, i.e., the density function is given by 1√
2πσ2

e−
x2

2σ2 . [13] showed that adding i.i.d. noise

sampled from N

(
0,

(
1+
√

2 log(1/δ)

ε

)2

Sensitivity2(f)
2

)
to f(D) satisfies (ε, δ)-differential privacy.

2.3.2 Differentially private tree based aggregation

In this section for completeness purposes, we state the differentially private tree based aggregation algo-
rithm. It is important to mention here is that a variant of this algorithm has appeared in many different
papers. The initial version as proposed by [17, 9]. We apply the same algorithm in the matrix setting, and
with symmetric noise matrices, where each entry is drawn from a Gaussian distribution.

For the ease of exposition, assume thatm is a power of two. Given a set of symmetric matricesW1, · · · ,Wm,

with ‖Wt‖2 ≤ 1, the objective is to output S = 〈W1,W1 + W2, · · · ,
m∑
τ=1

Wτ 〉 while preserving (ε, δ)-

differential privacy. First notice to ensure each of the partial sums are individually (ε, δ)-differentially
private, it suffices to add a noise matrix E ∈ <n×n which is a symmetric matrix whose upper triangle
is i.i.d. samples from N

(
0, 50 log(1/δ)

ε2

)
. By the standard sequential composition of differential privacy

[15, 14] it follows that if one sets ε = ε/m and δ = δ/m, then the sequence of partial sums is (ε, δ)-
differentially private. In the following we provide a scheme by which one can add much lesser noise in
computing the partial sums.

Consider a complete binary tree T with m leaves. The leaves in the tree corresponds to W1, · · · ,Wm, and
each internal node in the tree corresponds to the partial sums of the leaves in its subtree. It is not hard to
see that one can reconstruct the sequence S using only logm number of nodes in the tree. Also see that
if we consider T to be a vector of size 2m − 1, then changing one of the Wt’s only affects logm, number
of entries in T . So instead of outputting a private version of the sequence S directly, the idea is to output
a noisy version of the binary tree T and then reconstruct the private version of S from it. Hence to ensure
(ε, δ)-differential privacy, it suffices to add i.i.d. symmetric noise matrices to each node of T , whose each
entry is distributed i.i.d. N

(
0, 50 log3(m/δ)

ε2

)
. The privacy guarantee follows from a direct application of the

sequential composition property of differential privacy [15, 14].

2.4 Summary of main results

For the purposes of brevity, throughout the paper, we use Õ(·), Ω̃(·) to hide factors of 1/ε and polynomial
dependence on log(1/δ), logm, and log n, and “with high probability” means with probability 1− 1/nΩ(1),
under the internal randomness of the mechanism. Our first result (Main Result 1) is that the Gaussian
mechanism is nearly optimal in the worst case4. We further show (Main Result 2) that, under natural
assumptions on the data matrix A, this mechanism has even stronger utility guarantees.

Main Result 1 (Theorems 4 and 27 informal version).

1. For any ε, δ > 0 and 1 ≤ k ≤ n, the Gaussian mechanism described in Thoerem 2 ensures that for any
A ∈ A, with high probability over the coin tosses of the mechanism, ‖AM(A)‖2F ≥ ‖AVk(A)‖2F −
Õ(k
√
n).

4We will tweak the mechanism slightly by ensuring that the matrix of noise values added to ATA is symmetric. We abuse
notation by referring to this symmetric version simply as the Gaussian mechanism.
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2. The Gaussian mechanism is nearly optimal: for any 1 ≤ k ≤ n and any (ε, 1/n2)-differentially
private mechanismM, there exists A ∈ A such that ‖AM(A)‖2F ≤ ‖AVk(A)‖2F − Ω̃(k

√
n).

Main Result 2 (Theorems 5 and 7 informal version). Let σ1 ≥ · · · ≥ σn be the singular values of A ∈ A.
Assuming σ2

k − σ2
k′+1 = ω(

√
n), with high probability the Gaussian mechanismM satifies

‖AM(A)‖2F ≥ ‖AVk‖2F − Õ

(
k′n

σ2
k − σ2

k′+1

)
.

Additionally, when k′ = k,

‖M(A)M(A)T − VkV T
k ‖2 = Õ

( √
n

σ2
k − σ2

k+1

)
.

Finally, we consider the online version in which at arrives in a stream for t = 1, · · · ,m, and the mechanism
M is required to compute a k-dimensional subspace Mt = M(a1, · · · , at−1) before seeing at. Define
OPT = maxP∈Pk

∑m
t=1 ‖P Tat‖22. The regret ofM is defined as Regret(M) = OPT −

∑m
t=1 ‖MT

t at‖22.
We show (in Main Result 3) that by adding carefully calibrated noise, the Following the Perturbed Leader
algorithm in [25] can be made both private and with low regret. And the regret bound is nearly optimal for
any online private PCA algorithm.

Main Result 3 (Theorem 18 informal version). When OPT = Ω̃(k
√
n/ε2), we can obtain an (ε, δ)-

differentially private online mechanism M such that E[Regret(M)] = Õ(
√
kOPTn1/4). This bound is

nearly optimal for OPT = Õ(k
√
n).

2.5 Detailed comparison to prior work

There have been a series of recent works in this area of private singular subspace computation and private
low-rank approximation [4, 21, 10, 26, 22]. Roughly speaking, these results can be categorized into three
classes: i) spectral perturbation methods [4, 21, 10], ii) exponential sampling method [10, 26] and iii)
iterative power method [22]. In this section, we provide comparison our approach to each of these methods.
For the purposes of brevity, all the bounds below ignore parameters in 1/ε and log(1/δ).

Spectral perturbation methods [4, 21, 10]. The earliest work this area is that of [4] followed up by [10].
For a given matrix A ∈ <m×n (with rows being individual data records), adding i.i.d. scaled Gaussian
noise (with standard deviation roughly O(n)) to the covariance matrix ATA preserves (ε, δ)-differential
privacy. In our work we make two modifications to this basic algorithm: i) we show that adding noise
with standard deviation O(1) is sufficient, and ii) we use a symmetric noise matrix. These modifications
alone give us bound on the error in variance of O(k

√
n). In comparison, [4, 10] would result in an error

of O(kn). Furthermore, we show that the error bound can be improved to O(kn/(σ2
k − σ2

k+1)) when there
is a separation between σ2

k and σ2
k+1. (In fact similar result hold even when the adjacent singular values

for k and k + 1 are not well seperated, as long as there is a reasonbale degradation of singular values and
one is willing to output a slightly higher rank subspace.) It is important to mention here that the improved
privacy analysis was also provided in [15], but no formal connection was provided to singular subspace
computation. Using this same algorithm, we can obtain subspace closeness guarantees too, which to the
best of our knowledge is the first of its kind.

[21] gave an algorithm for private low-rank approximation using random projection methods from [19].
Their algorithm outputs a rank k approximation Âk to the original matrix such that ‖A − Âk‖F ≤ ‖A −
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Ak‖F + O(k
√
m + additional terms), where Ak is the best non-private rank k approximation of A. In our

setting where m ≥ n and each row of A has a bounded L2 norm, their results is not meaningful as ‖A‖F is
at most

√
m. However, we can show that projecting A onto the private rank k subspace V̂k computed by our

algorithm is a very good rank k approximation in the squared Frobenius norm, i.e., ‖A − A(V̂kV̂
T
k )‖2F ≤

‖A − Ak‖2F + O(min{k
√
n, kn

σ2
k−σ

2
k+1
}). One important distinction from [21] is that guarantee that Âk is

differentially private, while we just ensure the projector is private. In most machine learning scenarios V̂k
seems to be the object of interest, since it is used for pre-processing of the data (like dimension reduction).

One can trivially modify our algorithm to get a differentially private low-rank approximation to ATA (see
Section 3.3), and in that case our error guarantees are no worse than [21].

Exponential sampling methods [10, 26]. At the very outset it is important to mention that the results of
[10] and [26] are for pure ε-differential privacy, which is a stronger privacy guarantee than ours. These two
independent works select a good rank k subspace based on the exponential mechanism [33]. Since the error
guarantees in [26] is strictly more general than [10], we compare our results to [26]. With a (mild) loss
of generality we translate the results of [26] into our setting. When k = 1, the variance error in [26] is
O(n), which they show is optimal for pure DP. This is strictly worse than the variance error (stated earlier)
of our algorithm. In the rank k case, they provide error guarantees for private rank k approximation as in
[21] but under spectral norm. Using the same notation as above, they output a rank k matrix B such that
‖ATA − B‖2 ≤ ‖ATA − (ATA)k‖2 + O(nk3). Our algorithm will incur an error of O(

√
n). Notice the

rank independence of the error bound.

Iterative power method [22, 20]. In this work the authors used the well-known power method to get variance
error bound for the top private right singular vector ofA, and rank k approximation toAwith the error being
measured in spectral norm (as in [26]). First point to notice is that the privacy model of [22] is incomparable
to ours, namely, they allow change of one entry by a bounded value between two neighboring matrices A
an A′ . Whereas we allow addition or deletion of one complete row (of bounded L2 norm) from the matrix.
Translating their result to our privacy model, their variance error for the top singular vector isO(

√
n). Using

their algorithm for rank k estimation ofATA (with the error measured in ‖·‖2 norm), the error isO(k2√n).

