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Abstract— In the current study we develop a Criminal Movement

Model (CriMM) to investigate the relationship between simulated

travel routes of offenders along the physical road network and

the actual locations of their crimes in the same geographic space.

With knowledge of offenders’ home locations and the locations of

major attractors, we are able to model the routes that offenders

are likely to take when travelling from their home to an attractor

by employing variations of Dijkstra’s shortest path algorithm.

With these routes plotted, we then compare them to the locations

of crimes committed by the same offenders. This model was

applied to five attractor locations within the Greater Vancouver

Regional District (GVRD) in the province of British Columbia,

Canada. Information about offenders in these cities was obtained

from five years worth of real police data. After performing a

small-scale analysis for each offender to investigate how far off

their shortest path they go to commit crimes, we found that a

high percentage of crimes were located along the paths taken by

offenders in the simulations. Aggregate analysis was also

performed to observe travel patterns in different areas of the

cities and how they relate to the amount of crime in each

neighbourhood. The results are discussed in relation to both

theory and potential policy implications.

Keywords - Crime attractor, journey to crime, road network,

street segment, shortest path

I. INTRODUCTION

In recent years there has been a growing interest to consider
the influence of attractor locations on crime in urban areas [7]
[19] [20] [21]. While there has been considerable evidence that
a disproportionate amount of crime may be concentrated at or
near attractor locations [24] [4] [13], there has been a lack of
research that has considered the influence of attractors on the
spatial distribution of crimes in crime neutral areas. These are
areas where crimes are more sporadically distributed with few
clusters or concentrations [7]. However, principles of Crime
Pattern Theory can be applied to crime neutral areas to gain
insight into criminal behavior [6]. This theory states that an
offender’s direction of travel to a criminal event coincides with
paths he or she frequently takes on a routine basis. Thus,
although it may appear as though crimes in these areas are
haphazardly distributed, the tenets of Crime Pattern Theory
suggest that an underlying pattern should be present. Since the
target selection behaviour of criminals is influenced by their
awareness space, which is largely defined by nodes and paths

in their routine activity patterns, it is expected that crimes will
be committed along the routes between offenders’ homes and
activity node locations [6]. While focusing on crime at or near
attractor locations is an important task because a considerable
amount of crime occurs in the surrounds of these locations,
crime neutral areas, too, are important areas of study because
they have the potential to reveal patterns about the target
selection behaviour of offenders. Knowledge about such
patterns may be fruitful in the development of intervention
strategies and urban planning practices for the purposes of
crime prevention and reduction.

To gain insight into the target selection patterns of
offenders, the areas where offenders reside and commit crimes
must be analyzed. These areas are often defined in terms of
activity and awareness spaces. Activity space, a concept
commonly used in human-environment interaction studies, is
defined as the area that an individual has direct contact with
through the execution of their routine activities [17]. However,
it is likely that their knowledge of the environment extends
somewhat beyond these limits. All places that an individual has
some familiarity with are part of their awareness space [8]. A
person’s awareness space is likely to be influenced by the
principle of distance decay [22]. Specifically, a person will
have greater awareness of places geographically proximal to
their activity space and lesser knowledge of the environment as
the distance from their activity space increases (Fig.1).

Two major components of activity and awareness spaces
are nodes and paths. In the course of their daily routines,

Figure 1. Activity and awareness spaces.
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people move from one activity to the next, spending time at
several locations. Home, work, school, shopping centres,
recreation sites, and entertainment venues are examples of
activity nodes that tend to be amongst our most common
destinations [5]. Some activity nodes may be said to have a
greater pull or attraction because they draw larger masses of
people (e.g., shopping centres and sports stadiums). In contrast,
some activity nodes may be said to have a reduced pull because
they draw fewer people (e.g., single-family dwellings and
stand-alone commercial properties) [15].

Paths such as roadways and walkways are the connections
that allow people to travel between activity nodes. The
importance of travel paths has been demonstrated in
criminological literature. In particular, a variety of studies have
considered the physical influence of street networks on the
spatial distribution of property crimes in urban environments.
Much of this research has concentrated on a small number of
characteristics including the relative permeability of
neighbourhoods (usually defined by the number and type of
roads providing access to and from an area), and the type of
road or the amount of traffic flow on roads [3] [18] [26].

