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INTRODUCTION
Modern high-throughput experiments such as sequencing, 
microarray technology or mass spectrometry (MS) experiments 
generate large genome-wide data sets that provide deep insight 
into many different levels of molecular information—e.g.,  
the transcriptome, proteome and metabolome, among others. 
Such information is used, for example, to characterize patient 
genomes using multiomics data1, to describe developmental  
processes with temporal changes2 or to derive predictive pat-
terns for exogenous agents3. An emerging goal of data analysis 
is to reveal the underlying control mechanisms that govern the  
measured molecular phenotypes.

Typically, a key result of genome analysis is a list of statisti-
cally significant biomolecules (genes, proteins, metabolites) that 
contribute to the phenotypes of interest. A subsequent task then 
is to identify which biological functions can be associated with 
these molecules (over-representation analysis)4. This is done 
mainly by exploring whether predefined annotation sets—for 
example, specific signaling pathways—are enriched by the  
molecules under consideration. Independently, such enrich-
ments can be inferred without statistical preselection of the 
molecules using the entirety of the experimental data ((gene set) 
enrichment analysis)5. Furthermore, data for all or a prioritized  
subset of molecules can be mapped onto interaction networks 
and analyzed with graph theoretic approaches. These methods 
identify subnetworks (network module analysis) that are likely 
to be responsive to the experiments under analysis6. All three 
approaches aim at enriching genome analysis with mechanistic 
network information, which enables an understanding of the 
underlying biological processes.

In ConsensusPathDB7, we have implemented statistical methods 
for performing the above tasks by interrogating annotation sets 
based on molecular interaction information. We agglomerated 
the contents of 32 major public repositories for human molecu-
lar interactions of heterogeneous types, as well as biochemical  
pathways, resulting in one of the largest interactome collections  
available (Table 1). Furthermore, the database integrates the 

contents of 15 mouse and 14 yeast interaction repositories. In 
addition to gene ontology8 (GO) and pathway annotations, 
ConsensusPathDB systematically explores the protein–protein 
interaction (PPI) network, as PPIs are key drivers of biologi-
cal function9. However, only a minor fraction of the estimated 
~650,000 human protein interactions have yet been experi-
mentally measured10. Moreover, information on molecular 
interactions is scattered across  > 500 different databases world-
wide11, which necessitates the integration of as many resources  
as possible into meta-databases such as ConsensusPathDB  
(Box 1). Such interaction integration allows for better coverage 
of the interactome, which improves guidance in the functional 
interpretation of omics data.

ConsensusPathDB has been well adopted by the research 
community. Applications comprise over-representation analy-
sis in order to characterize diverse sets of molecules12–14, gene 
set enrichment analysis15,16 and identification of upstream 
regulators17 spanning various biological contexts. Furthermore, 
ConsensusPathDB is used as a database by other tools—for 
example, for enrichment analysis by Chipster18 using web service 
connections or by Cytoscape19 using a Java plugin for assessing 
interaction confidence of PPIs20. In addition to these analyses, 
the tool can be used as a resource for the generation of molecu-
lar interaction gene sets, which themselves can be used as pre-
dictive signatures. For example, it has been shown that network  
modules and pathways can be derived as predictive patterns in 
cancer diagnostics21, as well as in tumor progression monitor-
ing22. This enables biomarker analysis of entities ranging from 
single molecules to entire pathways.

Overview of the protocol

In this protocol, we review the contents and the different 
analysis scenarios enabled by ConsensusPathDB. All mod-
ules in this protocol aim to enable network-level interpreta-
tion and functional characterization of user-specified lists of 
molecules (genes, proteins and metabolites) and associated  
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high-throughput data. ConsensusPathDB helps users working 
with such data to do the following:

  Infer heterogeneous interaction networks for genes, proteins, 
metabolites, drugs and other biomolecules

  Compute over-represented pathways, PPI networks, protein 
complexes and GO annotations from a priority list of genes, 
proteins or metabolites

  Compute enriched pathways, PPI networks, protein complexes 
and GO annotations from genome-wide data such as RNA-seq 
or array technology

  Generate network modules that are over-represented by genes 
or proteins and thereby explore heterogeneous interactions such 
as PPI, drug–target, gene regulatory and genetic interactions.