Recent independent work of Hardt [20] shows that subspace iteration method is robust to perturbations, so
that the error due to adding noise at each step to give privacy can be bounded. This allows him to bypass the
peeling approach used in [22], leading to improved bounds for rank-k approximation in the same privacy
model as [22] as well as get better bounds under an incoherence assumption. Moreover, the approach can
also be used to give privacy under spectral norm 1 perturbations to a matrix. Applying their bounds on
the matrix ATA, one get a bound of the form ‖ATA − M(ATA)‖2 ≤ σ2

k+1 + Õ(
σ2
1

σ2
kγ

1.5

√
kn), where

γ = (
σ2
k

σ2
k+1
− 1) is a measure of the gap between σk and σk+1. These bounds are incomparable to our results

on spectral norm error in Theorem 9 as they give privacy under a larger class of perturbations, whereas their
error bound can be larger than our bound of Õ(

√
n). Whereas the sin Θ theorem also makes an appearance

in [20], we remark that the privacy model, the algorithm and analysis are all different from our work.

Comparison to (non-private) online singular subspace computation. To our knowledge, [44] provided the
first algorithm for online private singular subspace computation, followed up by a series of results improving
various other aspects of the problem such as computational efficiency [24, 23, 35]. They used a generaliza-
tion of the multiplicative weights algorithm for experts problem to obtain a regret bound of Õ(

√
kOPT),

where OPT is the maximum variance captured by the offline algorithm. A direct adaptation of their algo-
rithm to the private setting will result in a regret of Õ(

√
kmn5/4), wherem is the total number of rows and n

is the dimensionality of the problem. Instead, we use an adaptation of the follow the perturbed leader (FPL)
algorithm of [25] to obtain a regret guarantee of Õ(

√
kOPTn1/4) while satisfying differential privacy. To

our knowledge, this is the best FPL algorithm in the matrix setting, improving on [23] which achieved a
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regret of Õ(
√
knOPT). Moreover, we believe that this algorithm can be used in other online learning prob-

lems like learning rotations [23] to obtain tighter regret guarantees even without privacy requirements.

3 Private Singular Subspace Computation via The Gaussian Mechanism

The Gaussian mechanism (with symmetric noise matrix) is straightforward: just release Ĉ = ATA + E
where E is a symmetric noise matrix, with each (upper-triangle) entry drawn i.i.d. from Gaussian distribu-
tion with sufficiently high variance. Algorithm 1 describes such a mechanism, a variation of those in [4, 15]
that enjoys smaller noise, and in which the noise matrix is symmetric. Set ∆ε,δ =

√
2 ln(1.25/δ)/ε.

Algorithm 1 The Gaussian Mechanism: releasing the covariance matrix privately
Input: matrix A ∈ <m×n, and privacy parameters ε, δ > 0.

1: E ∈ <n×n be a symmetric matrix where the upper triangle (including the diagonal) is i.i.d. samples
from N

(
0,∆ε,δ

2
)
, and each lower triangle entry is copied from its upper triangle counterpart.

2: Output Ĉ ← ATA+ E.

Differential privacy is closed under post-processing, so the data analyst can run any post-processing algo-
rithm on Ĉ with no further erosion of privacy. In particular, the analyst can compute the singular decom-
position of Ĉ to obtain any k-dimensional principal singular subspace V̂k of Ĉ. But how useful is such a
V̂k? In this section, we will show that V̂k can actually be a quite good approximation to the principal rank-k
right singular subspace Vk of A (or equivalently the principal singular subspace of ATA.) In particular, we
consider three measures: 1) How well does V̂k capture the variance of A compared to Vk? 2) How close is
V̂k to Vk? and 3) How well does the best rank-k approximation of Ĉ approximate ATA?

Our analyses come in two flavors. One is on the worst case guarantee, where no assumption is made on A.
Most of these results follow relatively easily from random matrix theory. As we will show later by our lower
bound, one cannot expect to outperform these bounds in the worst case. The other set of results depend on
the spectrum of ATA. We show, by using tools from matrix perturbation theory, that when the spectrum of
ATA has large drop in its eigenvalues, V̂k′ can be a much better approximation to Vk when k′ ≥ k. For
example, when the data are drawn from a distribution with an eigengap, the error will go to 0 as the number
of samples m → ∞! Since the presence of such drop is one of the rationales for principal components
analysis, these results are probably more interesting in practice. We emphasize that this improved data
dependent bound holds for the same algorithm; the gain comes entirely from the analysis.

3.1 Variance guarantee

We now consider how well V̂k captures the variance of A. We first provide a worst case bound.

Theorem 4 (Worst case utility guarantee). Let Vk be the principal rank-k right singular subspace of A and
let V̂k be the principal rank-k subspace of the matrix Ĉ (output by Algorithm 1). Then with high probability,

‖AV̂k‖2F ≥ ‖AVk‖2F −O
(
k
√
n∆ε,δ

)
.

9



Proof. We have the following with the noise matrix E in Algorithm 1.

tr(VkV
T
k (ATA+ E)) = tr(VkV

T
k (ATA)) +

k∑
i=1

viEv
T
i

≥
k∑
i=1

σ2
i − k‖E‖2. (1)

By definition, the highest singular subspace captures the maximum variance. Therefore,

tr(V̂ T
k (ATA+ E)V̂k) ≥ tr(V T

k (ATA+ E)Vk). (2)

Combining (1) and (2), we get the following.

tr(V̂ T
k (ATA+ E)V̂k) ≥

k∑
i=1

σ2
i − k‖E‖2

⇔ tr(V̂ T
k (ATA)V̂k) ≥

k∑
i=1

σ2
i − k‖E‖2 − tr(V̂ T

k EV̂k)

⇒ tr(V̂ T
k (ATA)V̂k) ≥

k∑
i=1

σ2
i − 2k‖E‖2 (3)

Since E is a symmetric Gaussian ensemble, by Corollary 2.3.6 from [42], with probability at least 1 −
negl(n), ‖E‖2 = O (

√
n∆ε,δ). This completes the proof.

As we will see in Section 5, the above bound is nearly tight in the worst case. Now, suppose there is a large
eigengap, so that σk − σk+1 ∈ ω(

√
n). In this case we will see that V̂k can provide utility that beats the

worst-case lower bound. Moreover, an analogous claim holds even if there is not a precipitous drop between
adjacent eigenvalues but a gap holds for non adjacent eigenvalues.

Theorem 5 (Spectrum separation guarantee). Let σ1 ≥ · · · ≥ σn be the singular values of the data matrix
A. Let Vk be the principal rank-k right singular subspace of A. Let V̂k′ be the principal k′ ≥ k-dimensional
subspace of the matrix Ĉ (output by Algorithm 1). Assuming σ2

k − σ2
k′+1 = ω(

√
n∆ε,δ), with high proba-

bility,

‖AV̂k′‖2F ≥ ‖AVk‖2F −O

(
k′n∆ε,δ

2

σ2
k − σ2

k′+1

)
.

Proof. The basic tool in our analysis is a sin-θ theorem, which is a generalization of the classic Davis-Kahan
sin-θ theorem [11]. By the optimality of V̂k′ and using k′ ≥ k, we have,

tr(V̂ T
k′ (ATA)V̂k′) ≥ tr(V T

k (ATA)Vk) + tr(V T
k EVk)− tr(V̂ T

k′EV̂k′)

= tr(V T
k (ATA)Vk) + tr

((
VkV

T
k − V̂k′ V̂ T

k′

)
E
)
.

For the ease of notation, let Π = VkV
T
k and Π̂ = V̂k′ V̂

T
k′ . To bound tr

((
Π− Π̂

)
E
)

, we use Von Neu-

mann’s trace inequality: For two matrices X ∈ <n×n and Y ∈ <n×n, let σi(X), σi(Y ) be the decreasingly

ordered singular values of X,Y , respectively. Then |tr(XY )| ≤
n∑
i=1

σi(X)σi(Y ). Hence, we have

|tr
((

Π− Π̂
)
E
)
| ≤

n∑
i=1

σi

(
Π− Π̂

)
· σi(E) . (4)
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Since
(

Π− Π̂
)

is of rank at most k + k′ ≤ 2k′, at most 2k′ of the σi are non-zero. So we further have

|tr
((

Π− Π̂
)
E
)
| ≤ ‖E‖2

2k′∑
i=1

σi

(
Π− Π̂

)
≤
√

2k′‖E‖2
∥∥∥Π− Π̂

∥∥∥
F

(5)

We now have the following.

Π− Π̂ = Π(I− Π̂)− (I−Π)Π̂ = ΠΠ̂⊥ −Π⊥Π̂ . (6)

Plugging (6) in (5), we have the following.

|tr
((

Π− Π̂
)
E
)
| ≤
√

2k′‖E‖2
∥∥∥ΠΠ̂⊥ −Π⊥Π̂

∥∥∥
F

≤
√

2k′‖E‖2
(∥∥∥ΠΠ̂⊥

∥∥∥
F

+
∥∥∥Π⊥Π̂

∥∥∥
F

)
=
√

2k′‖E‖2
(∥∥∥ΠΠ̂⊥

∥∥∥
F

+
∥∥∥Π̂Π⊥

∥∥∥
F

)
(7)

≤
√

2k′‖E‖2
(
‖ΠΠ̂⊥‖2 + ‖Π̂Π⊥‖2

)
, (8)

where (7) follows because Π⊥, Π̂ are symmetric matrices (since they are projectors), and for symmetric
E,F , ‖EF‖F = ‖FE‖F .

Let X,Y ∈ <n×n be two symmetric matrices, and let λ1(X) ≥ · · · and λ1(Y ) ≥ · · · be the corresponding
eigenvalues of X and Y . Let Π

(i)
X be the projector to the subspace spanned by the top i singular vectors of

X , where i ≤ n. To bound ‖ΠΠ̂⊥‖2 and ‖Π̂Π⊥‖2, we will use the following result from matrix perturbation
theory, which generalizes [11]:

Theorem 6 (Sin-Θ theorem [32] (Corollary 8)). For any 1 ≤ i, j ≤ n,

(λi(X)− λj+1(Y ))‖Π(i)
X (I−Π

(j)
Y )‖2 ≤ ‖X − Y ‖2 .