The analysis of travel patterns on road networks has also
been applied to many different routing problems including
efficient ambulance routing [9], optimal timber haulage routes
[10], and commuter traffic queries [14]. To address these
routing problems, these studies created simulation models
along graphs of their specific road networks, and utilized
various real-time traffic information and GIS data. In
particular the importance of minimizing travel time or travel
distance in these case studies requires shortest path algorithms
like Dijkstra’s algorithm [11] [12] [25] [27].

In determining what types of crimes should be analyzed
using Crime Pattern Theory, it is important to note that crimes
can be separated into two general categories, those against a
specific property, which are usually tied to a location, or those
against a person, which are usually not tied to fixed locations
[7]. In this paper the focus is on those crimes where the
location plays a central role, hence the application of the model
is restricted in this paper to only property crimes.

In the current study we investigate the relationship between
simulated travel routes of offenders along the physical road
network and the actual locations of their crimes in the same
geographic space. With knowledge of offenders’ home
locations and the locations of major attractors (in this case
shopping centres), we are able to model the routes that
offenders are likely to take when travelling from their home to
an attractor by employing variations of Dijkstra’s shortest path
algorithm. These approaches are utilized to develop a Criminal
Movement Model (CriMM) which is subsequently used to run
simulations on five attractor locations within the Greater
Vancouver Regional District (GVRD), in British Columbia,
Canada. With these routes plotted for 7,807 offenders residing
in this district, we compare the routes to the locations of their
crimes.

The main contributions of our work are as follows:

1) We introduce a model for analyzing spatial patterns on
road network data.

2) We use Dijkstra’s algorithm for generating paths from
homes to attractors, and propose a general algorithm for
analyzing the relationship between these paths and crime
locations.

3) Our extensive experimental evaluation on real crime
data demonstrates the efficacy of the model in analyzing
patterns of offender movement within real city networks.

The paper first discusses the development of CriMM in
Section II, presents and analyzes the results of an experimental
evaluation on a specific city road network in Sections III and
IV, and concludes with a discussion of the results, policy
implications and future work in Section V and VI.

II. METHODS

CriMM was developed to reconstruct a likely path taken by
an offender from their home location to an attractor, which
represents an activity path in their awareness space. These
activity paths are reconstructed to analyze their spatial
relationship with crime locations. As a result, the model tests if
principles of Crime Pattern Theory can be used to explain
patterns in offender movement.

Given a road network and data detailing home and crime
locations of offenders, CriMM generates paths for all offenders
using Dijkstra’s shortest path algorithm, where “shortest” is
defined in terms of either travel time or distance. It then
identifies the most frequently travelled road segments and
calculates the distance of crime locations to generated paths.
Three different distance measures are used: Euclidean, Dijkstra
and Block distance. Calculating distance in this way allows the
model to test if crimes are being committed en route to
attractors which would support Crime Pattern Theory.

Part A of this section describes the requirements of CriMM,
while Part B explains how CriMM assigns which attractor each
offender travels towards. Part C describes how paths are
generated for each offender and Part D discusses how the
distance between each crime location and its associated path is
calculated. The pseudo-code for CriMM is shown in Fig. 2.

A. Model Requirements

As input the model requires information about the road
network which, for this model, is encoded into three matrices
(Fig. 2, lines 1-3). Each is an n x n matrix, where n represents
the number of nodes in the network, and each node is assigned
an index i or j where 1� i, j �n. Hence each entry, (i,j), in each
matrix corresponds with node i along a row of the matrix, and
node j along a column of the matrix. Each of the three matrices
is described below:

71



1. Adjacency Matrix (Adj): Indicates which nodes are
connected by a road segment. Adj(i,j)=0 if the nodes are
not connected, and Adj(i,j)=1 if the nodes are connected.

2. RoadNet_Dist (D): Indicates the length of each road
segment in meters. If two nodes are connected then
D(i,j)=length of the segment between nodes i and j.
Otherwise D(i,j)=0.

