Analyzing and Comparing Montgomery Multiplication Algorithms

Cetin Kaya Koc!' and Tolga Acar! Burton S. Kaliski Jr.
Department of Electrical & Computer Engineering RSA Laboratories
Oregon State University 100 Marine Parkway, Suite 500
Corvallis, Oregon 97331 Redwood City, California 94065
{koc,acar}@ece.orst.edu burt@rsa.com
Abstract

This paper discusses several Montgomery multiplication algorithms, two of which have been
proposed before. We describe three additional algorithms, and analyze in detail the space
and time requirements of all five methods. These algorithms have been implemented in C
and in assembler. The analyses and actual performance results indicate that the Coarsely
Integrated Operand Scanning (CIOS) method, detailed in this paper, is the most efficient of
all five algorithms, at least for the general class of processor we considered. The Montgomery
multiplication methods constitute the core of the modular exponentiation operation which is
the most popular method used in public-key cryptography for encrypting and signing digital
data.

Indexing Terms: Modular multiplication and exponentiation, Montgomery method, RSA and
Diffie-Hellman cryptosystems.

1 Introduction

The motivation for studying high-speed and space-efficient algorithms for modular multiplication
comes from their applications in public-key cryptography. The RSA algorithm [8] and the Diffie-
Hellman key exchange scheme [1] require the computation of modular exponentiation, which is
broken into a series of modular multiplications by the application of the binary or m-ary methods
[5]. Certainly one of the most interesting and useful advances has been the introduction of the so-
called Montgomery multiplication algorithm due to Peter L. Mongtomery [6] (for some of the recent
applications see the discussion by Naccache et al. [7]). The Montgomery multiplication algorithm
is used to speed up the modular multiplications and squarings required during the exponentiation
process. The Montgomery algorithm computes

MonPro(a,b) =a-b-r ! modn (1)

given a,b < n and r such that ged(n,r) = 1. Even though the algorithm works for any r which
is relatively prime to n, it is more useful when r is taken to be a power of 2. In this case, the
Montgomery algorithm performs divisions by a power of 2, which is an intrinsically fast operation
on general-purpose computers, e.g., signal processors and microprocessors; this leads to a simpler
implementation than ordinary modular multiplication, which is typically faster as well [7].

!These authors are supported in part by NSF Grant ECS-9312240, by Intel Corporation, and by RSA Data
Security, Inc.
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In this paper, we study the operations involved in the computing the Montgomery product,
describe several high-speed and space-efficient algorithms for computing MonPro(a, b), and analyze
their time and space requirements. Our focus is to collect together several alternatives for Mont-
gomery multiplication, three of which are new; we do not compare these to other techniques for
modular multiplication in this paper.

2 Montgomery Multiplication

Let the modulus n be a k-bit integer, i.e., 2871 <n < 2% and let r be 2¥. The Montgomery multi-
plication algorithm requires that  and n be relatively prime, i.e., ged(r,n) = ged(2¥,n) = 1. This
requirement is satisfied if n is odd. In order to describe the Mongtomery multiplication algorithm,
we first define the n-residue of an integer a < n as @ = a-r (mod n). It is straightforward to
show that the set

{a-rmodn|0<a<n-—-1}

is a complete residue system, i.e., it contains all numbers between 0 and n — 1. Thus, there is
one-to-one correspondence between the numbers in the range 0 and n — 1 and the numbers in the
above set. The Montgomery reduction algorithm exploits this property by introducing a much
faster multiplication routine which computes the n-residue of the product of the two integers whose
n-residues are given. Given two n-residues @ and b, the Montgomery product is defined as the
n-residue

c¢=a-b-r ' (modn), (2)

where 7! is the inverse of » modulo n, i.e., it is the number with the property r=!-r =1 (mod n).

The resulting number ¢ in (2) is indeed the n-residue of the product ¢ =a-b (mod n), since

¢ = a-b-r ' (modn)
= a-r-b-r-r ! (modn)
= c¢-r (modn) .