Now to bound ‖ΠΠ̂⊥‖2 in (8), we use Theorem 6 with X = ATA and Y = ATA + E. Notice that
‖Y − X‖2 = ‖E‖2, and since E is a symmetric Gaussian ensemble, by Corollary 2.3.6 from [42], with
high probability, ‖E‖2 = O (

√
n∆ε,δ). Also by Weyl’s inequality (Theorem 3) it follows that λj+1(Y ) ≤

λj+1(X) + ‖E‖2. Plugging these bounds in Theorem 6 and recalling that σ2
k − σ2

k′+1 = ω(
√
n∆ε,δ) (by

assumption), we get ‖ΠΠ̂⊥‖2 = O

( √
n∆ε,δ

σ2
k−σ

2
k′+1

)
.

Using the same argument as above, and selecting X = ATA + E and Y = ATA in Theorem 6, we get

‖Π̂Π⊥‖2 = O

( √
n∆ε,δ

σ2
k−σ

2
k′+1

)
. Theorem 5 follows now follows from the bounds on ‖ΠΠ̂⊥‖2 and ‖Π̂Π⊥‖2.

While the bound in Theorem 4 may not be useful when σ2
k−σ2

k′+1 is small, in many cases (even for k′ = k)
the gap is quite large, especially when the number of samples m is large. Here we give two examples. In the
first example, suppose that ai’s are drawn i.i.d. from some distribution with a specturm gap, say α, between
σ2
k and σ2

k+1. Then by the matrix concentration bound, it is easy to see that when m �
√
n log n/α, the

gap is Ω(αm) with high probability. In this case, Theorem 5 provides a better bound than Theorem 4.
In the second example the ai’s are random Gaussian vectors, where there is no eigengap (in this case the
usefulness of PCA is problematic but we use it as an illustration). For m random samples, the gap between
two consecutive eigenvalues is expected to be Ω(

√
m/n2), so in this case, Theorem 5 provides a better upper

bound whenever m = Ω(n5). In both cases, the error gap of Algorithm 1 goes to 0 when m→∞!
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Bounds on residual variance. We observe that by Pythagorean theorem, ‖A − A(VkV
T
k )‖2F = ‖A‖2F −

‖AVk‖2F . Since the bounds in Theorem 4 and 5 are additive, the same error guarantees hold if we are to
minimize the total variance projected in the residual space.

3.2 Closeness to the right singular subspace

Another consequence of Theorem 5 is that when there is a spectrum gap in ATA, V̂k not only captures large
amount of variance, but is also close to the top k right singular subspace Vk of A. In Theorem 7, we provide
the closeness between them, measured by the ‖ · ‖2 norm. We note that the spectrum gap is necessary for
such a bound as otherwise the top k-singular space is not uniquely defined. (In Section 3.4 we provide
another technique (using subspace perturbation) to achieve similar subspace closeness guarantee.)

Theorem 7 (Subspace closeness). Let σ1 ≥ · · · ≥ σn be the singular values of the data matrixA. Assuming
σ2
k − σ2

k+1 = ω(
√
n∆ε,δ), then with high probability,

∥∥∥VkV T
k − V̂kV̂ T

k

∥∥∥
2

= O

( √
n∆ε,δ

σ2
k − σ2

k+1

)
.

Proof. In order to prove the convergence in spectral norm, we need the following theorem.

Theorem 8 (Theorem I.5.5 in [40]). Let X and Y be two k-dimensional subspaces of Rn, with orthogonal
projectors Π and Π̂, respectively. If s1 ≥ · · · sk ≥ 0, · · · are the singular values of ΠΠ̂⊥, then the singular
values of Π− Π̂ are

s1, s1, s2, s2, · · · , sk, sk, 0, · · · .

Following the notation in the proof of Theorem 5, let Π = VkV
T
k and Π̂ = V̂kV̂

T
k be the orthogonal projec-

tors. In the proof of Theorem 5, we already showed that with high probability, ‖ΠΠ̂⊥‖2 = O

( √
n∆ε,δ

σ2
k−σ

2
k+1

)
.

Now, directly by Theorem 8, we have the required convergence in the spectral norm.

We note that the above bound implies an upper bound in terms of the Frobenius norm

∥∥∥VkV T
k − V̂kV̂ T

k

∥∥∥
F

= O

( √
kn∆ε,δ

σ2
k − σ2

k+1

)
.

3.3 Low-rank approximation to the covariance matrix

Ĉ also provides a good low rank approximation toATA in the settings considered in seveal earlier works [21,
26, 22] (see Section 1 for comparison).

Theorem 9 (Low rank approximation). Let A ∈ <m×n be the input data matrix and let Ck be the best
rank-k approximation to ATA. Let Ĉk be the rank-k approximation to Ĉ (output by Algorithm 1). Then
with high probability,

• ‖ATA− Ĉk‖F ≤ ‖ATA− Ck‖F +O (∆ε,δk
√
n).

• ‖ATA− Ĉk‖2 ≤ ‖ATA− Ck‖2 +O (∆ε,δ
√
n).
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In the above, the spectral norm bound can be derived immediately from [1] (Lemma 1.1). For the Frobenius
norm bound, compared to the bound there, we need to prove a strengthened version with a better dependence
on the spectrum of C = ATA.

Proof. Write C = ATA. Denote by Π = VkV
T
k and Π̂ = V̂kV̂

T
k the projection to the rank-k principal

subspace Vk of C and V̂k of Ĉ, respectively. We will use the following facts:

tr(X) ≤ rank(X)‖X‖2 and (9)

‖X‖F =
√

tr(XTX) ≤
√

rank(X)‖X‖2 (10)

First notice

‖C − Ĉk‖F = ‖C − ĈΠ̂‖F = ‖C − (C + E)Π̂‖F
≤ ‖C − CΠ̂‖F + ‖EΠ̂‖F by triangle inequality,

≤ ‖C − CΠ̂‖F +
√
k‖E‖2 by (10). (11)

For ‖C − CΠ̂‖F , we have the following bound.

Lemma 10. ‖C − CΠ̂‖2F ≤ ‖C − CΠ‖2F + 8kσk+1(C)‖E‖2 + 10k‖E‖22.

Proof. We note that in the following C,E, Ĉ,Π, Π̂ are symmetric matrices, and for any projection matrix
P , P 2 = P .

‖C − CΠ̂‖2F = ‖CΠ̂⊥‖2F = tr(C2Π̂⊥)

= tr((Ĉ2 − CE − EC − E2)Π̂⊥)

= tr(Ĉ2Π̂⊥)− tr((CE + EC)Π̂⊥)− tr(E2Π̂⊥) (12)

Since Π̂ is the projection to the rank-k principal subspace of Ĉ, we have

tr(Ĉ2Π̂⊥) ≤ tr(Ĉ2Π⊥) = tr((C + E)2Π⊥)

= tr(C2Π⊥) + tr((CE + EC)Π⊥) + tr(E2Π⊥)

= ‖C − CΠ‖2F + tr((CE + EC)Π⊥) + tr(E2Π⊥) . (13)

Combining (12) and (13), we have

‖C − CΠ̂‖2F ≤ ‖C − CΠ‖2F + tr((CE + EC)(Π⊥ − Π̂⊥)) + tr(E2(Π⊥ − Π̂⊥))

= ‖C − CΠ‖2F + tr((CE + EC)(Π̂−Π)) + tr(E2(Π̂−Π))

by rank(Π̂−Π) ≤ 2k and (9)

≤ ‖C − CΠ‖2F + 2k(‖EC(Π̂−Π)‖2 + ‖E(Π̂−Π)C‖2) + 2k‖E2‖2
≤ ‖C − CΠ‖2F + 4k‖E‖2‖C(Π̂−Π)‖2 + 2k‖E‖22 . (14)

To bound ‖C(Π̂−Π)‖2, we observe that

‖C(Π̂−Π)‖2 = ‖C(Π⊥ − Π̂⊥)‖2 ≤ ‖CΠ⊥‖2 + ‖CΠ̂⊥‖2
≤ ‖CΠ⊥‖2 + ‖ĈΠ̂⊥‖2 + ‖EΠ̂⊥‖2 .

By the definition of Π and Π̂, we have ‖CΠ⊥‖2 = σk+1(C) and ‖ĈΠ̂⊥‖2 = σk+1(Ĉ) ≤ σk+1(C) + ‖E‖2
(by Weyl’s inequality). So ‖C(Π̂ − Π)‖2 ≤ 2(σk+1(C) + ‖E‖2). Plugging it into (14) completes the
proof.
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Now writeX = ‖C−CΠ̂‖F and Y = ‖C−CΠ‖F for brevity. Notice that Y 2 ≥ ‖C−CΠ‖22 = σk+1(C)2.
From Lemma 10 above we have

X2 ≤ Y 2 + 8kY ‖E‖2 + 10k‖E‖22
= (Y + 4k‖E‖2)2 − 16k2‖E‖22 + 10k‖E‖22
≤ (Y + 4k‖E‖2)2 .

Hence, ‖C − CΠ̂‖F ≤ ‖C − CΠ‖F + 4k‖E‖2. Combining this bound with (11) and using the fact that
with probability at least 1− negl(n), ‖E‖2 = O(∆ε,δ

√
n) (Corollary 2.3.6 from [42]) complete the proof.

To prove the second part, recall that Ĉ = ATA+E, where E is a symmetric matrix with entries drawn i.i.d.
from N (0,∆ε,δ

2I). Let σ̂1 ≥ · · · ≥ σ̂n be the eigenvalues of Ĉ and σ2
1 ≥ · · · ≥ σ2

n be the singular values
of ATA. We have the following bound.

