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Abstract. We present a discrete formal model of the central pattern
generator (CPG) located in the buccal ganglia of Aplysia that is respon-
sible for mediating the rhythmic movements of its foregut during feeding.
Our starting point is the continuous dynamical model for pattern gener-
ation underlying fictive feeding in Aplysia proposed by Baxter et. al. [4].
The discrete model is obtained as a composition of discrete models of
ten individual neurons in the CPG. The individual neurons are inter-
connected through excitatory and inhibitory synaptic connections and
electric connections. We used Symbolic Analysis Laboratory (SAL) to
formally build the model and analyzed it using the SAL model check-
ers. Using abstract discrete models of the individual neurons helps in
understanding the buccal motor programs generated by the network in
terms of the network connection topology. It also eliminates the need for
detailed knowledge of the unknown parameters in the continuous model
of Baxter et. al. [4].

1 Introduction

Background The last several years have witnessed rapid growth in the amount
of detailed high quality experimental data on neural processes underlying be-
havior. Concurrently, computational neuroscience has also experienced a surge
of activity in the formulation of models of increasing complexity. These twin
developments present opportunities as well as challenges to neuroinformatics.
There are exciting opportunities to describe and simulate neural processes in
hitherto unprecedented detail. The challenges are to manage vast amounts of
intricate data consisting of experimental and model-derived results, and also to
construct tractable models at levels of abstraction that provide useful insights
for guiding research. Many current models of neural processes utilize a frame-
work of differential equations such as the Hodgkin-Huxley (H-H) equations [2].
Other modeling techniques include integrate-and-fire methods and artificial neu-
ral networks [1, 12]. Detailed models, such as the H-H models, tend to exhibit
high sensitivity to system parameters and consequently require very accurate
measurements of these parameters. However, such data are frequently unavail-
able. Furthermore, these models do not scale easily because they rapidly become
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intractable as the number of cells incorporated increases. The situation is anal-
ogous to that in Systems Biology. A complementary approach based on using
logical computing formalisms and symbolic techniques [5, 14, 19], called Sym-
bolic Systems Biology, is being successfully pursued. By representing knowledge
at an abstract, symbolic level this approach has enabled development of mod-
els capable of performing sophisticated queries about large models of biological
processes, while not being overly constrained by lack of low-level details.

Neurons and Neural Circuits Neurons are highly specialized eukaryotic cells
capable of communicating with each other by means of electrical and chemical
signaling (see, for example, [3]). While there are several kinds of neurons, all pos-
sess a cell body, called the soma, from which emerge several tree like structures
called dendrites as well as a single long tube called the axon, which ends in sev-
eral branches, the synaptic terminals. The synaptic terminals of the transmitting
(presynaptic) neuron communicate to the dendrites of nearby receiving (postsy-
naptic) neurons by releasing specialized molecules, the neurotransmitters, such
as glutamate, serotonin, and dopamine. A neurotransmitter is released by the
presynaptic neuron once a sufficient transmembrane voltage depolarization has
reached the synaptic terminal. The buildup of membrane depolarization at the
synapse occurs after a nerve impulse, or action potential, travels from the cell
body along the axon in a series of depolarizations and repolarizations caused by
transfer of sodium and potassium ions between the cytoplasm of the neuron and
the extracellular space. The ions are transferred by electrochemical gradients
and they cross the membrane through voltage-dependent channels, which are
membrane pores that become permeable to ions due to conformational changes
induced by transmembrane voltage depolarizations. Chemical synaptic connec-
tions between neurons can be of two types, inhibitory, and excitatory. Neurons
can also signal each other via electrical synapses (also called gap junctions) in
which the membranes of the two neurons contact each other via transmembrane
pores through which electrical signals can spread bidirectionally. All of these, and
other factors, endow neural signaling with a rich collection of signaling modalities
and enormous complexity in communications and signaling behavior.

Feeding Behavior and its Neural Circuit A major goal of neuroscience is to un-
derstand neural processes that underlie the generation of behavior and the modi-
fication of behavior induced by learning. A basic tenet of neuroscience is that the
ability of the nervous system to generate behaviors arises from the organization
of neurons into networks or circuits and that the functional capabilities of these
circuits emerge from interactions among: i) the intrinsic biophysical properties of
the individual neurons, ii) the pattern of the synaptic connections among these
neurons, and iii) the physiological properties of these synaptic connections. To
investigate how neural circuits function, a diverse collection of animal model
systems has been developed. By virtue of their relatively simple nervous sys-
tems, often with large identifiable neurons that are amenable to detailed study,
invertebrates are frequent candidates for cellular analyses of neural circuits and
their relationship to behavior. A key advantage of invertebrate model systems



is that the neural circuits controlling specific behaviors often contain relatively
few neurons, which allows the circuit to be described in detail on a cell-by-cell
and synapse-by-synapse basis. Another advantage is that many of these neural
circuits produce fictive motor patterns when isolated in vitro, which facilitates
investigating how behaviorally relevant neural activity is generated and regu-
lated.