In order to describe the Montgomery reduction algorithm, we need an additional quantity, n’, which
is the integer with the property r-r~' —n-n/ = 1. The integers r— and nj can both be computed
by the extended Euclidean algorithm [5]. The computation of MonPro(a, b) is achieved as follows:

function MonPro(a, b)

Stepl. t:=a-b

Step 2. w:= (t+ (t-n' mod r)-n)/r

Step 3. if u > n then return u — n else return u

Multiplication modulo r and division by r are both intrinsically fast operations, since r is a power
of 2. Thus the Montgomery product algorithm is potentially faster and simpler than ordinary
computation of ¢ - b mod n, which involves division by n. However, since conversion from an
ordinary residue to an n-residue, computation of n/, and conversion back to an ordinary residue
are time-consuming, it is not a good idea to use the Montgomery product computation algorithm
when a single modular multiplication is to be performed. It is more suitable when several modular
multiplications with respect to the same modulus are needed. Such is the case when one needs
to compute modular exponentiation. Using the binary method for computing the powers [5], we
replace the exponentiation operation by a series of square and multiplication operations modulo n.
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Let j be the number of bits in the exponent e. The following exponentiation algorithm is one way
to compute z := a® mod n with O(j) calls to the Montgomery multiplication algorithm. Step 4
of the modular exponentiation algorithm computes z using Z via the property of the Montgomery
algorithm: MonPro(z,1) =z-1-r"!=2-r-r~!' =2 mod n.
function ModExp(a, e, n)
Stepl. a:=a-rmodn
Step 2. Z:=1-rmodn
Step 3. for ¢ =35 — 1 downto 0

z :=MonPro(z, )

if e, =1 then Z:=MonPro(Zz,a)
Step 4. return z :=MonPro(z,1)

In typical implementations, operations on large numbers are performed by breaking the numbers
into words. If w is the wordsize of the computer, then a number can be thought of as a sequence
of integers each represented in radix W = 2%. If these “multi-precision” numbers require s words
in the radix W representation, then we take r as r = 25%.

In the following sections, we will give several algorithms for performing the Montgomery mul-
tiplication MonPro(a,b), and analyze their time and space requirements. The time analysis is
performed by counting the total number of multiplications, additions (subtractions), and mem-
ory read and write operations in terms of the input size parameter s. For example, the following
operation

(C,s) := t[i+j] + al[jl*b[i] + C

is assumed to require three memory reads, two additions, and one multiplication since most micro-
processors multiply two one-word numbers, leaving the two-word result in one or two registers.?

Multi-precision integers are assumed to reside in memory throughout the computations. There-
fore, the assignment operations performed within a routine correspond to the read or write opera-
tions between a register and memory. They are counted to calculate the proportion of the memory
access time in the total running time of the Montgomery multiplication algorithm. In our analysis,
loop establishment and index computations are not taken into account. The only registers we as-
sume are available are those to hold the carry C and the sum S as above (or equivalently, borrow
and difference for subtraction). Obviously, in many microprocessors there will be more registers,
but this gives a first-order approximation to the running time, sufficient for a general comparison of
the approaches. Actual implementation on particular processors gives a more detailed comparison.

The space analysis is performed by counting the total number of words used as the temporary
space. However, the space required to keep the input and output values a, b, n, nj, and u is not
taken into account.

3 Summary of the Algorithms

There are a variety of ways to perform the Montgomery multiplication, just as there are many ways
to multiply. Our purpose in this paper is to give fairly broad coverage of the alternatives.

*We note that in some processors the additions may actually involve two instructions each, since the value
a[jl*b[i] is double-precision; we ignore this distinction in our timing estimates.
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Roughly speaking, we may organize the algorithms based on two factors. The first factor is
whether multiplication and reduction are separated or integrated. In the separated approach, we
first multiply ¢ and b, then perform a Montgomery reduction. In the integrated approach, we
alternate between multiplication and reduction. This integration can be either coarse-grained or
fine-grained, depending on how often we switch between multiplication and reduction (specifically,
after processing an array of words, or just one word); there are implementation tradeoffs between
the alternatives.