‖ATA− Ĉk‖2 ≤ ‖(ATA+ E)− Ĉk‖2 + ‖E‖2
= σ̂2

k+1 + ‖E‖2
≤ σ2

k+1 + 2‖E‖2

The last inequality follows from Weyl’s inequality (Theorem 3). Now using the fact that with probability at
least 1− negl(n), ‖E‖2 = O(∆ε,δ

√
n), the proof for the second part is complete.

3.4 Private subspace recovery via subspace perturbation

Here we show a different randomized response algorithm, in which we apply SVD first toA and then release
a noisy version of the top-k singular subspace of A. We show that we can achieve similar bounds to that
in Theorem 13. One benefit of this algorithm compared to Algorithm 1 can be in the case of running time,
when the matrixATA sparse. The key observation is that when there is a large eigen gap, according to sin-Θ
theorem, the principal singular space is quite “stable” against a unit norm rank one update, and hence we
can perform the SVD to A and then add smaller noise to the top k-singular space to guarantee privacy. But
we need to be careful not to reveal the gap by employing a variant of the propose-test-and-release (PTR)
framework of [14].

Algorithm 2 Private Subspace Recovery
Input: matrix: A ∈ <m×n, rank parameter: k, and privacy parameters: ε, δ > 0.

1: V ΣV T ← Eigenvalue decomposition of ATA. Let |λ1| ≥ · · · ≥ |λn| be the eigenvalues.
2: d̂← (|λk| − |λk+1|) + Lap

(
2
ε

)
.

3: Vk ← Top k eigenvectors of ATA (as a column matrix).
4: Ŵ ← VkV

T
k + E, where E ∈ <n×n is a symmetric matrix where the upper triangle is i.i.d. samples

from N
(

0,
∆ε,δ

2

(d̂−2(1+log(1/δ)/ε))2

)
, where ∆ε,δ =

1+
√

2 log(1/δ)

ε .

5: Let V̂ Σ̂V̂ T be the eigenvalue decomposition of Ŵ and let V̂k be the top k eigenvectors of V̂ (as a row
matrix). Output V̂kV̂ T

k .

3.4.1 Privacy analysis of subspace recovery via subspace perturbation

Theorem 11 (Privacy guarantee). Algorithm 2 is (2ε, 2δ)-differentially private.
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Proof. We prove the privacy guarantee in three stages. In the first stage, we will show that Step 2 in
Algorithm 2 is ε-differentially private. In the second stage, by the property of Laplace distribution we show
that with probability at least 1 − δ, in Step 2 the random variable d̂ − 2 log(1/δ)/ε ≤ |λk| − |λk+1|. In
the last stage, by the use of sin-Θ theorem, we show that it suffices to add Gaussian noise with standard
deviation Õ(1/(αε)) to the projector VkV T

k to obtain the final privacy guarantee.

Stage 1. For any matrix A′ which differ in one row from A, let G = ATA−A′TA′. By the L2-bound on the
rows of A and A′, the highest absolute value for the eigenvalue of G is at most two. By Weyl’s eigenvalue
perturbation guarantee (Theorem 3), it follows that for any i ∈ [p],

∣∣λi(ATA)− λi(A′TA′)
∣∣ ≤ 1. Hence,

by standard Laplace mechanism argument from [15], it follows that Step 2 is ε-differentially private.

Stage 2. By the tail bound on Laplace distribution it follows that that with probability at least 1− δ, in Step
2 the random variable d̂− 2 log(1/δ)/ε ≤ |λk(ATA)− λk+1(ATA)|.

Stage 3. We need the matrix perturbation theorem to complete the proof. This version of the Sin-Θ theorem
bounds the Frobenius norm rather than the spectral norm in Theorem 6 in Section 3.1.

Theorem 12 (Sin-Θ theorem [11, 30]). Let ATA =
(
V T

1 V T
2

)(Σ1 0
0 Σ2

)(
V1

V2

)
be a real valued matrix

and let G be a real valued symmetric perturbation matrix. Let Σ̃1 and Σ̃2 be the corresponding singular
values for the perturbed matrix ATA+G. If

∣∣∣σmin(Σ̃1)− σmax(Σ2)
∣∣∣ ≥ α and σmin(Σ̃1) ≥ α, then

∥∥ΠATA −ΠATA+G

∥∥
F
≤ ‖G‖F

α
.

Here ΠATA refers to the orthogonal projectors onto the subspace spanned by ATA.

If
∣∣λk(ATA)− λk+1(ATA)

∣∣ ≥ α, then by Weyl’s inequality, it follows that
∣∣λk(A′TA′)− λk+1(ATA)

∣∣ ≥
(α− 2). Hence by Theorem 12, we have ‖V ′kV ′Tk − VkV T

k ‖F ≤
‖G‖F
α−2 = 2

α−2 , where V ′k corresponds to the
top k eigenvectors of A′TA′. Now by standard differential privacy argument for Gaussian mechanism, the
proof is complete.

3.4.2 Utility analysis of subspace recovery via subspace perturbation

In this section we provide the utility guarantee for Algorithm 2 by bounding the spectral norm of the differ-
ence between V̂kV̂ T

k and VkV T
k .

Theorem 13 (Subspace convergence in spectral norm). Let σ1 ≥ · · · ≥ σn be the singular values of the
data matrixA. Under the randomness of the algorithm, with probability at least 1−2δ, Algorithm 2 outputs
a k-dimensional subspace V̂k such that∥∥∥VkV T

k − V̂kV̂ T
k

∥∥∥
2

= O

(
∆ε,δ
√
n

σ2
k − σ2

k+1 − log(1/δ)/ε

)
.

Proof. From the spectral norm bound on symmetric random Gaussian matrices (see Corollary 2.3.6 from
[42]), we know that with high probability, ‖E‖2 = O

(
∆ε,δ
√
n

d̂−(1+log(1/δ)/ε)

)
, where E is the error matrix in

Algorithm 2 and d̂ is as defined in Step 2 of Algorithm 2. Notice that by the tail property of Laplace
distribution, with probability at least 1 − δ, d̂ ≥ σ2

k − σ2
k+1 − 2 log(1/δ)/ε. Thus with probability at least

1− 2δ, ‖E‖2 = O

(
∆ε,δ
√
n

σ2
k−σ

2
k+1−log(1/δ)/ε

)
.
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By the definition of Ŵ in Algorithm 2, ‖Ŵ − VkV T
k ‖2 = ‖E‖2. Also, from Weyl’s inequality (Theorem 3)

we have
∣∣∣σi(Ŵ )− σi(VkV T

k )
∣∣∣ ≤ ‖E‖2 for all i ∈ [n]. This in particular implies that, σk+1(W ) is at most

‖E‖2. Let X = Ŵ − V̂ T
k V̂k. By the above argument, ‖X‖2 ≤ ‖E‖2. Hence, we have the following.

‖V̂kV̂ T
k − VkV T

k ‖2 = ‖(Ŵ − VkV T
k )−X‖2

≤ ‖Ŵ − VkV T
k ‖2 + ‖X‖2

≤ 2‖E‖2

Plugging in the bound for ‖E‖2 computed earlier completes the proof the first part of the theorem.

Note that the above bound immediately implies an error bound on the Frobenius norm as for any matrix B
of rank k, ‖B‖F ≤

√
k‖B‖2, and V̂kV̂ T

k − VkV T
k has rank at most 2k. The bound holds as long as the gap

is at least log(1/δ)/ε.

4 Private Online Singular Subspace Computation

The design of the private online algorithm turns out to be closedly related to the class of follow the perturbed
leader (FPL) algorithms of [25]. Such algorithms add regularization noise to the problem to reduce gener-
alization error and hence the regret. This noise also reduces the dependence of the algorithm outcome on
individual data items and therefore is aligned with the goal of providing privacy. Recall that Pk denotes the
set of k-dimensional orthogonal projectors in <n. Define OPT = max

P∈Pk

∑m
t=1 ‖Pat‖2. We show that by us-

ing the Gaussian noise for the regularization noise, we can achieve the regret bound (defined in Section 2.4)
of Õ(

√
kOPTn1/4). As can be shown from the lower bound for the offline problem, the Õ(

√
kOPTn1/4)

bound is nearly optimal for OPT = O(k
√
n). Therefore the n1/4 gap between the regret of the non-private

and private algorithms is essentially tight.

We now provide the details of our online algorithm. We will first present a FPL algorithm that gives regret
of Õ(

√
kOPTn1/4). The analysis of the algorithm borrows techniques from differential privacy but the

algorithm itself is not private. We then show, by using the tree based aggregation technique, we can obtain
a private online mechanism with similar regret bound with only extra log(m/δ) factors.

4.1 An FPL algorithm for online singular subspace computation

For us the most interesting feature of the algorithm and its corresponding regret analysis is that differential
privacy acts as a tool in providing a low regret guarantee. The key ingredient is the exploitation of the
intuition that differential privacy ensures robustness [14, 39], which in turn guarantees low regret. More
concretely, following [25], the analysis is done in two steps. First we design our FPL algorithm to be
differentially private, i.e. producing similar results under any single data item change. In particular, the
output is similar compared to the be the perturbed leader (BPL) algorithm in which we include the next
data item. Secondly, we show that the BPL algorithm has small regret as the noise we added to the FPL
algorithm is small. Notice that the privacy property is crucial in guaranteeing the regret bound.

Algorithm 3 is the formal description of our algorithm. At a high-level Algorithm 3 is similar to Algorithm
1, except it repeatedly executes Algorithm 1 at each time step t ∈ [m] on all the data seen so far.

Theorem 14 (Regret guarantee). For ε < 1, δ < 1/m, the regret guarantee for Algorithm 3 is the following.

E[Regret] = O

(
k
√
n logm

ε
+ εOPT + 1

)
.
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Algorithm 3 Online singular subspace computation.
Input: Vectors a1, . . . , am ∈ <n where ‖at‖ ≤ 1, rank parameter: k, regularization parameter: ε, δ.
Output: k-dimensional subspaces V̂1, . . . , V̂m.