Comparison with other tools

Several excellent tools, of which only some can be mentioned 
here, are available that perform either over-representation anal-
ysis (e.g., DAVID23, IPA24 and Enrichr25), gene or metabolite set 
enrichment analysis (e.g., GSEA26 and MetaboAnalyst27) or net-
work module analysis (e.g., Cytoscape28 and Genes2Networks29). 
Although most of these tools are restricted to specific types of 
analysis and to a specific type of biomolecule, ConsensusPathDB 
offers a wider range of analysis functions and the option for 
gene/protein and metabolite analysis (Table 2). The statistical 
methods for over-representation analysis, enrichment analysis 
and network module analysis implemented by the individual 
tools differ, and thus results achieved with the same input can 
be fairly different. With respect to content, ConsensusPathDB 
has a focus on molecular interactions, and it provides deep 
exploration of the interactome network, protein complexes 
and pathway resources, whereas other tools incorporate addi-
tional annotation sets, for example, based on genomic locus 
enrichment, disease associations, experimental signatures or 
literature-derived sets. Huge collections of such annotation 
signatures are accessible through systems such as MSigDB30. 
Parallel attempts for sampling huge amounts of interac-
tion data within a common framework are STRING31 and  
PathwayCommons32.

•

•

•

•

Limitations of the protocol

ConsensusPathDB currently supports only three organisms 
(human, mouse and yeast), and it is thereby missing widely used 
model organisms such as rat, fly and worm, among others, for 
which comprehensive interaction information has been collected 
and made available in the past. Moreover, ConsensusPathDB 
does not hold information on microorganisms—e.g., bacteria or 
fungi. In cases in which interaction information is available, the  
inclusion of more organisms is a key step in the future develop-
ment of ConsensusPathDB.

Another limitation is the focus on annotation sets that are derived 
from molecular interactions and GO terminology. As stated in the 
previous section (Table 2), several tools incorporate additional infor-
mation that allows for interpretation of data in alternative directions. 
However, a review of the literature shows that, by far, most applications 
use functional annotation sets defined by GO and pathway annota-
tions, thus justifying the current focus of ConsensusPathDB.

With regard to the web server, ConsensusPathDB has some limi-
tations with respect to visualization components. Presumably the 
most widely used tool available in this regard is Cytoscape, and 
thus we offer network downloads in a Cytoscape-compatible for-
mat, which enables easy transfer of computed network modules.

For some of its functionality, ConsensusPathDB already offers 
web services in order to allow the integration of analysis steps 
into automated workflows and stand-alone tools. However, not 
all steps described in this protocol are yet implemented as web 
services; their further development is a primary future task.

The response time of ConsensusPathDB depends on the size 
and complexity of the interaction network under investigation. 
For example, performing network analyses with many input nodes 
or many different types of interactions can lead to slow response 
and limited visualization performance.

Experimental design

Analysis paths. ConsensusPathDB contains predefined annota-
tion sets that hold functional information such as pathways, GO 
categories, protein complexes and PPI network neighborhoods 
that were derived from the integrated resources.

Depending on the user’s input, ConsensusPathDB allows the 
following analyses (Fig. 1):

  Analysis path 1. The interaction neighborhood of a single mol-
ecule can be inferred and a corresponding network can be gener-
ated; this can be done, for example, to reveal network-level in-
formation (i.e., interaction partners) for biomarkers of interest.

  Analysis path 2. Uploading a list of molecules (genes, proteins 
and metabolites) allows either performing over-representation 
analysis with predefined annotation sets or computing network 
associations between the molecules of interest through mining 
of the integrated interaction network.

  Analysis path 3. Inserting molecules and associated experi-
mental data allows computing enrichment analysis of the  
annotation sets; this path uses a more unbiased analysis com-
pared with analysis path 2, because it is not dependent on a 
predefined priority list of molecules.

To exemplify the procedures in this protocol, we use differ-
ent data sets from various biological backgrounds, and measure 
using different high-throughput technologies. For analysis path 1,  

•

•

•

TABLE 1 | Content of ConsensusPathDB.