One useful animal model system is the marine mollusk Aplysia. Feeding be-
havior in Aplysia has been an important focus of study and research. The neural
circuitry that mediates feeding behavior is located primarily in the cerebral and
buccal ganglia. The structure of this circuit is relatively well understood [6]. A
major component is the central pattern generator (CPG) in the buccal ganglia
(Figure 1) that generates the motor activity for controlling the rhythmic move-
ments of the odontophore and radula. Although a great deal is known about the
individual components of the feeding circuitry, how this collection of cells and
synapses functions as a circuit is not well understood. The nonlinear, diverse
and dynamic nature of neural circuits provide formidable challenges to system-
atically analyzing and understanding how circuits operate and adapt. Symbolic
system models can help in this endeavor. We believe that properties of a neuron
network can be understood as properties of the connections between the neurons
in the network. Such abstract models can also be used to test the plausibility of
hypotheses and to manipulate components of the system in a manner that may
not be feasible in the real nervous system.

2 Biology

We describe the biology of feeding in Aplysia and its neural control. The material
here is taken mainly from Baxter et. al. [17, 4].

The feeding cycle in Aplysia consists of ingestion, which brings food into
the buccal cavity, and egestion, which ejects unwanted material from the buccal
cavity. These two stages of feeding involve rhythmic movements of structures in
the foregut that can be classified into two phases: a protraction phase, where
the jaws open and the odontophore rotate forward and a retraction phase, the
odontophore retracts and the jaws close. During ingestion, the two halves of the
radula (grasping surface of the odontophore) are separated and open during pro-
traction, and closed during retraction. This causes the food to enter the buccal
cavity. On the other hand, during egestion, the radula is closed during protrac-
tion and open during retraction. This causes ejection of unwanted material.

The buccal ganglia of Aplysia contain a central pattern generator (CPG)
that controls the rhythmic movements of the foregut during feeding. The CPG
generates two corresponding buccal motor programs (BMP), one for ingestion
and another for egestion. Based on extensive intracellular recordings of action
potentials, Baxter et.al. [17, 4] have proposed a speculative type of model of the
CPG. This model contains continuous dynamical models of ten neuron cells: B4,
B8, B31, B34, B35, B51, B52, B63, B64, and a hypothetical neuron Z, and their
connections.
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This diagram shows the model of
the central pattern generator. The
circles represent neurons and the
edges represent the interconnec-
tions. Subsets of neurons are col-
lected into groups to indicate their
function/role. The P Group neu-
rons are active during protraction
and the R Group neurons during
retraction. The rejection gate neu-
ron participates in egestion, whereas
the ingestion gate neuron plays a
role in the ingestion BMP. The
circle-terminated edge represents in-
hibitory synaptic connection, the
triangle-terminated edge denotes an
excitatory synaptic connection, and
the wiggly edge denotes an electri-
cal coupling. An edge terminating
on a group indicates that it effects
all members of the group.

Fig. 1. Central Pattern Generator: Neurons and their interconnections that are respon-
sible for generating the BMPs associated with ingestion and egestion [4].

We give a brief description of the role of these neurons. B8 is a radula-
closer motor neuron and the timing of its activity can distinguish ingestion from
egestion. Neurons B31, B35, and B63 are active during the radula protraction
phase whereas B4 and B64 are active during the radula retraction phase. The
neuron B52 terminates the retraction phase. The hypothetical neuron Z mediates
transition from the protraction to the retraction phase. The neurons B34 and
B51 control B8 and are part of the system that switches mode from egestion to
ingestion and vice-versa.

The ten identified neurons are connected to each other forming a complex
network. Each interconnection is either an excitatory synaptic connection, an
inhibitory synaptic connection, or an electric coupling. The connections between
the ten neurons used in the model of Baxter et.al. [17, 4] are reproduced in
Figure 1.

3 Related Work

Baxter et.al. [4] presented a continuous dynamical system model of the ten neu-
ron interconnected network. They used continuous differential equations, in the
form of Hodgkin-Huxley-type models, for each of the ten cells and their electrical
and synaptic connections. Unfortunately, such a model requires inferring, either
experimentally or computationally, several parameters that describe the details



of membrane currents. Specifically, there are about 18 parameters for each ion
channel (Na, K) of each neuron. In addition, there are three parameters for each
synaptic connection, two for synaptic plasticity, and two for every electric cou-
pling. Estimating these parameters is a challenge and after the parameters have
been discovered, the result is an immensely complicated model that can only be
analyzed by simulation.

In [11] a simple rewriting logic model of a two neuron subsystem (B31,B63)
of the Aplysia bucchal ganglia was presented. This work demonstrated that
essential features of the two neuron system could be modeled by appropriate
choice of a small number of parameters. This preliminary success lead us to look
for a more principled way of determining the parameters that control a neuron’s
behavior. After studying the various proposed neuron models [12, 9], including
the “simple model” of [12], we built a highly abstract qualitative model of a
single neuron and used it as a starting point.

Hybrid systems have been used as a modeling language for System Biology [7]
in general and for modeling single neurons [8] in particular. Due to their high
expressiveness, hybrid models can more closely approximate HH models, but hy-
brid analysis does not scale to studying a large collection of cells and is restricted
to studying a single cell [8]. Our interest was in analyzing a large neuron network
and this motivated looking at discrete models.

4 Discrete Formal Model

In this section we present a simple discrete model of the central pattern generator
derived from the continuous model of Baxter et.al. [4]. The model of a single
neuron is a simple generic qualitative “integrate and fire” model. We use the same
model for each of the ten neurons, but specialize the generic model for some of the
“special” neurons in the network. The electrical and synaptic interconnections
are also modeled at a highly abstract qualitative level. There are no parameters
that need instantiation in our model. The properties exhibited by the model are
solely a consequence of the abstract model of neuron behavior and the positive
and negative interconnections.