3. RoadNet_Time (T): Indicates the time taken to travel down
a road segment in seconds. Travel time is calculated by
taking into account speed limit, segment length, and travel
impactors. If two nodes are connected then T(i,j)=travel
time between nodes i and j. Otherwise T(i,j)=0.

The adjacency matrix is subsequently used to plot the
network. The distance and time cost matrices are used to find
the shortest paths from offenders’ homes to attractors. The cost
matrices can take into account basic characteristics about each
road segment including speed limit, length (in meters) and
information about travel impactors (for example stop signs or
traffic lights).

Also required as input is the location of each crime
committed by each offender along with the location of their
home when the crime was committed (Fig. 2, lines 4-5).
Finally, the locations of attractors towards which the offenders
will travel must be specified (Fig. 2, line 6). In reality attractor
locations are polygon shapes, however to successfully generate
paths using Dijkstra’s algorithm, they need to be redefined as
points. Thus, a new attractor node at the centre of the attractor
polygon is created in the data connecting it to the surrounding
nodes (Fig. 3a), or alternatively, a single node which the
attractor is closest to can represent the attractor (Fig. 3b).

B. Assigning Attractors

CriMM includes an algorithm for choosing the most likely
attractor an offender travels towards (Fig. 2, lines 8-28). An
appropriate attractor is chosen based on the associated home
and crime location characteristics of each offender. The
distance between an offender’s home location and each
attractor, as well as the distance between their crime location
and each attractor, is measured. If the distance from an
offender’s crime location to a particular attractor is shorter than

Attractor Polygon Attractor Node

(a) New attractor node at the centre of the polygon is assigned

(b) Node which attractor is closest to is assigned

1. Function CriMM()=(Adjacency Matrix Adj()=(N,E)
2. RoadNet_Dist()=(N,ED)
3. RoadNet_Time()=(N,ET)
4. Crime Location C
5. Home Location H
6. Attractors A())
7.
8. //Assigning attractor for offender

9. Counter = 0 //counting attractors in direction
10. of offender’s home and crime
11. for each An in A()

12. d(C, An)=distance from crime to attractor

13. d(H, An)=distance from home to attractor

14. if d(C, An)<d(H, An)
15. //offender travelling in the direction of An
16. Counter = Counter + 1

17. end

18. end

19.
20. if Counter = 1 //if only one An is found

21. SelectedAn = An where d(C, An)<d(H, An)
22.
23. elseif Counter>1

24. SelectedAn = An where d(C, An)<d(H, An)

25. and d(C, An) is minimum
26. else (Counter=0)

27. SelectedAn = An where d(C, An) is minimum
28. end
29.
30. //Assigning shortest distance or time path
31. DistOrTime=rand(0,1);
32. if DistOrTime>0.5
33. take path with shortest distance
34. else
35. take path with shortest time
36. end
37.
38. //Generating Path

39. P()=path from H to SelectedAn
40. =Dijkstra(H, SelectedAn, RoadNet_Dist/Time)
41.
42. //Calculating Shortest Euclidean Distance from
43. Crime to Path
44. for each segmentn in P()

45. EuclidDistVector(segmentn)= Euclidean distance
46. from C to segmentn
47. end

48. EuclideanDistance=min(EuclidDistVector())
49.
50. //Calculating Shortest Road Network Distance
51. from Crime to Path
52. for each noden in P()

53. RoadNetDistVector()=Dijkstra(C, noden,
54. RoadNet_Dist)

55. //RoadNetDistVector()=[node1, node2,…,nodem]

56. RouteLength= �i=1 length(nodei, nodei+1)
57.
58. DijkstraDistVector(n)=RouteLength
59. BlockDistVector(n)=|CrimetoPathRoute|
60. end
61.
62. DijkstraDistance=min(DijkstraDistVector())
63. BlockDistance=min(BlockDistVector())

Figure 2. General algorithm for CriMM for a single offender.

m

Figure 3. Defining nodes for attractors.
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the distance from their home location to the attractor, it is
assumed that the offender is travelling in the general direction
of the attractor (Fig. 2 lines 9-18). If an offender’s crime
location is found to be in the direction of only one attractor,
that attractor is chosen for the offender to travel towards (Fig. 2
lines 20-21). In the case where the crime location is in the
direction of several attractors the attractor to which the crime
location is closest to is chosen (Fig. 2 lines 23-25). This is also
used in the case where the crime location is never in the
direction of an attractor. (Fig. 2 lines 26-28).

