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The online class imbalance and concept drift (OCI-CD) has recently received much interest. The impact 

of this combined problem on state-of-the-art of online adaptive and non-adaptive learners has received 

little attention. This study investigates the effect of parameters such as current imbalance ratio, stream 

length, drift type, drift levels, and imbalance state (static or dynamic) on adaptive and non-adaptive online 

learners. The experimental results show that each parameter considered for the study has a significant 

impact on learner performance: (a) minority class performance decreases as the degree of imbalance 

increases, (b) non-adaptive learners are much susceptible to class imbalance, concept drift, and the 

combined problem of both drifts than adaptive learners, (c) adaptive learners are only susceptible to class 

imbalance drifts, and (d) the impact of the dynamic degree of imbalance is more on learner than static (e) 

the adaptive large scale support vector machine yields stable performance to all the parameters 

considered for the study. Based on these findings, directions for developing new approaches are also 

presented. 

Povzetek: Analizirane so razne metode strojnega učenja glede na parametre učenja, recimo spreminjanje 

neuravnoteženja razredov.

1 Introduction 
Real-world classification problems like fraud and fault 

detection are constantly changing due to class imbalance 

(CI) and concept drift (CD) [1, 2, 3]. One class of samples 

in a stream will experience CI if it is much smaller [4, 5]. 

The CI between classes changes with time in evolving 

streams (i.e., dynamic) [3]. When the underlying function 

that generates concepts changes, CD happens. 

Let the input (x) and goal (y) variables be 

included in the training dataset. The Bayesian theorem 

states that three different types of drifts can result from 

changes in (i) the posterior p(y/x), (ii) the prior p(y), 

without changing p(y/x) and p(x/y), and (iii) the likelihood 

p(x/y), without affecting p(y/x) and p(y) [3]. Real CDs are 

changes in (i) over time that don’t depend on changes in 

p(y) and p(x/y). The sorts of drifts (ii) and (iii) on the other 

hand are virtual CDs [1, 2, 3]. Real and virtual CDs coexist 

in the real world. There are three types of drifts based on 

the speed of evolution: (i) gradual, where the concept 

changes gradually (ii) abrupt, where the underlined 

concept changes suddenly and (iii) recurrent (or cyclic), 

where the same concept recurs regularly [1]. Thus, an 

imbalanced stream evolving with CD is an online class 

imbalance with CD (OCI-CD) problem. 

 An adaptive learner is a window-based technique 

that preserves the training samples from the current time t 

while ignoring the older samples and only using 

representative samples from the window [1, 2]. A non- 

 

adaptive learner, on the other hand, does not employ a  

window for incremental learning streams. The typical 

application of non-adaptive learning strategies is in static 

domains [1, 2, 3]. 

2 Motivation 
Wang et al. [3] recently conducted a systematic analysis 

to determine the impact of CI on three different types of 

drifts (i.e., p(y), p(y/x), and p(x/y)) while ignoring their 

counterparts. The effect of different levels of imbalance 

(static and dynamic) and coupled dynamic OCI-CD drift 

on online learner’s performance has yet to be empirically 

investigated. They only gave advice based on observations 

of cases with a high level of imbalance (i.e., 1:9). 

3 Contributions 
To fill in the gaps mentioned above, the impact of the 

training stream’s characteristics, including the degree of 

imbalance, length at the time t, drift types (CI, CD, and 

OCI-CD), and the state of imbalance (static and dynamic) 

on state-of-the art adaptive and non-adaptive learners used 

for minority class prediction, is explored. 

This study explores various static and dynamic 

imbalanced streams with gradual and abrupt drift levels. 

This work also aims to answer the following research 

questions: 
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RQ1. Does the length of the stream with respect to the 

imbalance ratio at the current time t impact the online 

learner’s performance? 

RQ2. Is the degree of imbalance or CD whose impact is 

critical on minority class performance degradation? 

RQ3. Is the impact of OCI-CD more adverse than 

individual p(y) or p(y/x) drifts on the learner’s 

performance? 

RQ4. To what extent does online SVM cope with OCI-

CD, p(y), and p(y/x) drifts compared to other online 

learners? 

The case of combined p(x/y), p(y/x) drift is not 

considered in the scope of this study, as the impact is only 

p(x/y) due to the change in the likelihood of the concept 

[3]. 

The following is the structure of the paper. The 

related work is shown in Section 4. Section 5 provides 

background for the problem-related methods. Section 6 

discusses the study design, while section 7 discusses the 

experiments performed on the synthetic data. Section 8 

discusses the validity of the observations on real-world 

data, and section 9 discusses the results obtained in greater 

depth. Section 10 brings this paper to a close. 

4 Related work 

4.1 CI problem 
This problem has solutions at both the algorithmic and 

data levels [4, 5]. Solutions include resampling techniques 

at the data level. Adjusting the threshold [6], cost-sensitive 

learning [7, 8], and novelty detection techniques [9] are 

examples of algorithm-level solutions. 

 Ensemble learning techniques like bagging and 

boosting has been intensively studied as solutions to the 

CI problem. Cost-sensitive learning-based boosting [10, 

11, 12], under-over bagging [13, 14], under-sampling-

based boosting [15], oversampling-based boosting [16, 

17], under sampling-based bagging [18, 19], oversampling 

based bagging [13], and hybrids of bagging and boosting, 

under-over-bagging [13, 14] are proposed hybrid 

ensembles that improve minority class prediction. 

 

4.2 Learning streams from non-stationary 

environments 
Real and virtual drifts, or a combination of the two, can be 

found in an evolving stream. On the topic of drift 

detection, there has been a lot of research, including recent 

surveys [1, 2, 20]. These categorize drift detection 

techniques into two categories: (i) active and (ii) passive. 