We will complement our informal presentation of the discrete model with a
formal description in the Symbolic Analysis Laboratory (SAL) language [15].
SAL is a formal language for describing discrete state transition systems. We do
not present a detailed introduction to the syntax and semantics of SAL here.
Since SAL syntax uses inspiration from standard imperative and functional lan-
guages, readers unfamiliar with SAL can still possibly understand and appreciate
the formal description. The full SAL model is available online [18].

4.1 Discrete Model of a Single Neuron

A generic neuron is a simple input/output automaton. It receives an input i,
changes its internal state level in response to it, and optionally produces an out-
put o. In our model, the input i can be one of three qualitative values: pos, neg,



N: NATURAL = 4;

LEVELS: TYPE = [0 .. N];

SIGS: TYPE = { pos, neg, zero };
NEURONS: TYPE = { B31, B35, B63, B34, B64, B4, B51, B52, B8, Z };
PHASES: TYPE = { protraction, retraction, termination };
GNEURONS(n: NEURONS): BOOLEAN = ( n /= B31 AND n /= B64 );

Fig. 2. SAL Global Declarations. N is a constant. LEVELS, SIGS, NEURONS, PHASES are
types denoting finite sets. GNEURONS is a function that returns true when its argument
is a generic neuron, and false when it is a specific neuron (B31, B64).

and zero, collectively referred to as SIGS. The value of i indicates whether the
neuron receives a positive (pos), negative (neg), or no (zero) impulse (from its
neighbors). The internal state of the neuron stores a value in the range [0, . . . , N ]
in a variable called level1. A value of 0 indicates that the neuron is at its resting
potential, and N indicates that the neuron is at its highest membrane poten-
tial. The values in between represent abstractions of the concrete intermediate
membrane potentials. The output o is a Boolean-valued variable. A value of TRUE
indicates that the neuron emits an impulse, whereas FALSE indicates that it does
not do so.

Figure 2 shows the declarations for the parameter N1 and types used to
describe the complete discrete CPG model. The type NEURONS denotes the set of
all ten neurons, while the function GNEURONS identifies the eight that are generic.
The type PHASES denotes the set of three phases.

The dynamics of single generic neurons are given by the following intuitive
rules. The rules abstractly capture the “integrate and fire” behavior of neurons.

Integrate Positive Input Impulse (IPII): If the input impulse i is positive
(pos) and the level level is less-than N , then the level level is incremented.
The amount of increment is given by a parameter sens. Again, the properties
of the model are robust to changes in the value of sens. We use sens = 2 in
our experiments.

Integrate Negative Input Impulse (INII): If the input impulse i is nega-
tive (neg) and the level level is less-than N , then the level level is decre-
mented. The amount of decrement is fixed to 2 units. The increments and
decrements are always saturated so as to force the value of level to remain
in the range [0, . . . , N ].

Fire: If the level level is equal to N , then it is reset to N − 2 ∗ sens (which
is 0 for the choices made above). Additionally, the output o is set to True
whenever level = N to indicate that the neuron fired.

If none of the conditions are applicable, then the state of the neuron re-
mains unchanged. In particular, this means that we do not model decay of the

1 We could use any positive value for N . We used the value 4 in our model, but the
choice is really arbitrary and we could have used a different value, say 5 or 3: the
properties of the final CPG model do not dependent on the exact value used.



generic[n: NEURONS]: MODULE = BEGIN

INPUT i: SIGS

OUTPUT o: BOOLEAN, level: LEVELS

LOCAL sens: [1 .. 2], pir: BOOLEAN

INITIALIZATION

pir = FALSE; level = 0

DEFINITION

sens = IF (n = Z) THEN 1 ELSE 2 ENDIF;

o = (level = N)

TRANSITION

[

FIRE: level = N AND GNEURONS(n) AND NOT(pir) -->

level’ = N - 2*sens

[]

IPII: level < N AND i’ = pos -->

level’ = IF (level > N - sens) THEN N ELSE level + sens ENDIF

[]

INII: (NOT(GNEURONS(n)) OR level < N) AND i’ = neg -->

level’ = IF (level > 1) THEN level - 2 ELSE 0 ENDIF

[]

SPIR: n = B52 AND level = 0 AND i = neg AND i’ = neg -->

pir’ = TRUE; level’ = N

[]

ELSE -->

]

END;

Fig. 3. SAL Model of a Generic Neuron. The model is parameterized by the name
n of the neuron. The model is specialized for (a) neurons that exhibit a plateau-like
potential (identified by NOT(GNEURONS(n)) in the code above), (b) the neuron
B52 that exhibits postinhibitory rebound (PIR). The ELSE clause says that when all
the above conditions fail, do not change the state of the system. The neuron model
responds to the value of i in the “next” step (i′) because the module computing i
(aplysia wiring described later) already introduces a one-step delay.

membrane potential (level) with time. This is because in the time intervals
of interest, decay does not play an important role in determining the overall
behavior of the system. Also note that the model of a single neuron is determin-
istic. The conditions for the three cases above are mutually exclusive and given
an input i and level level, the next state of the neuron is deterministically
specified.