In Fig. 4, two attractors represented by black stars are
shown, as well as an offender’s home and crime location. Since
the distance from the crime location to both attractors is shorter
than the distance between the home location and the attractors,
the attractor that is closest to the crime location is chosen -
attractor A. Consequently the shortest path between the
offender’s home location and attractor A is assigned as the
offender’s most likely route to their crime.

C. Generating Paths

Since it was assumed that most offender movement occurs
along road networks, the model simulated paths using only
road networks. Once an attractor location was decided, it was
assumed that an offender would be interested in taking routes
from their home to the chosen attractor that are the fastest in
terms of time or the shortest in terms of distance. Many
transportation studies have made similar assumptions since a
path with the shortest distance may not necessarily be the
fastest and vice versa [9] [10] [16]. Also, factors like speed
limit and number of traffic signs affect the appeal of a route to
a commuter or offender. Looking for the shortest path enables
the model to use Dijkstra’s algorithm.

Once CriMM chooses an appropriate attractor for each
offender it then randomly chooses which criminals travel along
paths that are the shortest in terms of distance or fastest in
terms of time, giving a 50% chance to each option (Fig. 2 lines
30-36). Dijkstra’s algorithm is run from all home locations to
attractors, generating paths for all offenders (Fig. 2 lines 38-
40). All paths are then plotted on the road network and are
subsequently analyzed to identify which road segments are
travelled most frequently.

D. Crime Locations and Generated Paths

After generating all the paths, CriMM then calculates the
shortest distance between each offender’s path and crime
location using three different distance measures- Euclidean
distance, Dijkstra distance and Block distance (Fig. 2 lines 42-
63). To obtain Euclidean distance the shortest straight line
distance between the crime location and path is calculated (Fig.
2 lines 44-48). To measure Dijkstra distance, an offender’s
crime location is first snapped to the closest nearby node on the
network, and then Dijkstra’s algorithm is used to find the
shortest route between this crime node and the simulated path.
Dijkstra’s algorithm finds routes between the crime node and
each node on the simulated path. The shortest of these routes is
then chosen as the Dijkstra distance which represents the
distance that the offender detours from their trip to the attractor
in order to commit their crime. Block or node distance is found
by counting the number of nodes or intersections that are

travelled through to get from the crime location to the path
(Fig. 2 lines 50-63).

III. EXPERIMENTALEVALUATION

To evaluate the applicability of CriMM, and to analyze
trends in travel patterns of offenders, the model was applied to
offenders residing in the Greater Vancouver Regional District
(GVRD), located in the south west corner of British Columbia.
Both city and offender data were collected and input into
CriMM, which was run in MatLab 2009a on a Linux operating
system. By examining the relationship between crime locations
and generated paths, the model was used to test if principles of
Crime Pattern Theory could be used to explain the crime
patterns found in the data.

A. Study Area

The GVRD contains 22 municipalities with a population of
2,275,000 [1]. Offender data for criminals residing and
committing crimes within three major suburban cities in this
district: Burnaby, Coquitlam and Port Coquitlam was included
in the model, along with their road networks. The road
networks of two additional cities, Port Moody and New
Westminster, were also included since they are located in the
northwest and southwest corners of Coquitlam respectively
(Fig. 5). Consequently many commuters travel through these
two cities when travelling throughout the region. However,
offender data was not available for Port Moody and New
Westminster. Burnaby, Coquitlam and Port Coquitlam are fast-
growing cities which contain major commercial centres.
Although they experience some level of violent crime, the
majority of crime committed is related to property crime and
motor vehicle theft [2].

The city of Burnaby is located east of Vancouver, and has a
population of approximately 220,000 residents making it the
third largest city in the GVRD [1]. Since a major highway,
Highway 1, cuts through Burnaby, it has two distinct north and
south areas, both with increasing commercial and industrial

Figure 4. Assigning an attractor for an offender.
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land use. Its major shopping centre, Metrotown, is located in
the southern area and is the largest shopping mall in British
Columbia. Surrounded by residential housing, including high-
rise apartment buildings, it has become a major crime attractor
in the area. Burnaby also contains three more shopping centres:
Brentwood, Lougheed and Highgate Mall which were all
included as attractors in the model.