 The active methods detect drift first and then 

update/rebuild the learner to adapt to data changes. The 

drift detection can be carried out by hypothesis tests [21, 

22], change-point method [23], sequential hypothesis test 

[24], and change detection test [23]. Recently, statistical 

methods that identify distribution differences have been 

used in SDDM [25] for drift detection, while cluster-based 

distance methods [26] has been used to detect recurring 

CDs. Drift detection methods such as the drift detection 

method for OCI (DDM-OCI) [27], LFR [28], and PAUC 

[29], on the other hand, detect p(y/x) drift in imbalanced 

distributions. Wang et al. defined AUC for multi-class 

classification as prequential multiclass AUC (PMAUC), 

weighted AUC (WAUC), and equal-weighted AUC 

(EWAUC) [30]. 

 When it comes to passive learning techniques, in 

contrast to detection and adaptation methods, the 

highlighted model continuously adapts to the change by 

updating a single classifier or adding/removing/modifying 

a classifier in an ensemble [1] to retain the new knowledge 

and forget the old for each new set of data. A 

heterogeneous dynamic weighted majority (HDWM) [31] 

is suggested to replace the existing base learner in the 

ensemble when a performance decrease is seen. It works 

with both active and passive strategies. Even though they 

require more computing, ensemble approaches are 

superior to single learners. While passive approaches are 

better for gradual drifts, active ones are better for batch 

learning and forecasting rapid drifts [1]. 

 

4.3 Learning imbalanced streams from non-

stationary environments 
This is the issue that arises when CD and CI streams 

coevolve. Either a static or dynamic evolution of the CI 

stream is possible. The term “dynamic” in this context 

refers to the p(y) change [3], or the dynamic change in CI 

degree. 

 Gao et al. [32] proposed an instance propagation 

ensemble mechanism. Chen and he [33] proposed 

selecting the best n minority class instances using 

mahalanobis distance. Lichten and Chawla [34, 35, 36] 

proposed an extension to the work of gao et al. [32]. 

Instead of simply propagating minority class samples, 

they proposed method that propagates misclassified 

majority class instances from the previous model. They 

also proposed weighing every ensemble member based on 

the probability of a combined hellinger distance and 

information gain [34] change detection test. HUWRS.IP 

[36], an instance selection method based on the NB 

classifier is proposed. 

 Learn++CDS and Learn++ are two ensemble 

approaches proposed as an extension to Learn++.NSE 

[37], to handle the OCI-CD problem from the evolving 

stream. The former employs the SMOTE oversampling 

technique to rebalance the data, while the latter employs 

the bagging-based sub-ensemble method. Wang et al. [38] 

proposed a resampling-based ensemble method (OOB/ 

UOB) for online bagging in which the time decay class 

size guides oversampling and under sampling rates. 

 Active approaches with single classifiers include 

recursive least square adaptive cost perceptron (RLSACP) 

[39] and online neural network (ONN) [40]. An ensemble 

of the subset of online sequential extreme learning 

machine (ESOS-ELM) [41] is proposed. Baruva et al. [42] 

proposed a generalized over-sampling-based online 

imbalanced learning framework (GOS-IL) for online 

learners to only cope with p(y) drift. 

 Lu et al. [43] proposed dynamic weighted 

majority for imbalance learning (DWMIL), a batch based 

incremental learning method to deal with the combined 
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problem. Furthermore, as an extension of DWMIL, the 

same authors [44] proposed an adaptive batch-based 

dynamic weighted majority (ACDWM). The batch size is 

adaptively increased until the classifier produces stable 

predictions. Thwart and schenck proposed a two-stage 

active learning algorithm [45]. Korycki et al. [46] 

proposed a two-module uncertainty-based active learning 

strategy for partially labeled nonstationary and 

imbalanced data streams. This method is only suitable for 

binary classification. Korycki and krawczyk [47] 

proposed a solution for CI among multiple classes and CD 

in the presence of limited labels for multi-class 

classification. A comprehensive study of the widely used 

classification and regression techniques was conducted 

[48]. It is evaluated how well the ensemble approaches 

perform [49]. The effectiveness of the various sampling 

approaches is examined [50]. Machine learning methods 

were compared in this investigation [51]. Table 1 

summarizes all the related works. 

 Wang et al. [3] analyzed the impact of p(y), 

p(y/x), and p(x/y) drifts independently on active and 

passive approaches, which are intended to learn from non-

stationary environments. Throughout their study, the 

degree of imbalance is considered as 1:9, and for most 

cases, it is static. The authors pointed out that in the 

existence of OCI-CD, the impact of class imbalance in 

both static and dynamic forms is more critical than the 

p(y/x) and p(x/y) drifts. But the authors didn’t simulate the 

environment to derive that conclusion on the combined 

problem of OCI-CD drift. Furthermore, they stated that 

when three drifts are considered independently, the p(y/x) 

drift has a critical impact on learner performance 

concerning p(y) and p(x/y) drifts, and considered drift 

detection methods are still much susceptible to different 

types of drifts. However, these observations are intended 

for online bagging classifiers (i.e., for both active and 

passive), and the other state-of-the-art adaptive and non-

adaptive learners are not considered. 

 Therefore, to address the above-mentioned gaps, 

the impact of the training stream’s characteristics, 

including the degree of imbalance, length at the time t, 

drift types (CI, CD, and OCI-CD), and the state of 

imbalance (static and dynamic) on state-of-the-art 

adaptive and non-adaptive learners used for minority class 

prediction, is explored. 

5 Background 
This section presents the adaptive and non-adaptive online 

learning algorithms and evaluation measures used in this 

study. 

 

5.1 Online learners 
The online learning algorithms update the model or learn 

a new model even when a single sample is available to 

learn. 

(a) Naive bayes [52]: 

This algorithm uses the baye’s independent assumption on 

the likelihood conditional probabilities. Initially, the 

online version predicts the class of each evolving sample 

with the highest probability among given N classes. This 

new sample is used for training to update the probabilities 

of the existing model. Hence, the model learns 

incrementally for each evolving sample. For adaptive NB, 

the required probabilities are calculated only on the 

window of current training at time t. 