The second factor is the general form of the multiplication and reduction steps. One form is
the operand scanning, where an outer loop moves through words of one of the operands; another
form is product scanning, where the loop moves through words of the product itself [4]. This factor
is independent of the first; moreover, it is also possible for multiplication to have one form and
reduction to have the other form, even in the integrated approach.

In all the cases we will consider, the algorithms are described as operations on multi-precision
numbers. Thus it is straightforward to rewrite the algorithms in an arbitrary radix, e.g., in binary
or radix-4 form for hardware.

Clearly, the foregoing discussion suggests that quite a few algorithms are possible, but in this
paper we will focus on five as representative of the whole set, and which for the most part have
good implementation characteristics. The five algorithms we will discuss include the following;:

Separated Operand Scanning (SOS) (Section 4)

Coarsely Integrated Operand Scanning (CIOS) (Section 5)

Finely Integrated Operand Scanning (FIOS) (Section 6)

Finely Integrated Product Scanning (FIPS) (Section 7)
e Coarsely Integrated Hybrid Scanning (CIHS) (Section 8)

Other possibilities are variants of one or more of these five; we encourage the interested reader to
construct and evaluate some of them. Two of these methods have been described previously, SOS
(as Improvement 1 in [2]) and FIPS (in [4]). The other three, while suggested by previous work,
have not been described in detail or analyzed in comparison with the others.

4 The Separated Operand Scanning (SOS) Method

The first method to be analyzed in this paper for computing MonPro(a,b) is what we call the
Separated Operand Scanning method (see Improvement 1 in [2]). In this method we first compute
the product a - b using

for i=0 to s-1
C:=0
for j=0 to s-1
(C,s) := t[i+j]l + aljl*b[i]l + C
t[i+j] := S
t[i+s] := C

where ¢ is initially assumed to be zero. The final value obtained is the 2s-word integer ¢ residing
in words
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t[0], t[1], ... , t[2s-1]

Then we compute v using the formula u := (¢ + m - n)/r, where m := t - n’ mod r. In order to
compute u, we first take u = ¢, and then add m - n to it using the standard multiplication routine,
and finally divide it by r = 2°¥ which is accomplished by ignoring the lower s words of u. Since
m = t-n' mod r and the reduction process proceeds word by word, we can use nj, = n’ mod 2%
instead of n’. This observation was first made in [2], and applies to all five methods presented in
this paper. Thus, after ¢ is computed by multiplying a and b using the above code, we proceed
with the following code which updates ¢ in order to compute ¢t + m - n.

for i=0 to s-1
C:=0
m := t[il*n’ [0] mod W
for j=0 to s-1
(C,8) := t[i+j] + m*n[j] + C
t[i+j] =8
ADD (t[i+s],C)

The ADD function shown above performs a carry propagation adding C to the input array given
by the first argument, starting from the first element (t[i+s]), and propagates it until no further
carry is generated. The ADD function is needed for carry propagation up to the last word of ¢, which
increases the size of ¢ to 2s words and a single bit. However, this bit is saved in a single word,
increasing the size of ¢ to 2s + 1 words.> The computed value of ¢ is then divided by r which is
realized by simply ignoring the lower s words of . These steps are given below:

for j=0 to s
ulj] := t[j+s]
Finally we obtain the number u in s+1 words. The multi-precision subtraction in Step 3 of MonPro

is then performed to reduce w if necessary. Step 3 can be performed using the following code:

B :=0
for i=0 to s-1
(B,D) := ul[i] - n[i] - B

t[i] :=D
(B,D) :=ufls] - B
t[s] :=D
if B=0 then return t[0], t[1], ... , t[s-1]
else return ul[0], ul1]l, ... , uls—-1]

Step 3 is performed in the same way for all algorithms described in this paper, and thus, we will
not repeat this step in the description of the algorithms. However, its time and space requirements
will be taken into account. The operations above contain 2(s + 1) additions, 2(s + 1) reads, and
s+ 1 writes.