The formal description of the above neuron model is given in SAL in Figure 3.
Since some of the neurons exhibit behavior that can not be entirely captured by
an “integrate and fire” model, the generic model has a couple of specializations.
The first one is for neurons that exhibit a plateau-like potential. In the model of
the CPG, neurons B31 and B64 fall in this category [10, 16]. They are modeled
to behave just like the other neurons, except that they do not fire; that is, the



aplysia neurons: MODULE =

(WITH INPUT ins: ARRAY NEURONS OF SIGS

WITH OUTPUT outs: ARRAY NEURONS OF BOOLEAN

WITH OUTPUT levels: ARRAY NEURONS OF LEVELS

(|| (n: NEURONS): (RENAME o to outs[n], i to ins[n],

level to levels[n] IN generic[n])));

Fig. 4. SAL model of the collection of the ten neurons in the CPG. For example,
ins[B63], outs[B63], and levels[B63] will now denote the input signal for B63, the
output generated by B63 and the internal level of B63.

membrane potential (level) is not reset (to 0) when it reaches its highest value
(N). As we shall later discuss, this distinction is important for the CPG to
exhibit the observed behavior.

The second specialization is for neuron B52 that exhibits postinhibitory re-
bound (PIR). PIR is defined as membrane depolarization (activation) occurring
at the offset of a hyperpolarizing stimulus. The mechanism for PIR is not well
understood. In our abstract model, we modeled it in the form of a special tran-
sition (labeled SPIR in Figure 3) that depolarizes B52 when it is at its resting
potential and it receives an inhibitory pulse. Again, this special behavior of B52
is important for ensuring termination of the ingestion and egestion neural pro-
grams. Neither of these special behaviors can be exhibited by a simple “integrate
and fire” model [12].

4.2 Modeling a Collection of Neurons

We get a model of each of the ten neurons in the CPG network (enumerated
in Figure 2) by instantiating the model of a generic neuron described above ten
times. Thus, we get a collection of ten identical neurons. The few subtle distinc-
tions between these ten neurons have already been captured in the description
of the generic neuron described above.

Figure 4 describes the SAL code for generating models of the ten neurons.
The ten instantiations of the generic neuron are synchronously composed (|| is
the synchronous composition operator). The input i, output o, and the level
level variables are renamed to avoid a naming conflict.

The result is a collection of ten neurons, but there is no interconnection
between them yet. In the next section, we will model the interconnections.

4.3 Modeling the Interconnects

As mentioned before, there are three types of connections between the neurons
in our model: excitatory synaptic connection, inhibitory synaptic connection,
and electrical connection.



Excitatory Synaptic Connection. This is a directed connection between a
source and a target neuron. In this connection, the source neuron produces an
excitatory postsynaptic potential (EPSP) in the target neuron. This connection
is modeled as follows: whenever the source neuron fires (that is, generates a TRUE
signal on its output port o), the target neuron receives a pos input on its input
port; otherwise, it receives only a zero input.

epsp(x: BOOLEAN): SIGS = IF x THEN pos ELSE zero ENDIF;

Inhibitory Synaptic Connection. This is a directed connection between a
source and a target neuron. In this connection, the source neuron produces an
inhibitory postsynaptic potential (IPSP) in the target neuron. This connection
is modeled as follows: whenever the source neuron fires (that is, generates a TRUE
signal on its output port o), the target neuron receives a neg input on its input
port; otherwise, it receives only a zero input.

ipsp(x: BOOLEAN): SIGS = IF x THEN neg ELSE zero ENDIF;

Electrical Coupling. Electrical connections are undirected, that is, they effect
both neurons that are coupled by an electrical connection. Electrical coupling
indicates that there can be flow of current between the two coupled neurons that
is proportional to the difference in the membrane potentials of the two cells.
Since the membrane potentials are abstracted to qualitative levels (level), we
model electrical coupling using the difference in the levels of the two neurons.
Specifically, if the levels of electrically-coupled neurons, say A and B, are levelA

and levelB respectively, then
(a) neuron A receives a pos input and neuron B receives a neg input if levelB >
levelA;
(b) neuron A receives a neg input and neuron B receives a pos input if levelB <
levelA; and
(c) both neurons receive a zero input if levelB = levelA.

diff(x1: LEVELS, x2: LEVELS): SIGS =
IF (x1>x2) THEN pos ELSIF (x1<x2) THEN neg ELSE zero ENDIF;

Accumulating Effects from Multiple Connections. The above three cases
describe the input each neuron receives from each of its neighboring neurons.
Each neuron now has to accumulate all its input signals and map the result to
one value: pos, neg, or zero, that it will use as its actual input signal.

The accumulation process is modeled using the following simple rules: If pp
denotes the total number of pos inputs and nn denotes the total number of neg
inputs received by the neuron, then
(1) if pp > nn, then the result is a pos signal.



aplysia wiring: MODULE =

BEGIN

INPUT b63i: SIGS, outs: ARRAY NEURONS OF BOOLEAN

INPUT levels: ARRAY NEURONS OF LEVELS

OUTPUT ins: ARRAY NEURONS OF SIGS

INITIALIZATION ins = [ [i: NEURONS] zero ]

TRANSITION

[ TRUE -->

ins’ = [ [n:NEURONS] LET

ec:[[NEURONS,NEURONS]->SIGS]=LAMBDA(a,b:NEURONS):diff(levels[a],levels[b]),

ep:[NEURONS->SIGS] = LAMBDA(x:NEURONS): epsp(outs[x]),

ip:[NEURONS->SIGS] = LAMBDA(x:NEURONS): ipsp(outs[x]) IN

IF (n=B31) THEN integrate31(ip(B64),ep(B34),ep(B63),ep(B35),

ep(B4),ec(B63,B31),ec(B35,B31))

ELSIF (n=B34) THEN integrate(ep(B63),ip(B64),zero,...,zero)

ELSIF (n=B63) THEN integrate(ip(B64),ec(B31,B63),ep(B34),b63i,...)