                  𝑝(𝑦/𝑥) =
p(x/y) 𝑝(𝑦)

𝑝(𝑥)
   (1) 

(b) Perceptron [52]: 

A Perceptron can be learned either online or in batch 

mode. In an online mode, each sample (input) of size m 

having the bias b is fed to the neural network which gets 

initialized with a random weight vector (W). Next, at the 

level of each neuron, the summation ∑(WX+B) is 

computed and the output y is predicted by applying 

activation function f. Each evolving sample undergoes 

predefined number of epochs until (Y-O) becomes 

minimum by the updation of: 

Wn𝑒𝑤 = W𝑜𝑙𝑑 + 𝜂 (Y – O) x   (2) 

where Y is the target and O is the observed prediction from 

the model. 

(c) KNN [52]: 

As it is a lazy learning algorithm, the model is built 

whenever the test sample invokes it. For adaptive KNN, 

an initial training set is maintained in a window of constant 

size. The evolving test samples are predicted against this 

window of training set by considering the class label of the 

K of its nearest neighbors. Once after the prediction, the 

new samples are added to the end of the window. As long 

as new samples are added to the window, the old 

knowledge is forgotten. Hence, the window with these 

data is tending to the current time and can be adaptive to 

the change. For non-adaptive KNN, the model is built on 

the entire training set. 

(d) VFDT [53]: 

A very fast decision tree algorithm, builds a decision tree 

on evolving data based on hoeffding bounds. The main 

idea behind this hoeffding bounds is to get some 

confidence on the data that so far seen. Initially, the root 

node is fitted over the available data, sufficient statistics 

are calculated to compute the information gain on each 

attribute. Let G(Xa) be the attribute a of the highest 

information gain and G(Xb) be the attribute b of the second 

highest information gain among the given attributes. If 

G(Xa)-G(Xb)> ϵ, a split can be carried out on attribute a, 

and for all branches of the split is replaced with a leaf node 

which is again initiated with sufficient statistics. Further, 

newly arriving instances are forwarded to the leaf nodes, 

where the updation of the model takes place. In this 

manner, the tree is incrementally updated concerning the 

newly evolving instances. Here the ϵ is calculated as 

𝜖 =√𝑅2 ln
1

δ
 

2𝑛
   (3) 

where R is the range of a real valued variable r, n is the 

number of independent observations so far seen, r is the 

mean of the n independent observations. According to 

hoeffding bound with 1-δ probability, the true mean of the 

variable is r-ϵ. For adaptive VFDT the model is built on 

window of training samples of current time t. 
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Table 1: Summary of all the related works. 

 

(e) LASVM active learning [54]: 

To accommodate the learning from the incrementally 

arriving data the standard SVM tools such as LIBSVM 

[55] are prone to re-training [56], where the QP is 

repeatedly solved from scratch which is computationally 

expensive when the data becomes large. 

 To overcome this problem, a large support vector 

machine (LASVM) is proposed. This is a kernel-based 

online active learning algorithm, that Process the new 

sample by trying to add it to the existing support vectors 

set S and some blatant non-support vectors are removed 

from S by Reprocess. Usually, the active learning methods 

are incremental and with respect to SVM, the next learning 

task proceeds from the current boundary. Thus, for each 

new sample, at the end of Process (and reprocess) a new 

SVM boundary is learned. 

 The QP problem of LASVM simply extends the 

optimization procedure of sequential minimum 

optimization (SMO) [57] and computes the gradient from 

the previous α’s and S. Hence, learning becomes faster. 

Further, the boundary always models the current data 

being learned. With the notion of adaptability to the 

change in data and due to its applicability to imbalanced 

standalone datasets [58] though, there are much 

incremental learning approaches [55] for SVM online 

learning, here LASVM is considered for this study. 

 As per our knowledge, it is the first sort of study 

that aims to analyze the behavior of LASVM on p(y), 

p(y/x), OCI-CD drifts. 

 

5.2 Performance measures 
Since the main focus is on the minority class prediction, 

evaluation prequential [2] of minority class Recall is used 

as the evaluation measure to anticipate the performance. 

According to [3, 27], Recall is used as a performance 

evaluator. Eventually, the performance of the online 

learners is depicted with incremental learning curves with 

the number of instances versus minority class Recall. 

 

Evaluation prequential: 

It is an interleaved test-and-train procedure to evaluate the 

data stream by testing each evolving sample on the learned 

model, after that using it for training. 

 

Classification Recall: 

The classification Recall of each class usually measured 

as the 

Recall=
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (4) 

 

Here TP referred as number of positive class samples 

predicted as positives and FN referred as number of 

positive class samples predicted as negatives. Though the 

size of the stream is usually assumed to be infinity, for the 

sake of comparison different sizes are assumed. In this 

work, the prequential results are reported for 50 fixed 

chunk sizes. Hence, the total time steps covered for each 

chunk size is (size of the stream/50). 

 

Method   Type of learning State of imbalance         Drift               Drift Detection 

Batch Online Static Dynamic p(y/x) p(y) Active  Passive 

[25] ✓  ✓  ✓  ✓  

[26] ✓  ✓  ✓  ✓  

[27]  ✓ ✓  ✓  ✓  

[28] ✓ ✓  ✓ ✓ ✓ ✓  

[29]  ✓ ✓ ✓ ✓ ✓ ✓  

[30]  ✓ ✓ ✓ ✓ ✓ ✓  

[31] ✓  ✓  ✓  ✓ ✓ 

[32]  ✓ ✓  ✓   ✓ 

[33] ✓  ✓  ✓   ✓ 

[34] ✓  ✓ ✓ ✓ ✓  ✓ 

[35] ✓  ✓  ✓  ✓  

[36] ✓  ✓  ✓  ✓  

[37] ✓  ✓  ✓   ✓ 

[38]  ✓ ✓ ✓  ✓  ✓ 

[39]  ✓ ✓  ✓   ✓ 

[40]  ✓ ✓  ✓   ✓ 

[41] ✓ ✓ ✓  ✓  ✓  

[42]  ✓ ✓ ✓  ✓  ✓ 

[43] ✓  ✓  ✓   ✓ 

[44] ✓  ✓  ✓   ✓ 

[45] ✓   ✓ ✓   ✓ 

[46]  ✓ ✓  ✓   ✓ 

[47]  ✓ ✓ ✓ ✓ ✓  ✓ 
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6 Study design 
This section depicts the data generation procedure and the 

experimental setup used in this study. 