A Dbrief inspection of the SOS method, based on our techniques for counting the number of
operations, shows that it requires 2s? + s multiplications, 4s? 4+ 4s + 2 additions, 6s% + 7s + 3 reads,

3This extra bit, and hence an extra word, is required in all the methods described. One way to avoid the extra
word in most cases is to define s as the length in words of 2n, rather than the modulus n itself. This s will be the
same as in the current definition, except when the length of n is a multiple of the word size, and in that case only
one larger than currently.
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and 252 4 65 + 2 writes. (See Section 9 for discussion of how to count the number of operations
required by the ADD function.) Furthermore, the SOS method requires a total of 2s + 2 words for
temporary results, which are used to store the (2s + 1)-word array ¢ and the one-word variable m.
The SOS method is illustrated in Figure 1 for s = 4.

The value n{, which is defined as the inverse of the least significant word of n modulo 2%, i.e.,
ny = —ng L' (mod 2v), can be computed using a very simple algorithm given in [2]. Furthermore,
the reason for separating the product computation a - b from the rest of the steps for computing «
is that when a = b, we can optimize the Montgomery multiplication algorithm for squaring. The
optimization of squaring is achieved because almost half of the single-precision multiplications can
be skipped since a;-a; = a;-a;. The following simple code replaces the first part of the Mongtomery
multiplication algorithm in order to perform the optimized Montgomery squaring:

for i=0 to s-1
(C,S) := t[i+i] + alil*alil
for j=i+l1 to s-1
(C,S) := t[i+j] + 2*xa[jl*ali] + C
t[i+j] := S
t[i+s] := C

(One tricky part here is that the value 2*a[j]*al[i] requires more than two words to store; if the
C value does not have an extra bit, then one way to deal with this is to rewrite the loop so that the
al[jl*ali] terms are added first, without the multiplication by 2; the result is then doubled and
the a[i]*a[i] terms are added in.) In this paper, we analyze only the Montgomery multiplication
algorithms. The analysis of Montgomery squaring can be performed similarly.

5 The Coarsely Integrated Operand Scanning (CIOS) Method

The next method, the Coarsely Integrated Operand Scanning method, improves on the first one
by integrating the multiplication and reduction steps. Specifically, instead of computing the entire
product a-b, then reducing, we alternate between iterations of the outer loops for multiplication and
reduction. We can do this since the value of m in the ith iteration of the outer loop for reduction
depends only on the value t[i], which is completely computed by the ith iteration of the outer
loop for the multiplication. This leads to the following algorithm:

for i=0 to s-1
C:=0
for j=0 to s-1
(C,8) :=t[j] + aljl*bl[i] + C

t[j]l =S
(C,8) :=t[s] + C
t[s] := S
t[s+1] := C
C:=0

m := t[0]*n’[0] mod W

for j=0 to s-1
(€,S) :=t[j] + m*n[j] + C
t[j]l =S
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(C,8) :=t[s] + C
t[s] := S
t[s+1] := t[s+1] + C
for j=0 to s

t[j]1 := t[j+1]

Note that the array ¢ is assumed to be set to 0 initially. The last j-loop is used to shift the result
one word to the right (i.e., division by 2"), hence the references to t [j] and t [0] instead of t [i+j]
and t[i]. A slight improvement is to integrate the shifting into the reduction as follows:

m := t[0]*n’[0] mod W
(C,8) := t[0] + m*n[0]
for j=1 to s-1
(C,8) := t[j] + m¥n[j] + C

t[j-1]1 := S
(C,8) :=t[s] + C
t[s-1] := S

t[s] := t[s+1] + C

The auxiliary array ¢ uses only s + 2 words. This is due to fact that the shifting is performed one
word at a time, rather than s words at once, saving s — 1 words. The final result is in the first
s+ 1 words of array t. A related method, without the shifting of the array (and hence with a larger
memory requirement), is described as Improvement 2 in [2].