1: Choose an arbitrary rank k subspace V̂1.
2: for t← 1 to m do
3: Get a reward Rt = ‖V̂ T

t at‖22 = tr(aTt V̂tV̂
T
t at) and receive input at.

4: Compute Ct =
t∑

τ=1
aτa

T
τ

5: Compute Ĉt = Ct + Et, where Et is sampled as in Algorithm 1 using the parameters ε, δ.
6: Compute V̂t+1 as the top k singular subspace of Ĉt.
7: end for

Write R =
∑m

t=1Rt =
∑m

t=1 ‖V̂ T
t at‖22. We define R′ =

∑m
t=1 ‖V̂ T

t+1at‖22 as the reward for the be the
perturbed leader algorithm (BPL). Notice that in the definition of R′, we project at to V̂t+1, hence the name
of BPL. The proof of Theorem 14 consists of two steps.

Lemma 15 (FPL is close to BPL). E[R′] ≤ e2εE[R] +O(δm/ε).

Lemma 16 (BPL has low regret). OPT ≤ E[R′] +O(k
√
n∆ε,δ).

From the above two lemmas we have that

E[Regret] = OPT− E[R] ≤ OPT− e−2εE[R′] +O(δm/ε) = O(εOPT + k
√
n∆ε,δ + δm/ε) .

Recall that ∆ε,δ =
1+
√

2 log(1/δ)

ε , and by ε < 1 and δ = 1/m, Theorem 14 follows. We now prove
Lemma 15 and 16.

Proof. (Lemma 15) By Theorem 2, Ĉt is (ε, δ) private with respect to any change aaT (‖a‖2 ≤ 1) to Ct.
Now define

S = {V : Prob[V̂t+1 = V ] ≥ e2εProb[V̂t = V ]} .

Since Ct+1 = Ct + at+1a
T
t+1, by the property of (ε, δ)-differential privacy [27], Prob[V̂t+1 ∈ S] = O(δ/ε).

Since for any projection V , ‖V Tat‖2 ≤ 1, E[R′] ≤ e2εE[R] + O(δm/ε), where the first term accounts for
the case of V /∈ S, and second for V ∈ S.

Proof. (Lemma 16) Observe that ‖V Ta‖2 = tr(V V TaaT ) is a linear function in V V T and aaT . In addition,
all the Et’s are drawn from the same distribution, denoted by E , according to Algorithm 1. We can apply
the same argument in [25] and arrive at:

E[R′] ≥ OPT− EE∼E [ max
V1,V2∈Pk

tr((V1 − V2)E)] . (15)

In the above, we used the observation that in expectation the following two strategies in Line 5 (of Algorithm
3) are equivalent: i) sample the noise matrix E1 once and set all the rest Et = E1, and ii) sample Et’s i.i.d.
Furthermore,

EE∼E [ max
V1,V2∈Pk

tr((V1 − V2)E)] ≤ 2kE[max
E∼E
‖E‖2] = O(k

√
n∆ε,δ) . (16)

The last step in (16) follows from ‖E‖2 = O(
√
n∆ε,δ) with high probability. Plugging (16) in (15), we

arrive at our conclusion.

By setting ε =

√
k
√
n logm
OPT and δ = 1/m, we have the following regret bound.
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Corollary 17. Algorithm 3 has regret O
(√

kOPTn1/4
√

logm
)

.

The improved regret bound of Algorithm 3 is due to that we allow a relaxed (ε, δ) privacy on Ĉt. If one
insists on pure ε privacy, by sampling from Laplace distribution for example, then per [26], the best possible
gap would be O(n), i.e. (16) would have a factor of n, instead of

√
n. This would translate to

√
n factor in

the final regret bound.

4.2 Private online singular subspace computation

While each step in Algorithm 3 is (ε, δ) private, overall it is not. One can of course make each step
O(ε/

√
m, δ′) private and apply composition theorem to obtain an (ε, δ) private algorithm. But this would

induce a large factor in the regret bound. We now apply the tree-based aggregation scheme (Section 2.3.2)
to generate the noise to obtain an (ε, δ)-private algorithm which is only O(logO(1)m) factor worse. This is
by observing it sufficient to obtain a private mechanism for Ct =

∑t
τ=1 aτa

T
τ , for t = 1, · · · ,m. By the

tree-based aggregation scheme, we can obtain, privately, Ĉt = Ct +E′t where each entry of E′t is i.i.d. with
variance log3(m/δ)∆ε,δ

2. Plugging it into Algorithm 3, we obtain the bound claimed in Theorem 14.

4.3 Choice of Privacy Parameter ε for Optimal Regret

In the above, we assume OPT is known so we can tune ε according to OPT to obtain the optimal regret
bound. When OPT is not known, by that OPT ≤ m, we can obtain the bound by replacing OPT by m in
the above bounds. Or we can apply the standard doubling trick (see Section 2.3.1. in [37]) to obtain a bound
with an extra logm factor. We provide the details in Algorithm 4.

Let (ε, δ) be the be the required privacy parameters. The main idea in using the doubling trick is as follows:

First, start with an initial guess about OPT, denote it by OPTapprox. Choose ε0 =
√

k
√
n log2(m/δ)
OPTapprox

while
making sure that the initial guess OPTapprox is such that ε0 ≤ ε is satisfied. Second, run the iterative steps
of the FPL algorithm until the sum of the squares of the top k singular values of the data matrix so far (call
it X) exceeds OPTapprox. Since the algorithm only has differentially private access to the data matrix, the

condition is set to X > OPTapprox − 10k
√
n log2(m/δ)
ε . If the condition is satisfied, then increase OPTapprox

by a factor of two and restart the execution.

Theorem 18 (Regret guarantee). If δ < 1/m2, ε < 0.1, m = O(poly n) and OPT > k
√
n log2(m/δ)

ε2
, then

the regret guarantee for Algorithm 4 is the following.

E[Regret] = O

(√
kOPT

√
n log5(m/δ)

)
.

Proof. Let π1, π2, · · · be the time epochs at which Line 10 (of Algorithm 4) gets executed. Let Zπi be
the total variance captured by the top k right singular values for (aπi+1, · · · , aπi+1). First notice that if
m = O(poly n), then with probability at least 1−negl(m), at any time step t, the value of |X−Zπi | in Line
8 is at most 10k

√
n log2(m/δ)
ε . This bound follows from Theorem 4. Therefore, within the time window πi+1

and πi+1, Zπi−1 ≤ OPTapprox ≤ Zπi−1 + 10k
√
n log2(m/δ)
ε . Moreover, there are most dlogOPTe ≤ dlogme

executions of Line 10.
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Algorithm 4 Private online singular vector computation without variance bound
Input: matrix: A ∈ <m×n (available online with rows a1 ∈ <n · · · am ∈ <n) , rank parameter: k, privacy

parameters: ε, δ > 0.
1: OPTapprox ← k

√
n log2(m/δ)

ε2
.

2: Choose an arbitrary rank k subspace V1. Initialize the tree based aggregation in Section 2.3.2 with

privacy parameters (ε0, δ), where ε0 =
√

k
√
n log2(m/δ)
OPTapprox

.
3: repeat
4: Get a reward of ‖V T

t at‖22 = tr(V T
t ata

T
t Vt) and receive input at.

5: Compute Qt =
t∑

τ=1
aτa

T
τ via tree based aggregation in Section 2.3.2.

6: α ← # of ones in the binary representation of t. Zt ← Qt +
dlogme−α∑

j=1
Ej , where Ej is a symmetric

n× n matrix with each entry drawn i.i.d. from N
(

0, 50 log3(m/δ)
ε20

)
.

7: Vt+1 ← Top k right singular vectors of Zt.
8: X ← sum of top k eigenvalues of Qt.
9: until X > OPTapprox − 10k

√
n log2(m/δ)
ε

10: OPTapprox ← OPTapprox × 2. Re-initialize time counter t← 1. Execute from Line 2 onwards.

By Theorem 14, and the choice of privacy parameter in Line 2 in each of these time windows [πi + 1, πi+1],

the regret for the sequence (aπi+1, · · · , aπi+1) is O
(√

kOPT
√
n log2(m/δ)

)
. Since Line 10 (of Algo-

rithm 4) executes logm times, therefore, the final regret is O
(√

kOPT
√
n log5(m/δ)

)
.

5 Lower Bounds

Bun, Ullman and Vadhan [6] recently showed that the existence of fingerprinting codes can be used to prove
lower bounds on the error of (ε, δ)-differentially private mechanisms. We next show that using some of
their tools, with some extra effort, one can derive a lower bound for private subspace estimation that nearly
matches our upper bounds.

Fingerprinting codes were introduced by Boneh and Shaw [5] for watermarking. Informally, a fingerprinting
code is a (distribution over) collection of codewords, one to each agent which has the property that no
coalition of agents with access only to its own codewords will be able to produce a valid-looking codeword
without at least one coalition member being identified. Formally, we have a pair of (randomized) algorithms
Gen and Trace. Gen outputs a codebookC consisting of t vector c1, . . . ct ∈ {−1, 1}n with ci representing
the codeword given to user i. Given a subset S ⊆ [t] of agents, let cS ∈ {−1, 0, 1}n be defined as

cSj =


+1 if cij = +1∀i ∈ S
−1 if cij = −1∀i ∈ S
0 otherwise

Let F+(S) = {j ∈ [n] : cSj = 1} and similarly F−(S) = {j ∈ [n] : cSj = −1}. Let F (S) =
F+(S) ∪ F−(S) denote the set of unanimous coordinates in S where all codewords in S agree. We say that
a vector c′ ∈ {−1, 1}n is β-valid for S if c′j agrees with cSj in at least a (1 − β)|F (S)| of the locations in
F (S). In other words, Prj∼F (S)[c

′
j = cSj ] ≥ 1 − β. (Robust) Fingerprinting codes have the property that
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given a c′ that is β-valid for a coalition S, the tracing algorithm Trace outputs a member of the coalition
with high probability. We use the following definition (essentially) from [6].