 

6.1 Data sets 
Table 2 depicts the synthetic stream generation procedure 

from two generating functions such as CIRCLE and LINE 

[59]. From each of these stream generators, two states of 

imbalance STATIC (i.e., static degree of imbalance) and 

DYNAMIC (i.e., p(y) the prior probabilities of the classes 

change dynamically i.e., dynamic degree of class 

imbalance) are generated as shown in table 3. For each of 

these states, streams with varying degrees of imbalance 

such as [1:9, 2:8, 3:7, 4:6, and 5:5] are generated. For each 

of these imbalanced streams, drifts with three different 

speeds such as NO (i.e., no drift and the streams are 

stationary), Gradual (the drift starts at the middle of the 

stream and it takes few time steps to undergo a complete 

change in the underlined concept) and Abrupt (the drifts 

start from the middle of the stream and it takes only one 

time step to undergo a complete change in the underlined 

concept) are generated. 

 To generate Gradual and Abrupt drifts, the speed 

of the drift is varied from 1 to (chunk size * 10). Each 

synthetic data set contains a single drift and this drift is 

simulated with either of these three different severities 

such as NO (i.e., severity=0%), LOW (i.e., 

severity=≈16%), and HIGH (i.e., severity=≈66%) [59] (as 

shown in table 4). Here, the severity refers to the 

percentage of change in the underlined concept after the  

drift. The streams with the specified settings are generated 

for lengths such as [1K, 50K, 100K, 150K, and 200K]. 

Here K refer to the size 1000. 

 Figure 1 depicts the data generation scenario for 

DYNAMIC imbalance and HIGH Drift for both CIRCLE 

and LINE generators. In addition to the simulated datasets, 

a real-world CD dataset KDD CUP 99 [60] is also used in 

the analysis. 

 

6.2 Experimental setup 
Except the LASVM, the online learners of both adaptive 

and non-adaptive algorithms such as non-adaptive NB, 

adaptive and non-adaptive KNN, and VFDT, Perceptron 

is considered from MOA. For non-adaptive KNN the 

window size is reset for training set sizes. The adaptive 

NB is implemented in MATLAB. The same window size 

is considered for both NB and KNN. On the other hand, 

the LASVM was originally developed to perform SVM 

active learning on an offline training set incrementally, 

whereas this has been modified to learn CD streams 

online. Mainly evaluation prequential of minority class 

Recall is used to demonstrate the performance of the 

classifiers, and majority class Recall is also used where 

ever necessary. Due to the nature of automatic adjustment 

of the boundary towards every incoming data both the 

LASVM and Perceptron are considered adaptive 

algorithms. 

7 Experimental results  
This section explores the analysis on the research 

questions that are already stated. Though we have carried 

out the proposed study on all aforementioned synthetic 

streams, the results for small (1K) and large (200K) 

datasets are presented for simplicity. The Gradual drifts 

are also used based on the necessity. 

RQ1: Does the length of the stream concerning the 

imbalance ratio at the current time t impact the online 

learner’s performance? 

To address this research question, we have considered the 

case of STATIC Imbalance- NO Drift i.e., the degree of 

imbalance is static and there is no drift in evolving stream. 

Here, each stream length [i.e., 1K, 50K, 200K] with 

varying degrees of imbalances are considered such as [1:9, 

2:8, 3:7, 4:6, 5:5]. From Table 5, for all the streams from 

both generators, on all considered learners, it is identified 

that as the length of the stream increases the performance 

also increases until the learning saturates from each 

evolving stream (Figure 2). 

 This trend is observed the same for all degrees of 

imbalance ratios. However, the rate of convergence to 

maximum recall varies with the degree of imbalance in the 

stream. From Table 5, for all the streams from both 

generators, on all considered learners, it is identified that 

as the degree of imbalance decreases from 1:9 to 5:5, the 

minority class Recall converging rate increases [See 

horizontally table. 5]. At 1:9 degree of imbalance, the 

stream is not able to rise from the minimum Recall value 

(i.e., 0), at 5:5 degree of imbalance, the stream 

performance saturates nearly at maximum Recall value 

(i.e., 100%). This is to be observed same for the streams 

from both generators, on all classifiers. Although 

perceptron yielded better performance (i.e., 10 times 

altogether), its performance is not consistent with the 

circle stream generator whereas LASVM (7 times 

altogether) exhibited consistent improvement in its 

performance with varying degrees of imbalances as well 

as size. 

It is also identified for the balanced streams (i.e., 

5:5), the time stamps required to converge to maximum 

Recall also decrease when compared to imbalanced 

streams. The stream with 5:5 converging to its maximum 

Recall 100%, is below the first 1000-time stamps, whereas 

the rest of the imbalanced streams converged to their 

maximum Recall after the first 1000 steps. This trend is 

illustrated with adaptive NB and LASVM (figure 2). 

 In addition to this, with LASVM, performance 

improvement is observed compared with the rest of the 

learners. The [40%, 45%] of the Recall yielded by 

LASVM at high degrees of imbalance [1:9, 2:8] after 

1000-time steps, whereas it is observed as zero or nearly 

zero for the rest of the learners. One of the findings on 

standalone data sets [61] where the minority class 

performance is affected by data set size, does not directly 

implicate imbalanced evolving streams as the length of the 

stream usually tends to infinity. Here the degree of 

imbalance only plays a critical role in performance 

degradation. 