The CIOS method (with the slight improvement above) requires 2s2+s multiplications, 452 +4s+
2 additions, 652+ T7s+2 reads, and 2s?+5s+1 writes, including the final multi-precision subtraction,
and uses s + 3 words of memory space. The memory reduction is a significant improvement over
the SOS method.

We say that the integration in this method is “coarse” because it alternates between iterations
of the outer loop. In the next method, we will alternate between iterations of the inner loop.

6 The Finely Integrated Operand Scanning (FIOS) Method

This method integrates the two inner loops of the CIOS method into one by computing the multi-
plications and additions in the same loop. The multiplications a;-b; and m-n; are computed in the
same loop, and then added to form the final ¢. In this case, ¢y must be computed before entering
into the loop since m depends on this value which corresponds to unrolling the first iteration of the
loop for j = 0.

for i=0 to s-1
(C,8) := t[0] + a[0]*b[il
ADD(t[1]1,C)
m := S*n’[0] mod W
(C,S) :=S + mxn[0]

The partial products of a - b are computed one by one for each value of 7, then m - n is added to the
partial product. This sum is then shifted right one word, making ¢ ready for the next i-iteration.

for j=1 to s-1
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(C,8) :=t[j] + aljl*bl[i] + C
ADD(t [j+1],C)
(C,8) := S + mxn[j]

t[j-11 := 8
(C,8) :=t[s] + C
t[s-1] := S
t[s] := t[s+1] + C
t[s+1] := 0

The difference between the CIOS method and this method is that the FIOS method has only
one inner loop. We illustrate the algorithm in Figure 2 for s = 4. The use of the ADD function is
required in the inner j-loop since there are two distinct carries, one arising from the multiplication
of a; - b; and the other from the multiplication of m - n;. (Thus the benefit of having only one loop
is counterbalanced by the requirement of the ADD function.) The array ¢ is assumed to be set to 0
initially.

The FIOS method requires 2s% + s multiplications, 552+ 3s+ 2 additions, 7s% +5s+ 2 reads, and
352 44541 writes, including the final multi-precision subtraction. This is about s? more additions,
writes, and reads than for the CIOS method. The total amount of temporary space required is
s + 3 words.

7 The Finely Integrated Product Scanning (FIPS) Method

Like the previous one, this method interleaves the computations a - b and m - n, but here both
computations are in the product-scanning form. The method keeps the values of m and u in the
same s-word array m. This method was described in [4] and is related to Improvement 3 in [2].
The first loop given below computes one part of the product a - b and then adds m - n to it. The
three-word array t, i.e.,

t[0], t[1]1, t[2],

is used as the partial product accumulator for the products a - b and m - n.*
for i=0 to s-1
for j=0 to i-1
(C,S8) :=t[0] + al[jl*bl[i-j]
ADD(t[1]1,C)
(C,8) :=8S + m[jl*n[i-j]
t[0] := S
ADD(t[1],C)
(C,8) := t[0] + al[il*b[0]
ADD(t[1],C)
m[i] := S*n’[0] mod W
(C,S) :=S + m[il*n[0]
ADD(t[1],C)
t[0] := t[1]

“The use of a three-word array assumes that s < W; in general, we need logy, (sW (W — 1)) = 2 + logy;, s words.
The algorithm is easily modified to handle a larger accumulator.
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t[1]
t[2]

t[2]
0

In this loop, the ith word of m is computed using nf, and then the least significant word of m - n
is added to t. Since the least significant word of ¢ always becomes zero, the shifting can be carried
out one word at a time in each iteration. The array ¢ is assumed to be set to 0 initially.

The second i-loop, given below, completes the computation by forming the final result « word
by word in the memory space of m.

for i=s to 2s-1

for j=i-s+1 to s-1
(C,8) :=t[0] + aljl*b[i-j]
ADD(t[1]1,C)
(C,8) := S + m[jl*n[i-j]
t[0] := S
ADD(t[1],C)

m[i-s] := t[0]

t[0] := t[1]
t[1] := t[2]
t[2] := 0

An inspection of indices in the second i-loop shows that the least significant s words of the result
u are located in the variable m. The most significant bit is in t[0]. (The values t[1] and t[2]
are zero at the end.)