Located just east of Burnaby is the city of Coquitlam which
has a population of approximately 125,000 [1]. Although it
functions mainly as a commuter town for the city of
Vancouver, it also has a growing commercial area: Coquitlam
Town Centre. This area contains a shopping centre as well as
an increasing number of high-rise buildings. The average
family income, $82,934, is higher than that of Burnaby’s. The
city largely contains single-family dwellings [1].

The neighbouring city of Port Coquitlam is significantly
smaller with a population of approximately 50,000 and a
similar average family income of $87,000 [1]. It too has
growing commercial and industrial centres, however Coquitlam
Centre still functions as the major shopping centre in the area.
Consequently Coquitlam Centre was also included as a crime
attractor in the model.

B. Road Network Data

To reconstruct offenders’ paths, road network data from the
five cities of Burnaby, Coquitlam, Port Coquitlam, Port Moody
and New Westminster were obtained from a dataset purchased
from GIS Innovations Ltd.1 The road networks were defined as
connected graphs, with edges representing road segments and
with nodes representing intersections. Some roads, which in
real-life constitute a single road, were divided into multiple
segments within the GIS Innovations dataset.

These networks were encoded as shape files and each shape
file within ArcGIS had an associated attribute table which
provided data for each road segment. The starting and ending
node coordinates of each segment, as well as the direction of
travel along it, speed limit, length (in meters) and travel
impactor information were imported into Matlab as a matrix.
Each row k contained the attributes of road segment k,
1�k�11,255, and there were 11,255 road segments in total. The
matrix was comprised of 12 columns detailing the desired road
segment attributes required by the model.

The attribute tables also included additional information
about each road segment that was not used, such as the type of
road. This information which classifies roads into freeways,
arterial roads, collectors, local, etc. could be used in the future,
especially when incorporating rush hour traffic situations and
other delays. Furthermore, since it was assumed that the road
networks used would only include several cities at most, using
Dijkstra’s algorithm did not significantly increase the
computation time of the model.

C. Offender Data

Offender Data was obtained from a collection of databases
at the Institute of Canadian Urban Research Studies (ICURS) at
Simon Fraser University. These databases contain five years of

1 http://www.gis-innovations.bc.ca

real-world crime data for the province of British Columbia
from the Royal Canadian Mounted Police (RCMP), Canada’s
federal police force. Information about calls for service
between August 1, 2001, and August 1, 2006 is provided
including all phone calls, subjects, vehicles and businesses
involved in a crime event and their type of involvement. The
specific entries extracted for input into the model were
offenders’ names, their home locations, crime locations and the
type of crime committed. Only offenders residing in and
committing property crimes in Burnaby, Coquitlam or Port
Coquitlam were included, amounting to 7,807 offenders.

IV. RESULTS

The home and crime locations of all offenders were input
into CriMM and the most likely paths taken by these offenders
from their homes to one of the five major attractors were then
generated. The results of the simulation are shown in Fig. 6
where paths are plotted along a color map to show how
frequently different routes were taken. As expected, routes
leading up to attractors are highly travelled as well as major
routes connecting the cities together.

When these travel patterns are compared with crime rates in

Figure 5. Road network of the five cities included in the experimental
evaluation.

Figure 6. Color map of the paths taken by 7,807 offenders in the
experimental evaluation.
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the region, the routes most frequently travelled tend to
correspond with higher crime areas. Fig. 7 shows a kernel
density map of property crime rates within the five cities
studied. As shown by the darkest shaded areas, the five major
shopping centres contain the highest rates of crime. This is an
expected result since attractors are known to concentrate crime
in their immediate surrounds [24] [4] [13]. In addition, there is
an elevated-level of crime observed along routes leading in and
out of attractors and along other highly travelled routes. This
suggests that routes to attractors may become important
components of peoples’ awareness spaces and, in turn, may
influence offenders to select targets along them.