Definition 19 (Weakly Robust Fingerprinting Codes). Let t, n, f be integers and let ξ, β ∈ [0, 1]. A
pair of algorithms (Gen,Trace) is a (t, n, f, β, ξ)-fingerprinting code if Gen outputs a codebook C =
{c1, . . . , ct} ⊆ {−1, 1}n and for every possible (possibly randomized) adversary Apirate, and for every
coalition S ⊆ [t],

1. Pr[Trace(C, c′) ∈ S | c′ is β-valid for S] ≥ 1− ξ.
2. Pr[Trace(C, c′) ∈ [t] \ S] ≤ ξ.
3. Pr[|F (S)| ≥ f ] ≥ 1− ξ.

where c′ = Apirate(ci : i ∈ S) and the probability is taken over the coins of Gen,Trace and Apirate.

Bun et al. [6] show that the fingerprinting codes construction of Tardos [43] is weakly robust.

Theorem 20. For every n ∈ N and ξ ∈ [0, 1], the construction of [43] gives an (t, n, f, 1
20 , ξ) fingerprinting

code such that

t = Ω(
√
n/ log(n/ξ)) f = Ω(t

3
2 )

Finally, the following theorem, essentially from [6] shows how fingerprinting codes lead to lower bounds
for differentially private mechanisms (by setting ξ, δ = O(1/n2)).

Theorem 21. LetM : Dm → D be an (ε, δ)-DP mechanism with D = {−1, 1}n. If (m + 1, n, f, β, ξ)-
weakly robust fingerprinting codes exist with security ξ ≤ 1

2 , then

Pr[M(C|S) is β-valid for S] ≤ m(2ξ exp(ε) + δ).

Proof. Let M′(C|S) = Trace(C,M(C|S)), and let p denote Pr[M(C|S) is β-valid for S]. Then by the
first property of fingerprinting codes, Pr[M′(C|[m]) ∈ [m]] ≥ p(1 − ξ). Thus there exists an i ∈ [m] such

that Pr[M′(C|[m]) = i] ≥ p(1−ξ)
m .

Let S′ = [m+ 1]\{i}. Then by the second property of fingerprinting codes, Pr[M′(C|S′) = i] ≤ ξ]. Since
M′ satisfies (ε, δ)-DP, it follows that

p(1− ξ)
m

≤ exp(ε)ξ + δ.

Rearranging gives the result.

Because Differential Privacy is closed under post-processing, this says that a differentially private mecha-
nismM cannot even produce a vector in <n whose sign agree with C|S in a (1−β) fraction of the locations
in F (S) (or else we could round this vector and contradict the theorem).

5.1 Lower bound for eigenvector computation

We say a unit vector v is an α-useful eigenvector for a matrix A if ‖Av‖22 ≥ ‖Av′‖22 − α for every unit
vector v′. The main result of this section says that no differentially private mechanism can output a v that
is o(m)-useful on any m× n matrix, if (m,n, f, β, ξ)-fingerprinting codes exist for appropriate f, β, ξ. At
a high level, we construct a hard matrix by taking a fingerprinting codes matrix, padding it with many 1s,
and suitably scaling to make rows norm 1. For the top eigenvector v1 of this matrix, either v1 or −v1 must
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agree with C|S in sign on all the consensus locations, and we can use the padding bits to pick between v1

and −v1. Lemma 23 is a robust version of this statement. The padding also ensures a large gap between the
first and the second eigenvalue (Lemma 24), so that any o(m)-good vector must be very close to v1. Thus
we can use any o(m)-good vector to construct a β-valid vector for appropriate β. We next give the details.

Theorem 22. There is a universal constant K such that the following holds. Suppose there is an (ε, δ)-DP
mechanism that for any matrix A ∈ <m×16n with each row having norm at most 1 outputs an γm-useful
eigenvector of A with probability p. Then there is an (ε, δ)-DP mechanism that on input S = {c1, . . . , cm}
from a (m+ 1, n, f, β0, ξ)-fingerprinting code outputs a c′ that is Kγ-valid for S with probability p− ξ −
exp(−Ω(γ2f)).

Algorithm 5 Pirate algorithm Apirate

Input: Set of codewords S = {c1, . . . , cm} with ci ∈ {−1, 1}n. Oracle access to Mechanism M for
privately computing top right singular vector.

1: Let pad← 115n.
2: for i = 1, . . . ,m do
3: Let c(1)

i ← ci ◦ pad.
4: Let c(2)

i ← c
(1)
i /
√

16n.
5: end for
6: Let P be a random permutation matrix. Replace each 1 in P by a −1 with probability 1

2 .

7: Let A be the m× n matrix with the transposes of c(2)
i ’s as its rows.

8: Let A′ ← AP .
9: Let v ←M(A′) be the γm-useful right singular vector output byM.

10: Let w ← Pv.
11: if

∑15n
j=n+1wj ≤ 0 then

12: w ← −w.
13: end if
14: for j = 1 . . . n do
15: c′j = sgn(wj).
16: end for
17: return c′

Proof. Let M be a differentially private mechanism that outputs a γm-useful eigenvector for any input
matrix A. We will use it as a subroutine to construct a differentially private mechanismM′ that outputs a
β-valid codeword for an appropriate β.

The mechanismM′ works as follows. Let c1, . . . , cm be the input vectors toM′. We first set pad to the
vector 115n append it to each of the ci’s to get c(1)

i ∈ <16n. We then scale each c(1)
i to get a unit vector,

by setting c(2)
i = c

(1)
i /
√

16n. Let A be the matrix with rows (transpose of) c(2)
i . Finally, we pick a random

permutation matrix P and replace each 1 by −1 with probability 1
2 . We set A′ = AP . Thus A′ is obtained

by randomly permuting the columns of A and randomizing the sign of each column. We run the mechanism
M on A′, to get a γm-useful vector v.

We then postprocess v as follows: we undo the signed permutation P and without loss of generality, assume
that sum of entries of Pv on the pad locations is non-negative (if not, replace v by −v). We then strip off
the padding and set c′j = sgn((Pv)j) for each j ∈ [n]. This defines the output ofM′. The privacy ofM′
follows immediately from the post-processing property of differential privacy and the fact that pad and P
did not depend on the data ci’s. We next argue that, conditioned on v being γ-useful, c′ is β-valid.
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We first establish two useful properties of the eigen-decomposition of A′. The permutation P does not
change the eigen-spectrum so it suffices to prove the results for A. Let F̂ denote the unanimous locations in
c

(1)
i (i.e. the non-zero locations in cS along with the padding bits). Slightly abusing notation, we extend cS

to be a vector in {−1, 0, 1}16n with cSj = 1 for j ≥ n as all c(1)
i ’s have a 1 in the padding locations. The first

lemma says the the top eigenvector must agree with cS in sign on F̂ , and moreover must be non-negligible
on these coordinates.

Lemma 23. Let v1 be the top right singular vector of A such that
∑16n

j=n+1 v1j ≥ 0. Then for any j ∈ F̂ ,
sgn(v1j) = cSj and |v1j | ≥ 1

40
√
n

.

Proof. Let ai = c
(2)
i ∈ <16n. Since

∑
i〈ai, v1〉2 ≥ 15m

16 , it follows that at least for one i, it is the case that
〈ai, v1〉2 ≥ 15

16 . Since ai|[n] has norm 1
4 , it follows that the contribution to the dot product from the pad bits

is at least
√

15−1
4 . This in turn implies that for all i, 〈ai, v1〉 ≥

√
15−2
4 ≥ 1

4 .

Let j ∈ F̂ with cSj = 1 and suppose that v1j ≤ 1
40
√
n

. Let ej ∈ <16n be a vector with one only in
the j-th coordinate. We will argue that if v1 is nearly orthogonal to ej , then rotating v1 slightly in the ej
direction gives a better Raleigh quotient, contradicting the optimaility of v1. Indeed let e′j = ej/100

√
n.

Thus 〈e′j , v1〉 ≤ 1
4000n , which implies that ‖v1 + e′j‖22 ≤ ‖v1‖22 + ‖e′j‖22 + 2〈e′j , v1〉 ≤ 1 + 1

10000n + 2
4000n ≤

1 + 6
10000n . On the other hand, 〈ai, e′j〉 ≥ 1

400n for each i, so that (〈ai, (v1 + e′j)〉2−〈ai, v1〉2) ≥ 1
400n ·

1
4 ≥

1
1600n . In other words ‖A(v1 + e′j)‖22 ≥ ‖Av1‖22(1 + 1

1600n), contradicting the optimality of v1. The case of
csj = −1 is identical.

Lemma 24. For the matrix A as defined, σ2
1 ≥ 15m

16 . Thus σ2
1 − σ2

2 ≥ 7m
8 .

Proof. The vector vpad that is zero of the first n coordinates, and equals pad/
√

16n on the remaining
coordinates has norm less than 1 and gives ‖Avpad‖22 = 15nm

16n . This implies the first part of the lemma. The
second part follows from noting that the sum of all σ2

i is m.

Let v be a γ-useful vector output by the Algorithm M and let w = Pv. Let v1 be the top right singular
vector of A. From Lemma 24, it follows that, 〈w, v1〉2 ≥ (1 − 4γ/3) so that ‖w − v1‖22 ≤ 8γ/3. By
Lemma 23, every coordinate in F̂ such that sgn(w)j is different from cSj contributes 1

1600n to the squared
distance ‖w − v1‖2. It follows that the sign is wrong on at most (1600n)(8γ/3) = 12800γn/3 of the
F̂ ≥ 15n coordinates.