The FIPS method requires 2s? 4+ s multiplications, 652 + 2s + 2 additions, 95> + 8s + 2 reads,
and 552 + 8s + 1 writes. The number of additions, reads and writes is somewhat more than for the
previous methods, but the number of multiplications is the same. The method nevertheless has
considerable benefits on digital signal processors, as discussed in Section 9. (Note that many of the
reads and writes are for the accumulator words, which may be in registers.) The space required is
s + 3 words.

8 The Coarsely Integrated Hybrid Scanning (CIHS) Method

This method is a modification of the SOS method, illustrating yet another approach to Montgomery
multiplication. As was shown, the SOS method requires 2s + 2 words to store the temporary
variables ¢ and m. Here we show that it is possible to use only s + 3 words of temporary space,
without changing the general flow of the algorithm. We call it a “hybrid scanning” method because
it mixes the product-scanning and operand-scanning forms of multiplication. (Reduction is just in
the operand-scanning form.) First, we split the computation of a - b into two loops. The second
loop shifts the intermediate result one word at a time at the end of each iteration.

The splitting of multiplication is possible because m is computed by multiplying the ith word
of t by ng. Thus, the multiplication a - b can be simplified by postponing the word multiplications
required for the most significant half of ¢ to the second i-loop. The multiplication loop can be
integrated into the second main ¢-loop, computing one partial product in each iteration and reducing
the space for the t array to s + 2 words from 2s + 1 words. In the first stage, (n — j) words of the
gth partial product of a - b are computed and added to ¢. In Figure 3, the computed parts of the
partial products are shown by straight lines, and the added result is shown by shaded blocks. This
computation can be performed using the following code:
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for i=0 to s-1
C:=0
for j=0 to s-i-1
(C,8) := t[i+j] + al[jl*b[i] + C

t[i+j] =8
(C,8) :=t[s] + C
t[s] := S
t[s+1] := C

The multiplication of m - n is then interleaved with the addition a - b + m - n. The division by r
is performed by shifting one word at a time within the -loop. Since m is one word long and the
product m - n 4+ C is two words long, the total sum ¢ 4+ m - n needs at most s + 2 words. Also note
that the carry propagation into the sth word is performed into the (s —1)st word after the shifting.
The array ¢ is assumed to be set to 0 initially.

for i=0 to s-1
m := t[0]*n’[0] mod W
(C,8) := t[0] + m*n[0]
for j=1 to s-1
(C,8) := t[j] + m*n[j] + C

t[j-11 =8
(C,8) :=t[s] + C
t[s-1] := S
t[s] := t[s+1] + C
t[s+1] := 0

The computation of m requires the use of ¢y instead of ¢;, as in the original SOS algorithm. This
is due to the shifting of ¢ in each iteration. The two excess words computed in the first loop are
used in the following j-loop which computes the (s + 7)th word of a - b.

for j=i+l1 to s-1
(C,8) := t[s-1] + b[jl*als-j+i]

t[s-1] := S

(C,8) :=tls] + C
t[s] := 8

tls+1] :=C

We note that the above four lines compute the most significant three words of ¢, i.e., the (s — 1)st,
sth, and (s + 1)st words of . The above code completes Step 1 of MonPro(a,b). After this, n is
subtracted from ¢ if £ > n. We illustrate the algorithm in Figure 3 for Montgomery multiplication
of two four-word numbers. Here, the symbols PC and PS denote the two extra words required to
obtain the correct (s +4)th word. Each PC, PS pair is the sum of their respective words connected
by vertical dashed lines in Figure 3. The number of multiplications required in this method is also
equal to 252 4 s. However, the number of additions decreases to 4s2 4+ 4s + 2. The number of reads
is 6.552 +6.55 42 and the number of writes is 352+ 554 1. As was mentioned earlier, this algorithm
requires s + 3 words of temporary space.