After generating all the paths, CriMM then compared the
location of each offender’s crime with respect to their
simulated path using the three different distance measures of
Euclidean, Dijkstra and Block distance. If a high percentage of
crimes were found to be near the generated paths, this would
indicate that offenders do tend to commit crimes along paths
leading to attractors, and that these paths are part of their
activity and awareness spaces.

After measuring the Euclidean distance between all crimes
and paths, results were analyzed using a cumulative
distribution function (CDF) (Fig. 8) to show the percentage of
crime locations that were within a certain distance from each
generated path. Approximately 70% of all crimes were found
to be within 500m of their generated path, and 30% of crimes
were within 32m of their paths. As the distance between crime
and path increases, the percentage of crimes in those categories
rapidly decreases, reaffirming the notion of distance decay.

However since offenders are travelling along a road
network, Euclidean distance is not always an accurate measure
of the relationship between crime locations and paths. Road
network distance was used to see how far off the path an
offender would have to travel to get to their crime location.
After analyzing the results using this measure, CriMM output
another CDF plot showing that approximately 70% of crime
locations were within 1000m of their generated path along the
road network. Approximately 35% of crimes were also within
50m of the generated paths (Fig. 9). Similar to the results
generated by using Euclidean distance, as the road network
distance between crime and path increases, the percentage of
crimes rapidly decreases.

To further confirm the results produced with the Euclidean
and Dijkstra distance measures, a CDF produced with the block
distance measure2 showed that approximately 68% of crimes
were within 5 blocks of their generated paths. Since crime
locations were being snapped to the closest nodes on the
network, 30% of crimes were actually snapped onto their
associated path and thus were 0 nodes or blocks away (Fig. 10).

To ensure that results were not being overly influenced by
crime locations occurring at an attractor, experiments were
repeated by removing crime locations that were within 300m of
the five attractors. This reduced the number of offenders in the
evaluation to 6,055. The distance measures still presented the
same patterns, however crimes were found to occur slightly
farther away from paths. For Euclidean distance 30% of crimes
were within 100m and 70% were within 800m. For Dijkstra
distance 30% of crimes were within 150m of the paths, and
70% were within 1200m. For node distance 24% of crimes
were within 0 blocks and 70% were within 8 blocks.

2 Block or node distance counts the number of nodes in the path between the
crime location and the path from home to attractor.

Figure 7. Kernel density map of property crime rates within the GVRD
between the years of 2001 and 2006.

Figure 9. CDF plot of Dijkstra distance between all crimes and paths.

Figure 8. CDF plot of Euclidean distance between all crimes and paths.
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V. DISCUSSION AND POLICY IMPLICATIONS

The results from these distance measures give very strong
support for Crime Pattern Theory and highlight the fact that
there is an underlying pattern explaining the occurrence of
crimes within crime neutral areas. The high percentage of
crimes found to occur very close to the simulated paths
reaffirms that offenders tend to travel and commit crimes along
routes that they are familiar with. Since 30% of crimes were
found to be within 32m of their path for the Euclidean distance
measure, and within 50m of their path for the Dijkstra distance
measure for all 7,807 offenders, a conclusion can be made that
offenders do not take lengthy detours off of their path. This
can imply that a great deal of offenders will veer off their path
if a criminal opportunity is nearby, and also quite visible.

Using this model it is possible to reconstruct a likely path
within an offender’s awareness space, which plays an
important role in the target selection of crimes. The results
highlight that offenders do tend to commit crimes in their
awareness spaces and more specifically along routes that lead
to crime attractors. A limitation of this work is that there may
be additional attractors, not accounted for in the current model,
that concentrate crimes along the routes to and from the major
attractors that were included. Results could be strengthened if
different types of attractors were included.

In addition, the current model assumes that offenders’
journeys to crime begin at their home and end at an attractor
location whereas in real life the journey could start from
another location, such as the offenders’ legitimate work.
Previous journey to crime research has demonstrated the
importance of these other locations or nodal points. For
example in [23], the directional preferences of burglary
offenders were considered. The authors found a strong
directional preference towards offenders’ places of
employment. Specifically, many burglary offences were
located near offenders’ work locations or along the paths
between home and work. If different starting points were added
to the current model (like an offender’s place of work or

school), we could verify the influence of shopping malls as
major attractor locations.