 



6 Informatica 47 (2023) 1–20 Himaja. D et al. 

Table 2: Synthetic Dataset Description. 

 

 

State of imbalance  Before After 

STATIC 1:9 1:9 

DYNAMIC 1:9 9:1 

Table 3: State of imbalance before and after drift for 1:9 case.

Table 4: Settings of CD Generators. 

 

Figure 1: Dynamic imbalance.

 

RQ2. Is the degree of imbalance or CD whose impact 

critical in minority class performance degradation? 

Here, the main concern is on studying the degree of 

imbalance and CD on minority class performance. Thus, 

this question is addressed with STATIC imbalance- HIGH 

drift case. The degree of imbalance for all streams is 

considered constant throughout the stream. From figure 3, 

it is observed that the non-adaptive NB, VFDT, and KNN 

learners are sensitive to the drift compared to the adaptive 

versions. At the drift point, the learner’s performance of 

the minority class started to drop significantly.  

 

 

This effect is critical for moderate degree of 

imbalance cases such as [3:7, 4:6, and 5:5] %, due to the 

low impact of class imbalance on learner’s performance 

(From RQ1). Besides, for the high degree of imbalance 

cases such as [1:9, 2:8] %, it is observed that the impact of 

the degree of imbalance on the learner’s performance is 

more critical than the impact of the CD. This is due to 

minimum or zero performance of the learners in terms of 

minority class Recall. 

 

 

 

Dataset Imbalance 

[1:9,2:8,3:7,4:6,5:5] 

Speed of the drift Dataset Sizes Type of the drift 

 

 

CIRCLE 

STATIC  NO 

Gradual  

Abrupt 

[1K,50K,100K,150K,200K] p(y/x) 

DYNAMIC NO 

Gradual  

Abrupt 

[1K,50K,100K,150K,200K] p(y), OCI-CD 

 

 

LINE 

STATIC  NO 

Gradual  

Abrupt 

[1K,50K,100K,150K,200K] p(y/x) 

DYNAMIC NO 

Gradual  

Abrupt 

[1K,50K,100K,150K,200K] p(y), OCI-CD 

KDDCUP 99   STATIC [2:8] ------- 500K p(y/x) 

Problem Fixed values Before− >after drift 

CIRCLE a=b= 0.5 r= 0.2− > 0.2(NO DRIFT)  

r= 0.24− > 0.3(LOW DRIFT)  

r= 0.2− > 0.5(HIGH DRIFT) 

LINE a1=0.1 a0= -0.25−>-0.25(NO DRIFT) 

a0=-0.25−>-0.7(LOW DRIFT)  

a0=-0.1−> -0.8(HIGH DRIFT) 
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Table 5: Minority class prequential Recall for CIRCLE and LINE of stream sizes [1K, 200K]. Here nonadap refers to 

non-adaptive and adap refers to adaptive. 

 

For the adaptive learner such as LASVM, KNN, and 

NB the effect of the drift seems to be nominal when 

compared to non-adaptive versions. Though there is an 

impact of the drift at the beginning of the new concept in 

terms of a performance drop, the learners are quickly 

regaining better performances than non-adaptive versions. 

This trend is observed the same for Gradual cases (figure 

4). The adaptability of NB and KNN to the drift is due to 

the window of the sample’s current time t. Whereas 

LASVM is due to active learning of new samples near to 

boundary. 

 

RQ3: Is the impact of OCI-CD is more adverse than 

p(y) and p(y/x) drifts on the learner’s performance? 

This research question is addressed by considering the 

cases of DYNAMIC imbalance- NO DRIFT(CI), 

DYNAMIC imbalance- HIGH DRIFT (OCI-CD). Here 

each of the stream starts with one of the imbalance degrees 

(i.e., Minority: Majority) such as [1:9, 2:8, 3:7, 4:6, 5:5] 

and after the p(y) drift, the degree of imbalance changes to 

[9:1, 8:2, 7:3, 6:4, 5:5] (i.e., the minority becomes the 

majority and majority becomes the minority). For 

simplicity here Class 1 is referred to as minority class and 

class 0 is the majority class before the drift. This research 

question is illustrated with stream size 200K, because the 

visibility of the drift is vibrant. In case of DYNAMIC 

imbalance-HIGH Drift both the p(y) and p(y/x) change 

have tailored to occur at the middle of the stream. 

 From figure 5, 6, 7, 8 it is noticed that the 

performance of the two classes hindered by both CI, OCI-

CD drifts. However, it is identified that this impact varies 

from classifier to classifier. 

 Concerned with Class 1, it is observed that in 

DYNAMIC imbalance- NO DRIFT case, for the high 

degree of imbalance cases such as 1:9, 2:8, the 

performance improvement is observed after the drift point 

and whereas for moderate degree of imbalance cases such 

as 3:7 and 4:6, the performance drop down is observed. 

This trend is similar for both adaptive and non-adaptive 

cases but more significant in non-adaptive learners (figure 

5, 6, 7, 8). On an average the performance of DYNAMIC 

imbalance - NO DRIFT and DYNAMIC imbalance- 

HIGH DRIFT are very much similar to each other in 

adaptive learners.  