10
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9 Results and Conclusions

The algorithms presented in this paper require the same number of single-precision multiplications,
however, the number of additions, reads and writes are slightly different. There seems to be a
lower bound of 4s? + 4s + 2 for addition operations. The SOS and CIOS methods reach this lower
bound. The number of operations and the amount of temporary space required by the methods are
summarized in Table 1. The total number of operations is calculated by counting each operation
within a loop, and multiplying this number by the iteration count. As an example we illustrate the
calculation for the CIOS method in Table 2.

We note that the ADD(x[i],C) function, which implements the operation x[i]:=x[i] + C
including the carry propagation, requires one memory read (x[i]), one addition (x[1]+C) and one
memory write (x[i] :=) operation during the first step. Considering the carry propagation from
this addition, on average one additional memory read, one addition, and one memory write will be
performed (in addition to the branching and loop instructions). Thus, the ADD function is counted
as two memory reads, two additions, and two memory writes in our analysis.

Clearly, our counting is only a first-order approximation; we are not taking into account the
full use of registers to store intermediate values, cache size in the data and instruction misses, and
the special instructions such as multiply and accumulate. We have also not counted loop overhead,
pointer arithmetic, and the like, which will undoubtedly affect performance.

In order to measure the actual performance of these algorithms, we have implemented them in
C and in Intel 386-family assembler on an Intel Pentium-60 Linux system. Table 3 summarizes the
timings of these methods for s = 16, 32,48, and 64. These correspond to 512, 1024, 1536, and 2048
bits since w = 32. The timing values given in Table 3 are in milliseconds, and are the average values
over several thousand executions. The timing values given in Table 3 are in milliseconds, and are
the average values over one thousand executions including the overhead of the loop that calls the
MonPro function. The table also contains the compiled object code sizes of each algorithm which
is important when the principles of locality and instruction cache size are considered.

In the C version of the functions, the single-precision (32-bit) multiplications are realized by
dividing them into two 16-bit words. The C version of the function has more overhead compared
to the assembler version, in which 32-bit multiplication operations are carried out using a single
assembler instruction. The assembler version of the ADD function is optimized to use one 32-bit
register for addition and a 32-bit register for address computation. The propagation of the carry
is performed using the carry flag.

The CIOS and FIOS methods are similar to one another in their use of embedded shifting and
interleaving the products a; - b and m - n;. The only difference is that CIOS method computes the
partial product a; - b by using a separate j-loop. Then, the accumulation of m - n; to this partial
product is performed in the succeeding j-loop. The FIOS method combines the computation of
partial product a; - b and accumulation of a; - b and m - n; in one single j-loop, thereby obligating
the use of the ADD function for propagation of two separate carries.

The CIOS algorithm operates faster on the selected processor compared to the other Mont-
gomery multiplication algorithms, especially when implemented in assembly language. However,
on other classes of processor, a different algorithm may be preferable. For instance, on a digi-
tal signal processor, we have often found the FIPS method to be better because it exploits the
“multiply-accumulate” architecture typical with such processors, where a set of products are added
together. On such architectures, the three words ¢[0], ¢[1] and ¢[2] are stored in a single hard-
ware accumulator, and the product a[jI*b[i-j] in the FIPS j-loop can be added directly to the
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accumulator, which makes the j-loop very fast.

Dedicated hardware designs will have additional tradeoffs, based on the extent to which the
methods can be parallelized; we do not make any recommendations here, but refer the reader to
Even’s description of a systolic array as one example of such a design [3].