ELSIF (n=B35) THEN integrate(ip(B64),ec(B31,B35),ip(B52),...)

ELSIF (n=B64) THEN integrate64(ep(Z),ip(B52),ip(B34),ip(B63),

ip(B4),ep(B51),ec(B51,B64))

ELSIF (n=B4) THEN integrate(ip(B52),ep(B35),ec(B51,B4),ep(B64),...)

ELSIF (n=B52) THEN integrate(ep(B35),ip(B64),ip(B51),ip(B4),...)

ELSIF (n=B8) THEN integrate8(ep(B51),ip(B52),ip(B63),ip(B4),ep(B34))

ELSIF (n=Z) THEN integrate(ep(B63),...) ]

ELSE integrate51(ip(B35),ip(B52),ip(B4),ec(B64,B51),ec(B4,B51))

]

END;

Fig. 5. SAL Model of the Interconnections of the ten neurons in the CPG. Neurons
B31, B64, B8 and B51 have their own special integrate functions. Missing arguments,
indicated by . . ., are all zero.

(2) if pp < nn, then the result is a neg signal.
(3) Otherwise, the result is a zero signal.

integrate(x1: SIGS, x2: SIGS, . . ., x7: SIGS): SIGS =
LET pp:[0..7] = count(pos, x1,x2,x3,x4,x5,x6,x7),

nn:[0..7] = count(neg, x1,x2,x3,x4,x5,x6,x7) IN
IF (pp > nn) THEN pos
ELSIF (nn > pp) THEN neg
ELSE zero ENDIF;

The Wiring Diagram. Figure 5 contains the final wiring diagram for the ten
neurons. For each neuron, the integrate function described above is used to
collect all inputs for that neuron. Depending on the type of connection, each
input is obtained using either epsp, ipsp or the diff function.

Some of the neurons, namely B31, B64, B51 and B8, use a specialization of the
integrate function described above. (Hence the names of the function used in



observer: MODULE =

BEGIN

OUTPUT b63i: SIGS, phase: PHASES

INPUT levels: ARRAY NEURONS OF LEVELS

INITIALIZATION b63i = pos

DEFINITION

phase = IF (b63i=pos OR levels[B31]>=N-1) THEN protraction

ELSIF (levels[B64]=N OR levels[B4]=N) THEN retraction

ELSE termination ENDIF

TRANSITION

[ levels[B35]=N --> b63i’ = zero

[] ELSE --> ]

END;

Fig. 6. SAL Model of the Observer: It generates the input trigger and observes phase
changes.

Figure 5 for these neurons are different.) The specialization captures preference
of some neurons to some excitatory or inhibitory inputs; that is, strength of
some connections is stronger than others. The integrate function treats all
connections equally. If we use the integrate function to accumulate inputs
for all the neurons, then the resulting model’s behavior does not match the
observed behavior. We therefore specialized integrate for neurons B31, B64,
B8 and B51 as follows: B31 requires inhibition from B64 to see a negative input,
B64 gives high priority to signals from Z and B52, B8 gives lower priority to
the inhibitory signal from B63, and B51 gives higher priority to its synaptic
connections and lower to its electrical coupling with B4. These priorities can be
captured by weighting the inputs and doing a weighted sum in the integrate
function. These specializations are discussed further in Section 6.

4.4 Exciting the System and Observing the Phases

We wish to study the behavior of the system elicited by a brief depolarization of
B63. We add a separate component to our model to inject an abstract depolariz-
ing current pulse to B63. Figure 6 contains the SAL description of this additional
“observer” module. The module begins by sending a pos input to B63, but as
soon as B35 reaches its firing threshold (value N), the external input to B63 is
reset to zero. This simulates the effect of giving B63 a brief depolarizing current
pulse.

The protraction and retraction phases are characterized by activity in, re-
spectively, the P Group and the R Group neurons (Figure 1). The “observer”
module observes these phase changes: depending on the levels of B31 (a P Group
neuron) and B64 (a R Group neuron), it decides whether the phase is protrac-
tion, retraction, or termination.



4.5 The Complete Model: Putting it All Together

We have completely described the models of all components of the model, namely
the ten neurons, the connections between the neurons, and the observer. The final
complete model is simply a synchronous composition of the three components,
which is described in SAL as:

aplysia: MODULE = aplysia wiring || aplysia neurons || observer;

Synchronous composition means that at each abstract time step, each of the
components (the ten neurons, the wiring, and the observer) simultaneously take
a transition.

We analyzed the above discrete abstract model using model checking tools
(described in detail in Section 5) and found that the CPG generates an egestion-
like behavior. As suggested in the literature [4, 13], external modulatory influ-
ences, mostly through the neurotransmitter dopamine, can alter the CPG and
cause it to exhibit an ingestion-like behavior. Following the approach of [4], we
modeled the effect of dopamine by changing the strength of some of the in-
terconnections. Specifically, we decreased the excitability of B34 and B4. We
achieved this by specializing the integrate functions for B34 and B4. This re-
sulted in a different model that is revealed to have ingestion-like behavior by
model checking.