 

  Recall (%) for different imbalance ratios 

Size Classifier 1:9 2:8 3:7 4:6 5:5 

 

 

 

1K(CIRCLE) 

NB (nonadap) 0  19.5 61.66 90.25 98.8 

NB (adap) 5  25 57.66 77.5 89.8 

KNN (nonadap) 6  30 62.66 90.25 99.2 

KNN (adap) 0  11 52 87.25 98.6 

VFDT (nonadap) 0  0 61.66 90.25 98.6 

VFDT (adap) 0  0 67.33 91 91 

Perceptron 0  0 0 25.75 11.6 

LASVM 8  14.5 70 91 99.6 

 

 

 

200K(CIRCLE) 

NB (nonadap) 0  26.1 63.9 95.4 100 

NB (adap) 0.01  26.8 62.97 94.11 100 

KNN (nonadap) 1.4  24.5 73 98.8 100 

KNN (adap) 2.6  42.5 64.4 95.9 99.8 

VFDT (nonadap) 2.3  0.3 93.3 99.7 99.9 

VFDT (adap) 17.7  85.9 99.8 99.8 99.9 

Perceptron 84.2  92.5 100 100 10.9 

LASVM 42.15  45.9 83.95 95.42 100 

 

 

 

1K(LINE) 

NB (nonadap) 0  50 81 91.75 98.4 

NB (adap) 12  41.5 70.66 86.75 96.8 

KNN (nonadap) 0  18.5 50.33 87.5 97 

KNN (adap) 0  18.5 50.33 87.5 97 

VFDT (nonadap) 0  1.5 75.66 95.25 97.8 

VFDT (adap) 0  2.5 75.66 95.5 97.2 

Perceptron 0  0 32.33 78 98.4 

LASVM 7  20 67 87 98.4 

 

 

 

 

200K(LINE) 

NB (nonadap) 0  57.3 86 96 100 

NB (adap) 0.01  56.35 84.9 94.4 100 

KNN (nonadap) 0.4  17.5 63.7 96.7 100 

KNN (adap) 5.7  49.6 69.8 98 99.7 

VFDT (nonadap) 0.5  1.6 97.2 99.9 99.9 

VFDT (adap) 21.2  20 97.5 95.9 100 

Perceptron 77.1  87.7 100 100 100 

LASVM 40.74  43.60 77.81 94.09 100 
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(a) Adaptive NB(1K) 

(b) Adaptive NB (200K) 

  

(c) LASVM (1K) 

  

(d) LASVM (200K) 

Figure 2: Minority class Recall Prequential for the stream sizes [1K, 50K, 200K] on STATIC IMBALANCE-NO 

DRIFT for CIRCLE DATASET. 

 

 

As the both drifts point to the same position it is observed 

that the impact of p(y) drift is more prominent than p(y/x) 

drift in OCI-CD (figure 5, 6, 7, 8 of Class 1). Compared to 

non-adaptive learners, adaptive learners are coping better 

with CI, OCI-CD drifts. 

Concerned with Class 0, with DYNAMIC 

imbalance- NO DRIFT, after the drift point there is a 

performance drop down on the streams with most of the 

learners. But LASVM exhibits a stable performance 

towards p(y) drift compared to the rest of the learners. 

However due to either the adaptive nature of the learner or 

more learning before the drift and scarcity of the concept 

after, few streams exhibited stable performance. In the 

case of DYNAMIC imbalance- HIGH drift, besides 

LASVM rest of the learners have shown performance drop 

compared to DYNAMIC imbalance-NO drift. In addition 

to this it is observed that this impact is more on non- 

adaptive learners when compared with other learners. 

Based on the learning mechanism the non-adaptive 

learners are prone to p(y) and OCI-CD drift. Since the 

perceptron behavior is not consistent in both adaptive and 

non-adaptive learner’s we cannot derive conclusions 

(figure 5, 6, 7, 8 of Class 0). Compared to non-adaptive 

learners, adaptive learners are coping better with CI, OCI-

CD drifts. 

For non-adaptive NB, KNN, and VFDT, there is 

a performance drop after the drift. This impact is observed 

significant for both DYNAMIC Imbalance- NO DRIFT, 

DYNAMIC imbalance HIGH DRIFT cases. However, the 

rate of fall of performance at the drift point, the rate of 

convergence after the drift of DYNAMIC imbalance 

HIGH DRIFT case only differs with DYNAMIC 

imbalance- NO DRIFT case. Here the balanced cases 5:5 

are even prone to CI, OCI-CD drifts in case of non-

adaptive learners. Compared with non -adaptive learners, 

the class 1 performance of the adaptive learners is better 

coping with CI, OCI-CD drifts (figure 5, 6, 7 and 8). 

Compared with other adaptive and non-adaptive 

learners, LASVM exhibits stable performance towards the 

OCI-CD drift for Class 0. Whereas for class 1, at moderate 

degree of imbalance cases such as [3:7, 4:6] and at 

balanced degree of imbalance [5:5] cases are not much 

sensitive to different types of drifts. However, the high 

degree of imbalance cases such as [1:9, 2:8] are only prone 

to CI drift. The same scenario is observed with Gradual 

drifts on LASVM. 
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(a) non-adaptive NB (200K)  (b) Adaptive NB (200K)  

(c) non- adaptive KNN (200K)  (d) adaptive KNN (200K)  

(e) non-adaptive VFDT (200K) (f) adaptive VFDT (200K)  

(g) PERCEPTRON (200K)  (h) LASVM (200K) 

Figure 3: Minority class Recall Prequential on STATIC IMBALANCE- HIGH DRIFT (Abrupt) for 

CIRCLE dataset. 
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(a) non-adaptive NB (200K)  (b) LASVM (200K)  

Figure 4: Minority class Recall Prequential on STATIC IMBALANCE- HIGH DRIFT (Gradual) for CIRCLE dataset

 

 

RQ4. To what extent does online SVM 

cope with OCI-CD, p(y), and p(y/x) drifts 

compared to other online learners?  

From RQ1, the LASVM has consistently exhibited better 

performance than the other adaptive and non-adaptive 

learners, in coping with the degree of imbalance. As the 

degree of imbalance decreases [1:9, 2:8, 3:7, 4:6, 5:5], the 

performance increases. Though the size is increasing from 

1K to 200K, it is converging earlier to the maximum 

performance (Recall) (table 5 and figure 2). 