The permutation P being random and unknown to the mechanismM ensures that the fraction of mistakes
on F is not too different from that on F̂ . Formally, call a co-ordinate in F̂ bad if sgn(w)j 6= cSj . Recall
that P randomizes both the location and the sign of the bits in cSj . Thus from the point of view of M,
F is a random subset of F̂ of size |F |. Thus the number of bad co-ordinates in F is expected to be at
most (12800γn

3 )(|F |/15n). Except with probability ξ, |F | ≥ f . Moreover by concentration bounds for
the hypergeometric distribution, the probability that the number of bad coordinates in F exceeds twice its
expectation is at most exp(−1

2(12800γ
45 )2f). The claim follows.

Combining with Theorems 20 and 21, we get

Corollary 25. There is a universal constant γ such that the following holds for m = γ
√
n/ log n. LetM

be a(1, 1/n2)-DP mechanism that takes as input an m× 16n matrix A with each row having norm at most
1, and outputs a unit vector v. Then the probability thatM(A) is γm-useful is at most 1

n .

Proof. LetM be an (ε, δ)-DP mechanism that on input an m × n matrix A outputs an approximate right
singular vector. Applying Theorem 20 with ξ = 1

n3 , we get fingerprinting codes with m = t − 1 =

c
√
n/ log n and f ≥

√
n. Let p be the probabilty thatM outputs a γ1

√
m-useful vector v for γ1 = 1/20K
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where K is the constant in Theorem 22. Applying Theorem 22 on M, we get a private mechanism that
outputs a 1

20 valid c′ with probability p′ ≥ p− ξ − exp(−Ω(f2)). Plugging into Theorem 21, and choosing
γ appropriately, the theorem follows.

5.2 Interlude: The List Culling Game

To help understand the proof for the lower bound for the subspace estimation, we introduce the List Culling
Game. In this game, Dave has a vector v ∈ {−1, 1}n. Alice has a version v′ ∈ {−1, 1, ?}n of v where f
of the bits chosen at random have been replaced by ?; we will be interested in the setting where f is o(n).
Dave, without knowing which bits are erased, sends Alice a list L = {w1, . . . , w|L|} of {−1, 1}n vectors
with the promise that at least one of the wi’s has Hamming distance at most βn from v for a small constant
β < 1/20. Alice wins if she can fill in the ?’s with error rate smaller than 1

3 , else Dave wins. Clearly if L
is allowed to be size 2n, then Dave can send the list of all binary vector, thus leaking no information and
making it very unlikely that Alice can win. We will be interested in the question: For what values of L can
Alice win?

The most natural strategy for Alice is the most-agreement-strategy: find a wi that has the largest agreement
on the non-? locations of v′ and fill in the ?’s using it. We next argue that this strategy fails for lists size

(
n
f

)
.

Indeed consider the list containing all vectors at Hamming distance exactly f from v. This list contains the
vector w that agrees with v′ on all non-? locations, and hence will be the one picked by the most-agreement-
strategy. However, this vector w is wrong everywhere on the ? locations!

This most-agreement-strategy for Alice thus fails badly once L ≥
(
n
f

)
. One may conjecture that beyond this

threshold, Alice cannot win and instead Dave has a strategy that wins with non-negligible probability. We
show that this conjecture is false: there is a strategy for Alice that wins with high probability even when the
list size L is exp(cn) for some constant c.

The somewhat counter-intuitive strategy for Alice is as follows: she picks a random half of the non-?
locations and finds a wi that maximizes the agreement on this subset. This most-agreement-on-random-
half strategy thus uses only half the information that Alice has about v! Consider a specific wi that has
Hamming distance more than 2βn from v, and let w∗ be the promised vector in L that has Hamming
distance at most βn from v. Alice tests wi and w∗ on a random n−f

2 subset, and the probability that wi
has larger agreement than w∗ on this random subset is at most exp(−Ω(β2n)). Thus the probability that
any wi with Hamming distance larger than 2βn is chosen by the most-agreement-on-random-half strategy
is L exp(−Ω(β2n)). Finally, if the chosen wi has Hamming distance less than 2βn from v, the probability
that it has disagreement more than 5βf on the ? locations is at most exp(−Ω(β2f)). Thus for list size up to
exp(cn) for a constant c, Alice wins with high probability. We have thus argued that

Theorem 26. There is an absolute constant γ > 0 such that for any f and large enough n, the following
holds. There is a strategy for Alice in the list culling game such that for any valid list L of size exp(γn),
Alice wins with probability at least 1− exp(−γf).

5.3 Lower bound for subspace estimation

We say a k-dimensional projection matrix Πk v is an α-useful rank-k subspace for a matrixA if ‖ΠkA
T ‖2F ≥

‖Π′kAT ‖2F −α for any rank-k projection matrix Π′k. The main result of this section is analagous to the result
for private eigenvectors. To get this result, we combine k of the m× 16n matrices from the previous section
into one km×16n matrix. When k is small (at most n/m) we can rotate these k matrices so that their spans
are all orthogonal and they do not interfere with each other and the “loss” of about m from each of them
results in a total loss of km. For larger k, some interference is unavoidable, but rotating them in random
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directions suffices to make them nearly orthogonal; this is the content of Lemma 30. Additionally, the
eigenvalue separation result of the previous section is not sufficient any more as we output a k-dimensional
subspace instead of a vector. We end up needing tighter control on the second (and thus smalller) eigenvalue
of A, which we obtain in Lemma 28 by using the specific construction of Tardos and results from random
matrix theory. A bigger difficulty comes from the fact that the output is now a k-dimensional subspace rather
than a vector, and we need to extract a vector in this subspace that we will round to a β-valid vector for S.
In the vector case, we used the padding bits to pick between w and −w; now we use them to pick amongst
an exp(O(k))-sized net of the subspace. This is where the List Culling Game is useful: the usefuleness of
the subspace guarantees that one of these net points, appropriately rounded is β-valid. Using half of the
padding bits to pick out the correct one allows us to complete the proof. Full details follow.

Theorem 27. There are universal constantsK,K ′ such that the following holds for any k ≤ n/K. Suppose
there is an (ε, δ)-DP mechanism that for any matrix A ∈ <m×16n with with each row having norm at most
1 outputs a γkm-useful rank-k projection matrix Πk A with probability p. Then there is an (ε, δ)-DP
mechanism that on a sample S = {c1, . . . , cm} from an (m+ 1, n, f, β0, ξ)-fingerprinting code outputs a c′

that is Kγ-valid for S with probability K ′γp− ξ − exp(−Ω(γ2f)).

Algorithm 6 Pirate algorithm Apirate

Input: Set of codewords S = {c1, . . . , cm} with ci ∈ {−1, 1}n. Oracle access to Mechanism M for
privately computing top k subspace of a matrix. Sampling access to distribution D from which S is
sampled.

1: for i = 1 . . . k do
2: Sample Si = {ci1, . . . , cim} from D.
3: end for
4: Pick r uniformly at random from [k] and set Sr ← S.
5: Let pad← 115n.
6: for i = 1 . . . k do
7: for j = 1 . . .m do
8: Let c(1)

ij ← cij ◦ pad.

9: Let c(2)
ij ← c

(1)
ij /
√

16n.
10: end for
11: Let P (i) be a random permutation matrix. Replace each 1 in P by a −1 with probability 1

2 .

12: Let A(i) be the m× n matrix with the transposes of c(2)
i as it’s rows.

13: Let R(i) be a random n× n rotation matrix.
14: Let B(i) ← A(i)P (i)R(i).
15: end for
16: Let B be formed by vertically concatenating B(i)’s for i = 1, . . . , k in random order.
17: Let Πk ←M(B) be the γmk-useful rank-k projection matrix output byM.
18: Let Π

(r)
k = Πk(R

(r))T (P (r))T .
19: Let θ ← 1

80
√
n

.

20: Let w be the vector in Span(Πr
k) such that

∑16n
j=8n+1 1(|wj | ≥ θ) is maximized.

21: for j = 1 . . . n do
22: c′j = sgn(wj).
23: end for
24: return c′

Proof. Let D be the distribution of the fingerprinting code and let S1, . . . , Sk−1 be k − 1 fresh independent
samples from D and let Sk = S. Thus the Si’s are identically and independently distributed. We randomly
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permute the indices so that S is indistinguishable from any other sample Sj . We will show a mechanism
that outputs a Kγ-valid codeword for S with non-trivial probability.

Towards that goal, we transform each Si = {ci1, . . . , cim} to a matrix A(i) in a manner similar to the proof
of Theorem 22. We first set pad = 115n and append it to each of the cij’s to get c(1)

ij . We then scale each

vector to get a unit vector, thus setting c(2)
ij = c

(1)
ij /
√

16n. Let A(i) be the matrix with rows c(2)
ij . Next, we

pick a random permutation matrix P (i) with a random sign on each entry, and a random rotation matrix R(i)

and set B(i) = A(i)P (i)R(i). Thus B(i) is obtained by randomly permuting the columns of A(i), randomly
flipping the sign of each column, and then randomly rotating the rows of the resulting matrix5. Finally, we
set B to the km× 16n matrix formed by vertically concatenating the B(i)’s.

Let Πk be the γkm-useful rank-k projection matrix returned by our private mechanism on input B. We will
postprocess Πk to construct a valid pirate codeword. Let S = Sr and let Π

(r)
k = Πk(R

(r))T (P (r))T . For
a vector v, a parameter θ, and a location j, we say that v θ-agrees with cS in location j if cSjvj ≥ θ. Let
H = {8n+ 1, . . . , 16n} be the second half of the indices, all corresponding to padding bits. Let w be a unit
vector in Span(Π

(r)
k ) such that w 1

80
√
n

-agrees with cS in the maximum number of indices in H . We strip
off the padding from w and set c′j = sgn(vj). We note that this process did not use S except through the
differentially private output Πk, and hence the mechanism that outputs c′ is differentially private. We now
argue that c′ is Kγ-valid with non-trivial probability, for a suitable constant K.