5 Analysis

The discrete model described above is appealing for its simplicity of description
and the lack of any requirement for hundreds of parameters. Moreover, we can
use model checking to systematically explore the system for desired behaviors.

As a basic sanity check, we can verify that if there is no input trigger to
B63, then all neurons in the system indeed remain in their resting potentials.
Excitation of B63 by an external pulse initiates either the ingestion, or the
egestion buccal motor program. Figure 7 shows plots generated by the continuous
model of [4]. This bursting pattern is typical of the egestion BMP. We can capture
the salient features of the patterns in Figure 7 in the form of Linear Temporal
Logic (LTL) formulas. The LTL properties can then be model checked against
the developed abstract qualitative model of Section 4. This gives us a way to
validate our model against (experimental) observations.

We classify the properties into different groups depending on their pertinent
phase.

5.1 The Protraction Phase

The protraction phase is characterized by activity in B63, B31, and B35. We
first make sure that the input pulse to B63 is modeled correctly by checking
that it is initially present (pos), and then terminated (zero) before the system
reaches the retraction phase. Property p0 in Figure 8 formally states this fact in
LTL.



The plots show the activity in each of the ten neu-
rons of the modeled CPG when B63 is excited by
a short pulse. The excitation causes activity in the
neurons in the protraction group (P-group) neu-
rons (B31, B35, B63) . In the egestion mode, B34
and B8 are active in the protraction phase. To-
wards the end of the protraction phase, Z starts fir-
ing that in turn causes activity in B64. This imme-
diately causes the P-group neurons to switch “off”,
while the retraction group (R-group) neurons (B4,
B64) remain active. In this retraction phase, B8
is inactive, which indicates that this pattern cor-
responds to egestion. Activity in B52 signals an
end of the retraction phase. B51 shows little ac-
tivity throughout the two phases. In the ingestion
mode (not shown here), the plots of B34, B8, B4,
and B51 are different. Essentially, during ingestion,
B34 remains mostly inactive, B8 shows no activity
during protraction, but is active during retraction,
B4 shows reduced activity, and B51 shows higher
activity.

Fig. 7. [Figure 5 from [4]] Simulating the continuous model of the CPG [4] generates
patterns characteristic of egestion. These plots are formalized as LTL properties in
Figures 8, 9,10, and 11.

An important feature in Figure 7 is that B31 (eventually) reaches a plateau
and stays there all through the protraction phase and until the start of retraction.
This is captured in Figure 8 Property p1.

The neurons B63 and B35 show periodic firings in the protraction phase.
Property p2 partly encodes this fact as follows: at all points until two steps
before retraction starts, it holds that B35 eventually fires. The same can be
stated and verified for B63. Note that non-plateau neurons, such as B35 and
B63, reset upon firing, and hence Property p2 says that B35 repeatedly (and not
necessarily periodically) fires. In the egestion scenario, the same is also true for
B34 and Property p3 captures this. Also during egestion, B8 fires during the
protraction phase (Property p4).

We successfully verified all the above properties on our discrete model. Prop-
erty p3 and Property p4 are verified for the egestion scenario, but, as expected,
they fail when the model is modified for ingestion. Instead, for the ingestion
model, the following property is verified, which states that B8 remains inactive
all through the protraction phase.

p5: THEOREM aplysia ` G(phase=protraction => levels[B8] < N);



p0: THEOREM

aplysia ` U(b63i = pos, U(b63i = zero, phase = retraction));

p1: THEOREM

aplysia ` F(levels[B31]=N AND U(levels[B31] >= N-1, phase=retraction));

p2: THEOREM

aplysia ` U( F(levels[B35] = N), X(X(phase = retraction)) );

p3: THEOREM

aplysia ` U( F(levels[B34] = N), X(X(levels[B64] = N)) );

p4: THEOREM

aplysia ` F(phase = protraction AND levels[B8] = N);

Fig. 8. Temporal Properties for the Protraction Phase in SAL. F (A) means that A
holds eventually, U(A, B) means that eventually B holds and until then A holds, and
X(A) means that A holds in the next time step.

t1: THEOREM

aplysia ` F( levels[Z] = N );

t2: THEOREM

aplysia ` F( b63i = zero AND levels[B64] = N );

t3: THEOREM

aplysia ` F( levels[B64] = N AND G( levels[B63] < N ) );

t4: THEOREM

aplysia ` F( phase = retraction AND levels[B64] = N );

Fig. 9. Temporal Properties for the Transition Phase in SAL. The notation G(A) means
that A holds always from that instance onwards.

5.2 Transitioning from Protraction to Retraction

Figure 9 contains LTL properties pertaining to the switching off of the protrac-
tion phase and transitioning into the retraction phase. The main events in the
transition from protraction to retraction are:
(a) the hypothetical neuron Z becomes active (Property t1),
(b) this causes the depolarization (activation) of B64, (Property t2),
(c) this, in turn, simultaneously causes the hyperpolarization (deactivation) of
the protraction group neurons, such as B63, (Property t3), and
(d) eventually the retraction phase neurons, such as B64, are active (Prop-
erty t4).
Property t3 also states that B63 remains deactivated ever after. The same can
also be said for the other protraction group neurons.