From RQ2, unlike other adaptive and non-

adaptive algorithms, it is not much sensitive to p(y/x) CD. 

In this case, both LASVM and adaptive KNN consistently 

yielded better performance (figure 3). 

From RQ3, the LASVM is sensitive to p(y) drift 

at the high degree of imbalance cases on class 1 such as 

[1:9, 2:8] only. For LASVM, the performance yield looks 

the same on both DYNAMIC imbalance- NO DRIFT and 

DYNAMIC imbalance- HIGH DRIFT cases.  

Hence the observations regarding online SVM 

are mimicking the conclusions of [62, 53] which are 

investigated in static training set settings. Further, apart 

from the high degree of imbalance cases the performance 

of online SVM active learning is not that sensitive to p(y), 

p(y/x), OCI-CD drifts. Compared with other adaptive and 

non-adaptive learners, adaptive KNN is performing 

equally in coping with considered three drifts. 

8 Analysis on real world data sets 
The conclusions are further validated on real world drift 

dataset such as KDDCUP’99 of 10% [60] which is having 

a constant degree of imbalance 20:80. Corresponding data 

characteristics are depicted in table 2. The dataset is well 

discriminative in nature (figure 9 (b)) and only prone to 

p(y/x) drift. Here the last five fisher discriminate 

components are considered to preserve the non-linearity 

of the data [63], based on the assumption that the non-

linear concepts are not much separable. Consequently, the 

impact of static imbalance (STATIC) with p(y/x) drift in   

 

 

the context of adaptive and non-adaptive learners is only 

studied. This scenario is illustrated with 1K-500K. For 

better readability, the classifiers from MOA (non-adaptive 

NB, VFDT, adaptive KNN, Perceptron) are considered for 

comparisons with LASVM. 

From figure 9(a), (b) as the length of the stream 

increases from 0 to 500K the minority class Recall 

increases from 0% to 100% nearly for all classifiers. Here 

LASVM converges to the maximum Recall earlier than 

other learners. It is identified that NB is more susceptible 

to drift (figure 9(b) at 350K) compared to other online 

learners. On the other hand, in the case of p(y/x) drift 

LASVM is consistent and has exhibited stable 

performance compared to other adaptive learners KNN, 

Perceptron, and non-adaptive learners like VFDT and NB. 

For the smaller stream lengths i.e., 1K (figure 9(a)), 

experiments were repeated three times and its average 

evaluation prequential Recall is reported. 

Hence, from the real-world datasets, it is identified 

that the adaptive learners better cope with p(y/x) drift 

compared with non-adaptive learners. In addition to this, 

it is prominently identified that LASVM is not much 

sensitive to static class imbalance as well as to p(y/x) drift, 

which mimics the findings on synthetic streams. Due to 

the well separability of the data, the impact of class 

imbalance on other learners is also minimal. 

9 Discussion 
In this section, observations are discussed on analyzing the 

impact of the parameters such as static degree of 

imbalance, stream length, drifts (i.e., p(y), p(y/x), OCI-

CD) on adaptive, non-adaptive learners over unbalanced 

evolving streams. The main observations based on 

considered parameters are: 

• Degree of imbalance: In an evolving stream, as the 

degree of imbalance increases the performance of the 

minority class decreases. This is observed true for the 

cases when the degree of imbalance is either static or 

dynamic.  
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Figure. 5: CLASS 0 and CLASS 1 Recall prequential of DYNAMIC IMBALANCE on NB Learner. Here, b refers to 

before, a refers to after the drift (Abrupt). (i): non-adaptive NB with no p(y/x) drift. (ii): non-adaptive NB with high 

p(y/x) drift. (iii): adaptive NB with no p(y/x) drift. (iv): adaptive NB with high p(y/x) drift. 
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CLASS0 (CIRCLE) CLASS1 (CIRCLE) CLASS0 (LINE) CLASS1(LINE) 

  

  

          (i) 

    

         (ii) 

    

          (iii) 

    

          (iv) 

Figure 6: CLASS 0 and CLASS 1 Recall prequential of DYNAMIC IMBALANCE on KNN Learner. Here, b refers to 

before, a refers to after the drift (Abrupt). (i): non-Adaptive KNN with no p(y/x) drift. (ii): non-adaptive KNN with 

high p(y/x) drift. (iii): adaptive KNN with no p(y/x) drift. (iv): adaptive KNN with high p(y/x) drift. 
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Figure 7: CLASS 0 and CLASS 1 Recall prequential of DYNAMIC IMBALANCE on PERCEPTRON Learner. Here, 

b refers to before, a refers to after the drift (Abrupt). (i): Non-Adaptive PERCEPTRON with no p(y/x) drift. (ii): Non-

Adaptive PERCEPTRON with high p(y/x) drift. 

 

In the dynamic case, there is a performance drop 

at the p(y) drift position. This impact is severe for 

moderately imbalanced streams when compared to 

the highly. For high imbalance degrees, in a static 

imbalance state, constant performance degradation is 

observed. Whereas for dynamic imbalance state, 

performance improvement is observed after p(y) drift. 

• Length of the Stream: As the size of the stream 

increases, the stream with more balanced classes 

converges earlier than the unbalanced classes.  

Unlike, on standalone training sets, here the length of 

the stream with respect to imbalance does not have 

much impact on minority class performance. 

However, as the length of the stream increases, the 

performance increases till the learning from the 

stream saturates. 

• Real Drift (i.e., p(y/x)): As the length of the stream 

increases the non-adaptive classifiers are much more 

prone to p(y/x) drift compared to the adaptive 

classifiers. This impact is critical for moderate degree 

of imbalance cases where the imbalance has less 

impact. For adaptive learners, the impact of the class 

imbalance on minority class performance is more 

critical than real drift. 