On a general-purpose processor, the CIOS algorithm is probably best, as it is the simplest of all
five methods, and it requires fewer additions and fewer assignments than the other four methods.
The CIOS method requires only s + 3 words of temporary space, which is just slightly more than
half the space required by the SOS algorithm.
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Figure 1 should be placed close to Section 4

Figure 1: The Separated Operand Scanning (SOS) method for s = 4. The multiplication operation
t = a X b is illustrated on the left. Then, nj is multiplied by each word of ¢ to find m. The final
result is obtained by adding the shifted n x m to t, as shown on the right.
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Figure 2 should be placed close to Section 6

Figure 2: An iteration of the Finely Integrated Operand Scanning (FIOS) method. The computa-
tion of partial product ¢ = @ x b; , illustrated on the left, enables the computation of m(? in that
iteration. Then an intermediate result t(*1) is found by adding n x m() to this partial product,
as shown on the right.
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Figure 3 should be placed close to Section 8

Figure 3: An iteration of the the Coarsely Integrated Hybrid Scanning (CIHS) method for s = 4.
The left-hand side figure shows the accumulation of the right half of the partial products of ¢ x b
which is performed in the first ¢-loop. The second i-loop is depicted in two parts in the middle and
the right. The addition of n X m to ¢ and the shifting of ¢ + m x n are illustrated in the middle,
which are performed in the first j-loop of the second i-loop. The computation of the remaining
words of the partial products of a x b is illustrated on the right-hand side. Each (PC,PS) pair is
the sum of the columns connected with lines. As illustrated in the bottom of the middle part, the
(PC,PS) pair is added to (), which is performed in the last j-loop.
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Table 1 should be placed close to Section 9

Table 1: The time and space requirements of the methods.

Method H Multiplications | Additions Reads Writes H Space ‘
SOS 252 4 5 45> +4s+2 | 65> +Ts+3 252 +65+2 || 25 +2
CIOS 252 + s 45> + 45 +2 | 65> +Ts+2 252 +5s + 1 s+3
FIOS 252 + s 552 +3s+2 | 7s% + 55 +2 3s2+4s+ 11 s+3
FIPS 252 + s 652 +25s+2 | 952+ 85+ 2 552+ 8s + 1 s+3
CIHS 252 + s 452 +4s5+2 | 6.55%2 +6.55+2 | 352 +5s + 1 s+3
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Table 2 should be placed close to Section 9

Table 2. Calculating the operations of the CIOS method.

Operation

STATEMENT Mult Add Read Write Iterations
for i=0 to s-1 - - - - -
C:=0 0 0 0 0 S
for j=0 to s-1 - - - - -
(C,8) := t[j1 + b[jl*alil + C 1 2 3 0 s2
tljl =8 0 0 0 1 52
(C,S) :=t[s] + C 0 1 1 0 S
t[s] := 8 0 0 0 1 S
t[s+1] :=C 0 0 0 1 s
m := t[0]*n’[0] mod W 1 0 2 1 s
(C,8) := t[0] + m*n[0] 1 1 3 0 S
for j=1 to s-1 - - - - -

(C,8) := t[jl + m*n[j]l + C 1 2 3 0 s(s—1)

t[j-1] := S 0 0 0 1 s(s—1)
(C,s) :=t[s] + C 0 1 1 0 s
t[s-1] := S 0 0 0 1 S
t[s] := t[s+1] + C 0 1 1 1 s
Final Subtraction 0 2(s+1) 2(s+1) s+1 1

257 + 545> +45s+2[652+T7s+2[|2s2+5s+1
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Table 3 should be placed close to Section 9

Table 3: The timing values of MonPro in milliseconds on a Pentium-60 Linux system. The
assembly code is for the Intel 386 family; further improvements may be possible by exploiting
particular features of the Pentium.

512 bits 1024 bits 1536 bits 2048 bits Code size (bytes)
Method C ASM C ASM C ASM C ASM C ASM
SOS 1.376 0.153 | 5.814 0.869 | 13.243 2.217 | 23.567 3.968 || 1084 1144

CIOS 1.249 0.122 | 5.706 0.799 | 12.898 1.883 | 23.079 3.304 || 1512 1164
FIOS 1.492 0.135 | 6.520 0.860 | 14.550 2.146 | 26.234 3.965 || 1876 1148
FIPS 1.587 0.149 | 6.886 0.977 | 15.780 2.393 | 27.716 4.310 || 2832 1236
CIHS 1.662 0.151 | 7.268 1.037 | 16.328 2.396 | 29.284 4.481 || 1948 1164
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