The properties above verify that the system eventually transitions from the
protraction to the retraction phase. These properties hold true for the egestion,
as well as the ingestion, model.

5.3 The Retraction Phase

Figure 10 contains LTL properties pertaining to the retraction phase. During
retraction, B64 remains active (Property r0). The protraction phase neurons



r0: THEOREM

aplysia ` G( phase = retraction => levels[B64] = N );

r1: THEOREM

aplysia ` G( phase = retraction => levels[B35] < N );

r2: THEOREM

aplysia ` G( phase = retraction => levels[B34] < N );

r3: THEOREM

aplysia ` W( F(levels[B4] = N), X(X(phase = termination)) );

r4: THEOREM

aplysia ` G( levels[B51] < N );

r5: THEOREM

aplysia ` G( phase /= protraction => levels[B8] < N );

Fig. 10. Temporal Properties for the Retraction Phase in SAL. The LTL operator W
is the “weak until” operator. W (A, B) says that A continues to hold until B becomes
true. Unlike U(A, B), here B may never become true.

remain inactive at all instances during the retraction phase. Property r1 states
this for neuron B35, but the property can be stated and verified for the other
P-group neurons as well. The same is also true for the neuron B34 (Property r2).
Furthermore, the neuron B4 repeatedly fires during retraction. Again, this fact is
partly encoded in LTL as follows: (Property r3) at all instances until two steps
before the termination phase starts, it is true that the neuron B4 eventually
fires.

The next two properties are specific to egestion. The neuron B51 is not part
of the egestion behavior, but participates only during ingestion. Property r4
states that B51 always remains inactive. Finally, Property r5 states that the
radula-closer motor neuron, B8, is inactive during the retraction phase (in fact,
at any non-protraction state).

All the properties described above, except r4, are verified to be valid for eges-
tion. Properties r0, r1 and r2 remain valid even when the model is specialized
to the ingestion case. However, the remaining properties, Properties r3, r4 and
r5 are, as expected, invalid for ingestion. While the plots in Figure 7 suggest
that Property r4 should be valid for egestion, it is not so for our model. We
discuss this further in Section 6.

5.4 Termination

Figure 11 contains LTL properties pertaining to the termination of the inges-
tion/egestion Buccal Motor Program. As is evident from Figure 7, the termi-
nation phase is characterized by the hyperpolarization (deactivation) of all the
protraction group neurons and the retraction group neurons. Property e1 says
that when the system enters the termination phase, eventually B64 and B4 re-
turn to their resting levels. Note that B64 and B4 may not be at their resting
potential when the termination phase begins, and hence the eventuality operator
(F ) is important. The same fact can be stated for the P-group neurons, B31,



e1: THEOREM

aplysia ` G(phase=termination => F(G(levels[B64]=0 AND levels[B4]=0)));

e2: THEOREM

aplysia ` G(phase=termination => G(levels[B31]<N AND levels[B63]<N));

e3: THEOREM

aplysia ` U(phase=protraction, W(phase=retraction, phase=termination));

Fig. 11. Temporal Properties for the Termination Phase in SAL.

B35, and B63. Property e2 states that B31 and B63 neurons always remain in-
active during the termination phase. Since we are stating that the neurons are
inactive (levels < N), and not asking for levels to be 0, we do not need the
eventuality operator (F ) here.

Finally, we state one of the most important properties of the CPG network:
the protraction phase is followed by the retraction phase, which in turn is (op-
tionally) followed by the termination phase – exactly in that order. This is stated
in Property e3, which basically says that the three phases occur sequentially.

The three termination phase properties are model checked and verified to
hold for both the egestion and the ingestion model.

6 Results and Discussion

The main observations from the study of the discrete model are described be-
low. Most of the observations made here are similar to those obtained by working
with the continuous model based on using Hodgkin-Huxley-type models for the
neurons and several hundreds of parameters. Thus, by just looking at the in-
terconnections at a fairly abstract level, it is still possible to build and analyze
useful and interesting models that help in refining our understanding of the way
a neuron network works.

Specialized neurons. B31 and B64 are different from the other neurons because
they exhibit a plateau-like potential [10, 16]. This difference is important to
sustain the activity in the protraction (B31) and retraction (B64) phases. If B31
and B64 are modeled in the same way as the other neurons, then the modified
model does not exhibit the sustained activity of B31, B35, and B63 during
protraction and that of B64 and B4 during retraction.

Electrical couplings. The effect of electrical coupling needs to be necessarily
asymmetric to enable the model to have the desired behavior. In a symmetric
scenario, if two neurons A and B are electrically coupled and if level(A) >
level(B), then level(A) decrements as level(B) increments. In an asymmetric
scenario, we are allowed to have, say, level(B) increase while level(A) remains
unchanged. In the model, using a symmetric effect on the B31 - B35 coupling
and the B31 - B63 coupling would cause the protraction phase to prematurely
end. Similarly, B64 - B51 coupling can cause the retraction phase to terminate



earlier if the effect is symmetric. We note that electrical coupling is asymmetric
in the continuous model [4].

Robust protraction phase. The positive feedback loops between the protraction-
phase neurons (B31, B35, B63, B34) lead to a very robust protraction phase, that
is, once the system settles into the protraction phase (characterized by periodic
firing of these neurons), it is not “easy” to drive the system out of that phase.
In fact, we had to make the inhibition of the protraction-phase neurons by B64
a very “strong” signal to really cause the protraction phase to terminate. The
transition from protraction to the retraction phase is not very well understood
and had led to the hypothetical neuron Z in the model [4]. Our observation here
suggests that apart from the unknown component Z, there is another important
aspect related to the strengths of the synaptic connections between the P-group
and the R-group neurons that is required to ensure transition into retraction.