The results gained from CriMM can inform crime
prevention strategies for law-enforcement since they emphasize
that both crime attractors and the major routes between them
play a role in criminal activity. By stressing the importance of
activity paths in the occurrence of crime, the analysis of crime
patterns can be extended to studying the structure of city road
networks and the accessibility of crime attractor locations.

This also has direct implications for urban planners since it
gives more factors to consider when building new commercial
centres. By focusing on property crimes, CriMM directly
addresses the types of crimes that are related to commercial
success such as theft and break and enter. Better understanding
of criminal behavior in relation to urban geography can aid in
more informed city planning that may reduce the amount of
property crime for citizens and businesses. For example,
CriMM can be used by city planners to predict the impact of
constructing a new shopping centre on crime in the surrounding
area. Since the number of attractors in the model is flexible,
attractors can be added or removed to better understand how
crime patterns are influenced by the location of attractors.

These results have also shown the capability of CriMM to
analyze routes along a city network for a relatively large
amount of travelers. Although Dijkstra’s algorithm has shown
to be impractical on large networks such as province or country
road networks [27], it was quite effective on the city-scale
analysis conducted in this project. The runtime of the model for
7,807 offenders, without measuring the Dijkstra distance
between crimes and paths was approximately 4-5 hours.
Including the Dijkstra distance measure significantly increased
the runtime since Dijkstra’s algorithm was not only used to
generate paths between a home and attractor location, but also
between each offender’s crime location and each node along
their path. With the Dijkstra distance measure CriMM took
approximately 40 hours to run.

VI. CONCLUSIONS AND FURTHERWORK

This project developed a model that would reconstruct the
most likely routes taken by offenders to their crime locations.
By using Dijkstra’s algorithm, and taking into account key
locations tied with a criminal event, CriMM was used to
analyze the occurrence of crime in crime neutral areas
displaying results consistent with Crime Pattern Theory.

Since this project has proven it is possible to reconstruct
certain awareness paths of offenders, in the future it may also
be possible to reconstruct more activity paths and ultimately
offenders’ awareness spaces. Crime locations can then be
linked to individuals based on which particular awareness
space they are found in. By being able to understand the
relationship between geographic characteristics of offenders’
activity spaces and their crime locations, it could be possible to
identify perpetrators of criminal events. In combination with
other types of investigative techniques, offenders could then be
arrested and charged, contributing to local crime reduction.

In future versions, the Dijkstra distance measure could be
optimized by reducing the number of nodes the crime location

Figure 10. CDF plot of Block distance between all crimes and paths.
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is compared with, however this would also introduce some
degree of error into the model. For larger networks and for
situations that require a very high number of shortest path
calculations Dijkstra’s algorithm could be replaced with a
more efficient algorithm [12] [25] [27]. However for the
current model this was not a major necessity because of the
smaller scale of the road networks.

CriMM could also be extended to analyze crime patterns in
other cities to see the role of geography in Crime Pattern
Theory, and results for different crime types could be generated
and compared. A sensitivity analysis could be conducted to
analyze how crime patterns change if attractors are added to the
model or their locations are changed. It would be possible to
investigate the degree to which paths change and also highlight
new areas where crimes would be likely to occur. Comparing
the paths generated by CriMM with general traffic patterns
would also lend some more insight into the choices of routes
that offenders make.

In this paper, attractor locations were assumed to be
shopping centres and were the predefined end locations for
offenders. In the future this restriction will be relaxed since
CriMM is being extended into a predictive model, where based
on an offender’s home and crime location, one can determine
where the offender was headed. In addition, factors like traffic
delays can be implemented into the model to see how the
presence of different obstructions and heavy traffic can affect
offenders’ routes. In this way the dynamic nature of a city road
network can be taken into account.

By using current data to understand patterns in criminal
behaviour this model is anticipated to help criminologists,
police and policy makers focus their attention on key areas that
are frequented by offenders. It also confirms that there is an
underlying explanation for the occurrence of crime within
crime neutral areas. The strong results obtained with CriMM
highlight the importance of continued research on attractors in
relation to Crime Pattern Theory.
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