• Virtual and Real Drift (i.e., p(y) and OCI-CD): The 

non-adaptive classifiers are much more prone to both 

p(y) and OCI-CD drifts compared to adaptive 

learners. Whereas, the adaptive learners are much 

more prone to p(y) drifts at the high degree of 

imbalance cases. In addition to this, the impact of p(y) 

and OCI-CD drifts varies from learner to learner and 

concept to concept. Learners such as NB, KNN, and 

VFDT are prone to both p(y) and OCI-CD drifts. 

Further, the impact of dynamic imbalance is more 

severe than real drift due to the sudden drop down in 

performances. 

• Adaptive and Non-Adaptive learners: The non-

adaptive learners are much susceptible to drifts (i.e., 

p(y), p(y/x)) and OCI-CD) compared with adaptive 

learners. The degree of imbalance in two of the forms, 

static and dynamic is the common factor that both 

types of learners tend to be prone to. From all 

considered classifiers apart from the high degree of 

imbalance cases such as [1:9, 2:8] in both static and 

dynamic cases, the adaptive large scale SVM active 

learning is not much sensitive to OCI-CD, p(y) and 

p(y/x) drift compared to other online learning 

methods. Further, it is not sensitive to both states of 

imbalance (static and dynamic). Consistent 

performances are observed with respect to all 

considered parameters, though it is not designed to 

handle CD and p(y) changes in evolving streams. 
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CLASS0 (CIRCLE) CLASS1 (CIRCLE) CLASS0 (LINE) CLASS1(LINE) 
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         (ii) 
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          (iv) 
 

Figure 8: CLASS 0 and CLASS 1 Recall prequential of DYNAMIC IMBALANCE on LASVM Learner. Here, b 

refers to before, a refers to after the drift. (i): LASVM with no p(y/x) drift (Gradual). (ii): LASVM with high p(y/x) 

drift (Gradual). (iii): LASVM with no p(y/x) drift (Abrupt). (iv): LASVM with high p(y/x) drift (Abrupt).
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(a) 1K (b) 500K 

 

Figure 9 Minority class Recall Prequential for KDD CUP from Data Set Size [1K- 500K].

 

 

In terms of overall performance, adaptive algorithms 

outperformed non-adaptive algorithms due to the 

maintenance of a window throughout the learning process 

in which older samples are ignored and only 

representative samples are retained. LASVM 

outperformed other algorithms in adaptive learners due to 

its adaptability to changing data and applicability to 

imbalanced data sets [58]. Furthermore, LASVM employs 

active learning of new samples near the boundary. 

From the above discussions the following 

recommendations are made to cope with the combined 

problem of OCI-CD. 

• It is visualized that with adaptive methods such as 

LASVM, which are less sensitive to p(y|x) drifts, the 

p(y) drift can be handled dynamically by adapting the 

methods that address the class imbalance problem [4]. 

This sort of solution is viable for the high degree of 

imbalanced cases (both static and dynamic) where the 

impact of p(y/x) drift is nullified by the 

underperformance of the learner. However, for the 

environment where tracking of change detection is 

mandatory, there drift detection methods can be 

implemented. Whereas the dynamic degree of 

imbalance is handled with an indicator function [38]. 

• For non-adaptive learners, the combined OCI-CD 

problem is approached by employing both drift 

detection and methods that address the class 

imbalance problem simultaneously. At first, based on 

the current degree of imbalance at time t the class 

imbalance methods are employed. Then the drift can 

be detected using drift detection methods [1, 2]. If the 

drift is not detected the current model is updated else 

a new model is learned with the new sample. 

However, in case of the dynamic degree of imbalance, 

the p(y) change could be captured dynamically by an 

indicator function, and then it can be adaptively 

countered by the methods that address the class 

imbalance problem [3]. This sort of solution is viable  

 

 

 

 

 

for moderate degree of imbalance cases (both static 

and dynamic) where the tracking of p(y/x) drift is 

possible and can be addressed. 

• New drift detection methods are required to develop 

for identifying the CI, CD and OCI-CD drifts at the 

high degree of imbalance cases, or the existing drift 

detection methods are needed to be fine-tuned for 

adaptability. However, the change detection methods 

based on classification error or performance are prone 

to a state of imbalance in both states of static and 

dynamic. 

10 Conclusion 
This work presents an explorative study to analyze the 

impact of the combined problem of CI (both static and 

dynamic) and CD (i.e., p(y/x)). Initially, this study aims at 

exploring the impact of the degree of imbalance on online 

learner’s performance. Here it is identified that as the 

degree of imbalance increases, the performance converged 

rate of the stream decreases. Further, the balanced streams 

converging earlier to their maximum performance 

compared to unbalanced streams. Later, the impact of the 

CD analyzed over adaptive and non-adaptive learners. It 

is noticed that the impact of the real CD is more on non-

adaptive learners compared with adaptive learners. This 

effect is critical for an evolving stream with moderate 

degree of imbalances. For the high degree of imbalance 

streams, the degree of imbalance is more critical than the 

CD. 

In addition to the above findings, the effects of virtual 

drift (i.e., p(y)) and combined drift (i.e., OCI-CD) are 

analyzed. It is noticed that the non-adaptive learners such 

as NB and VFDT are much more prone to both p(y) and 

OCI-CD drifts. Whereas the adaptive classifiers such as 

NB, KNN, and VFDT are much more prone to the virtual 

kind of p(y) drift. Further, to these findings, it is reported 

that the large-scale active learning SVM, (LASVM) is not  
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much sensitive to the degree of imbalance as well as 

different types of drifts though it was not designed for 

countering the combined problem of virtual and real drift. 

This study also presents a few guidelines for designing 

online learning algorithms to address the combined 

problem of imbalanced evolving streams with CD. 

Though the LASVM has better coped with a 

combined problem compared with other learners, still it is 

prone to p(y) drift at the high degree of imbalances, 

therefore an enhanced LASVM for better prediction 

performance is under study and a drift detector that is able 

to identify CD in the presence of class imbalance is also 

under progress. 
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