Let v(i)
1 denote the top right singular vector ofB(i) and recall from Lemma 24 that σ1(B(i))2 = ‖B(i)v

(i)
1 ‖22 ≥

15m
16 . Thus the projection matrix Π̃k that projects to the span of {v(i)

1 }ki=1 satisfies
∑

i ‖Π̃k(B
(i))T ‖2F ≥∑

i σ1(B(i))2 ≥ 15mk
16 . Let lossi = σ1(B(i))2 − ‖Πk(B

(i))T ‖2F . Then the γkm-usefuleness of Πk implies
that Ei[lossi] ≤ γm. Each lossi ∈ [−m/16,m] and so it is easy to check, using arguments similar to
Markov’s inequality, that Pri[lossi ≥ 4γm] ≤ 1− γ. Indeed if this is not the case then

Ei[lossi] = Pr[lossi ≤ 4γm] · E[lossi | lossi ≤ 4γm]

+ Pr[lossi ≥ 4γm] · E[lossi | lossi ≥ 4γm]

≥ Pr[lossi ≤ 4γm] · (−m/16) + Pr[lossi ≥ 4γm] · 4γm
= (−m/16) + Pr[lossi ≥ 4γm] · (m/16 + 4γm)

≥ (−m/16) + (1− γ)(m/16 + 4γm)

≥ 2γm ,

which contradicts our assumption.

We will in fact need a stronger version of Lemma 24 to bound σ2(B(i)) = O(1). The proof uses the
particular construction of fingerprinting codes by Tardos [43] and standard results in random matrix theory.
For a proof of Lemma 28, see Appendix A.

Lemma 28. Let B(i) be constructed as above, starting with an Si = {ci1, . . . , cim} drawn from the fin-
gerprinting code ensemble of [43]. Then there are universal constants K1,K2 such that for all s ≥ C1,
Pr[σ2(B(i))2 ≥ s2] ≤ K1 exp(−K2sn).

Corollary 29. There is a universal constantK1 such that except w.p. exp(−Ω(n)), all i’s satisfy σ2
2(B(i)) ≤

K1.

Let us condition on the event that for all i, σ2
2(B(i)) ≤ K1; by Corollary 29, this event happens except

with negligible probability. The following lemma says that on average over i, the span of B(i) has a small
projection on Πk; in fact it says that the average projection is small for any k-dimensional subspace. The

5While this distribution is identical to that obtained by just applying R, it will be convenient in our proof to separate out the
randomness in this fashion.
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proof uses the fact that the rotations R(i) are random and independent, and standard tail bounds along with
a net argument. We defer the proof to Appendix A.

Lemma 30. For i = 1, . . . , k, let {vij}mj=1 be a collection of orthogonal unit vectors in <n and let R(i)’s
be a independent random rotation matrices. Then for a universal constant K,

Pr[∃Πk :
k∑
i=1

m∑
j=1

‖ΠkR
(i)vij‖22 ≥ Kk(1 + (km/n))]

≤ exp(−Ω(n)) .

Let xi = ‖Πkv
(i)
1 ‖22. Let yi be the total squared projection of the remaining (m − 1) right singular vectors

of B(i) onto Πk, i.e. yi =
∑m

j=2 ‖Πkv
(i)
j ‖2. Thus ‖Πk(B

(i))T ‖2F ≤ σ2
1xi + σ2

2yi.

Using lemma 30 with vij’s being the eigenvectors of A(i), we conclude that Ei[xi + yi] = K(1 + (km/n)).
Thus by Markov’s inequality, at least a (1−γ/2) fraction of the i’s satisfy xi+yi ≤ (2K/γ)(1 + (km/n)).
It follows that for at least a γ/2 fraction of the i’s,

1. lossi ≤ 4γm, and
2. xi + yi ≤ (2K/γ)(1 + (km/n)).

Since Sr = S has the same distribution as every other Si, it follows that this property holds for r with proba-
bility at least γ/2. Let us condition on this event. For the rest of the proof, we will useA,B, σ1, σ2, x, y, loss,
etc. to denote A(r), B(r), σ1(B(r)), σ2(B(r)), xr, yr, lossr, etc. Thus as long as k ≤ γ2n/16KK1, and m
is at least some absolute constant,

4γm ≤ loss
= σ2

1 − ‖ΠkB
T ‖2F

≥ σ2
1 − σ2

1x− σ2
2y

≥ (1− x)(15m/16)−K1(2K/γ)(1 + (km/n))

≥ (1− x)(15m/16)− γm/8.

It follows that (1−x) ≤ 5γ and thus there exists a unit vector ṽ1 ∈ Span(Πk) such that ‖v1− ṽ1‖22 ≤ 10γ.

We call a vector v ∈ Span(Π
(r)
k ) (θ, β)-good for a set of indices I if v θ-agrees with cS in a (1−β)-fraction

of the indices in I .

Claim 31. If v (θ, β)-agrees with cS on I but v′ does not (θ − θ′, β + β′)-agree with cS on I . Then
‖v − v′‖2 ≥ θ′2β′|I|.

Proof. By definition, there are at least β′|I| coordinates in which |v− v′| ≥ θ′. Each contributes at least θ′2

to the squared distance, implying the result.

Using Lemma 23, it follows that v1 ( 1
40
√
n
, 0)-agrees with cSj on H . Let β = 20002γ. The vector w found

by our mechanism must therefore be ( 1
80
√
n
, β)-good for H .

Let F̂ denote the unanimous locations in cS (i.e. the unanimous locations F (S) in c1, . . . , cm along with
the padding bits). Recall that H = {8n+ 1, . . . , 16n} is the second half of the locations. From the point of
view of the algorithm, the locations in H are indistinguishable from those in F̂ \H and this will allow us to
use arguments analagous to the list culling game. We know that w is ( 1

80
√
n
, β)-good for H and we would

like to argue that except with negligible probability, it is ( 1
320
√
n
, 5β)-good for F̂ \H . Let N be a γ-net of
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the set of unit vectors in Span(Π
(r)
k ). For any net point that is ( 1

160
√
n
, 3β)-bad for F̂ , the probability (taken

over the randomness in P ) that it is ( 1
160
√
n
, 2β)-good for H is no larger than exp(−Ω(β2n)). Taking a

union bound over a exp(O(k log(1/γ))) points in N , we conclude that except with negligible probability,
every v ∈ N that is ( 1

160
√
n
, 2β)-good for H is also ( 1

160
√
n
, 4β)-good for F̂ \H .

Since w is ( 1
80
√
n
, β)-good for H , then its nearest net point w′ is ( 1

160
√
n
, 2β)-good for H . Thus w′ is

( 1
160
√
n
, 4β)-good for F̂ \H , which in turn implies that w itself is ( 1

320
√
n
, 5β)-good for F̂ \H .

Finally, since F is itself a random subset of F̂ \ H , w is ( 1
320
√
n
, 6β)-good for F except with probability

exp(−Ω(β2f)). This then implies that the output of the mechanism is 6β-valid with probability Ω(γ) −
exp(−Ω(f))− exp(−Ω(n)), completing the proof of Theorem 27.6

Corollary 32. There is a universal constant γ such that the following holds for any k ≤ γn and for
m = γ

√
n/ log n. LetM be a(1, 1/n2)-DP mechanism that takes as input an km × 16n matrix A with

each row having norm at most 1, and outputs a rank k projection matrix. Then the probability thatM(A)
is γkm-useful is at most 1

n .
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A Missing Proofs from Section 5

Proof of Lemma 28. Since the rotation and the permutation matrix do not change the singular values, it suffices to
prove the result for the matrix A(i). The fingerprinting code construction of Tardos has the following form: it samples
values qj’s from a carefully chosen distribution, and then each clj is independently set to either 1 or −1 such that the
expectation is qj . Our padding bits are deterministic, corresponding to the qj’s being 1. Thus

√
16nA(i) is anm×16n

matrix where each entry is independently chosen from −1, 1 where E[A
(i)
lj ] = qj . Let q ∈ <16n be the vector with

entries qj and Q be the m× 16n matrix where each row is qT . Thus N
def
= A(i) −Q is a matrix each entry of which

is an independent random variable with mean zero and variance at most 1. It is easy to see that σ2(A(i)) can be upper
bounded by maxy∈<16n:〈y,q〉=0

‖Ay‖2

‖y‖2
. This in turn is upper bounded by the operator norm of N . Standard results in

random matrix theory (see e.g. Corollary 2.3.5 in Tao [42]) then imply the claimed bound.

Proof of Lemma 30. We will in fact argue that with high probability, for every vector v,
∑k

i=1

∑m
j=1〈v, vij〉2 ≤

K(1 + (km/n)). This then implies the lemma.

Indeed for any fixed v, the variable Xij = 〈v, vij〉 is distributed as N(0, 1/n) and since vij’s are orthogonal, the
r.v.’s {Xij}j are independent. Since each rotation is chosen independently, the variables {Xij}i,j are all independent
Gaussians. Thus n times the sum of their squares is a χ2 with mk degrees of freedom. Standard tail bounds for χ2

(see e.g. Lemma 1 on pg 1325 of [29]) then say that for any K1 ≥ 1,

Pr[n
∑
i

∑
j

X2
ij > mk + 2K1n+

√
2K1mkn] ≤ exp(−K1n)

Applying a standard net argument (see e.g. Lemma 2.3.2 in [42]), and choosing K appropriately gives the claimed
bound.
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