Retraction phase. Unlike the protraction-phase neurons that are connected in
a strong positive feedback, the neurons active in the retraction phase do not
form any positive feedback cycle. As a result, the retraction phase is not robust
and it can be “easily” terminated. Again, its continued sustainability depends
crucially on the intrinsic ability of B64 to maintain a plateau-like potential,
despite the negative (inhibitory) feedback from its inter-connections. Note that
in the speculative model used here (proposed in [4]), B64 gets only inhibitory
inputs in the retraction phase of egestion.

Ingestion. The default model exhibits egestion behavior, that is, the radula
motor neuron (B8) is active (radula is closed) during protraction and inactive
(radula is open) during retraction. As suggested in the literature [4, 13], if the
excitability of cells B34 and B4 is reduced (characteristic of dopaminergic mod-
ulation), then the situation changes and B8 is inactive (radula is open) during
protraction and active (radula is closed) during retraction. This corresponds to
the ingestion BMP. The explanation for this change is as follows: reduced ex-
citability of B34 causes it to remain inactive during the protraction phase, and
hence B8, which depended on B34 for excitatory pulse, remains inactive too.
On the other hand, during retraction, the low excitability of B4 causes it to
remain relatively inactive, which allows B51 to activate and cause B8 to activate
as well. Note that the mode change is solely explained by the network and the
connections and does not depend on the detailed physical modeling of the single
neurons or their synaptic connections.

B51. In contrast to the prediction made by the continuous model of [4], B51 is
activated during egestion in our model. However, it does not affect the activation
pattern of B8. It is possible to reduce the responsiveness of B51 to positive
signals and have it remain inactive during egestion. However, in that case, it
also tends to remain inactive during ingestion: the reduced inhibition by B4
(during ingestion) is not enough to overcome the reduced responsive of B51 to
positive signals. These results indicate that the unmodeled components – the



sensory input neurons and the motor neurons – may have a significant effect on
firing of B51.

Specialization versus Robustness. One important feature of biological networks
is that they are robust to minor changes. The system continues to have the
same behavior (equivalently, satisfy the same set of properties) even when cer-
tain changes are made to it. The positive feedback in the P-group neurons that
sustains the protraction phase is such an example. Most properties that describe
the ingestion and egestion behaviors are, in fact, robust to minor changes in the
discrete model proposed in this paper. This robustness is the reason why ab-
stract discrete models are useful. However, some of the properties of our model
are quite sensitive to the strengths of certain synaptic connections. For exam-
ples, the interconnections of B64, and to some extent those of B51, B8, and B31
(note that we had to use specialized accumulator functions for these neurons, see
Figure 5), appear to influence the overall behavior. The specializations indicate
the sensitive parts of the model. This suggests that we may have to refine our
current understanding of the CPG.

Weighted Integrate Function. Biological data shows that certain connections be-
tween neurons are stronger than others. Our definition of the weighted integrate
functions is chosen to reflect this fact. The exact integrate function is, how-
ever, not important and other qualitatively similar functions produce the same
behavior.

Model Checking Effort. Though we have used our in-house model checking en-
vironment SAL for experiments, we could have used any other temporal logic
model checker. We used the symbolic model checker, sal-smc, which uses Boolean
Decision Diagrams (BDDs) to represent states. Each model checking run (one
for each property) takes about 10 seconds. The total state space of the system
is of the order of 410; however, the set of reachable states must be significantly
less. Adding more non-determinism to the model increases the model checking
effort.
We also note here that, for any reasonable choice for the parameters, N , incre-
ment, and decrement, the model satisfies the same set of LTL properties. Our
specific choice, such as N=4, was a reasonable compromise between being small
and giving enough qualitative states (N=0,1,2,3) to model details (of other kinds
of neurons we foresee adding to the network.)

7 Conclusions

We presented an abstract discrete model of the central pattern generator respon-
sible for generating the egestion and ingestion buccal motor programs during the
feeding cycle in Aplysia. We formalized the neural activation patterns, observed
during egestion and ingestion BMPs, using LTL formulas. We verified that our
model satisfies the LTL formulas using a symbolic model checker. While many



properties are a direct consequence of the excitatory, inhibitory, and electrical
connections between the various neurons, some of the properties – especially
those related to transitioning from protraction phase to the retraction phase
and finally to the termination phase – depend on the relative strengths of the
various synaptic and electrical connections.

We plan to expand the model to include other missing elements from the
feeding neural circuit, such as the sensory neurons in the cerebral ganglion and
the cerebral-buccal interneurons. Simultaneously, we will need to expand the
collection of LTL properties to capture more functions and behaviors.

A second direction for future work is generalizing the present model and
making it nondeterministic. The present model is deterministic, except for the
initiation of the termination phase. We can drop assumptions and make our
model more nondeterministic, while still preserving its properties. For example,
when a neuron receives both positive and negative inputs, it presently behaves
as if it received no input – implicitly assuming that all signals are of “equal
strength”. Instead, we can drop this assumption and let the neuron nondeter-
ministically behave as if it received a positive, negative, or zero input.
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