Content type Human Mouse Yeast

Integrated databases 32 15 14

Unique physical entities 158,523 31,679 17,672

Unique interactions 458,570 34,064 272,094

 Gene regulations 17,098 2,196 316

 Protein interactions 261,085 23,488 123,842

 Genetic interactions 443 194 145,151

 Biochemical reactions 21,070 8,186 2,785

 Drug–target interactions 158,874 0 0

Pathway gene sets 4,593 2,173 1,101
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we exemplify the protocol steps using the epidermal growth factor 
receptor (EGFR) gene that is a widely mutated gene in different 
types of cancer and also a primary target of cancer therapy33. 
For analysis path 2, we exemplify the over-representation analy-
sis for genes using a list of 18 frequently mutated genes derived 
from whole-exome sequencing of a large lung adenocarcinoma 
cohort1 (Supplementary Data 1). As a test case for over-repre-
sentation analysis of metabolites, we use a list of 130 known ure-
mic toxins that are associated with dysfunction of the kidney34 
(Supplementary Data 2). To demonstrate the network mod-
ule analysis, we examined 691 targets of histone modification 
(H3K4me2) measured with ChIP-seq that are specific to T helper 
type 2 (TH2) cells, as compared with naive T cells (Supplementary 

Data 3). The goal of the analysis is to recover potential gene regu-
latory networks controlling these genes, as was done in the original 
publication17. For analysis path 3, we use public expression data 

derived from different stages of human embryonic development 
that were generated with RNA-seq2 (Supplementary Data 4).  
These data cover a wide range of genome analysis applications 
and diverse biological backgrounds. The corresponding gene lists 
vary in size from 18 (lung adenocarcinoma driver mutations) to 
~16,000 (RNA-seq data set), demonstrating the scalability of the 
ConsensusPathDB analysis tools.

Identifier mapping. A recurrent problem when integrating data 
from different resources, or when analyzing high-throughput 
data by comparison with existing databases, is the nonuniform-
ity of gene/protein/metabolite identifiers. In ConsensusPathDB,  
we have created comprehensive identifier maps by parsing 
the contents of 11 major genomic, proteomic and metabolite  
databases such as Ensembl, Uniprot and PubChem. These maps 
were used to match gene, protein and metabolite identifiers  

 Box 1 | Molecular interactions 

Molecular interactions are key drivers of cellular function. In the times of omics technology, an ever-increasing number of molecular 
interactions are measured and cataloged. For example, huge amounts of PPIs have been measured by co-immunoprecipitation,  
tandem-affinity purification and yeast two-hybrid analysis, among others. ChIP-seq experiments allow the charting of protein–DNA 
interactions and histone modifications. Phosphoproteome measurements with MS such as ITRAQ and SILAC provide new insights into 
signaling networks. Metabolomics technologies such as NMR or gas chromatography–MS measure metabolites and fluxes through  
metabolic networks. These technologies gave rise to the development of multiple repositories that store and curate the experimental 
data along with previous literature annotation.
 The ConsensusPathDB is a meta-database that currently consolidates human molecular interactions from 32 different databases,  
mouse molecular interactions from 15 different databases and yeast molecular interactions from 14 different databases.

Interaction databases and interaction types (human)
Interaction types include the following:
•  Protein interactions (BIND, Biogrid, CORUM, DIP, DrugBank, HPRD, InnateDB, Intact, MINT, MIPS-MPPI, MatrixDB, NetPath,  

PDB, PDZBase, PIG, PINdb, PhosphoPOINT, Reactome and Spike)
•  Signaling reactions (BioCarta, INOH, InnateDB, KEGG, NetPath, PID, PhosphoPOINT, PhosphoSitePlus, Reactome, Spike and  

Wikipathways)
•  Metabolic reactions (EHMN, HumanCyc, INOH, KEGG, Reactome and Wikipathways)
•  Gene regulatory interactions (BIND, BioCarta, InnateDB, PID and Spike)
• Genetic interactions (Biogrid)
• Drug–target interactions (Chembl, DrugBank, KEGG, PharmGKB, and TTD)
•  Biochemical pathways (BioCarta, EHMN, HumanCyc, INOH, KEGG, NetPath, PID, PharmGKB, Reactome, SMDPB, Signalink and  

Wikipathways)

Interaction databases and interaction types (mouse)
Interaction types include the following:
• Protein interactions (BIND, Biogrid, DIP, InnateDB, Intact, MINT, MIPS-MPPI, MatrixDB, PDB, PDZBase and Reactome)
• Signaling reactions (InnateDB, KEGG, PhosphoSitePlus, Reactome and Wikipathways)
• Metabolic reactions (KEGG, MouseCyc, Reactome and Wikipathways)
• Gene regulatory interactions (BIND and InnateDB)
• Genetic interactions (Biogrid)
• Drug–target interactions (KEGG)
• Biochemical pathways (KEGG, MouseCyc, Reactome and Wikipathways)

Interaction databases and interaction types (yeast)
Interaction types include the following:
• Protein interactions (BIND, Biogrid, CYC2008, DIP, Intact, MINT, MIPS-MPACT, PDB, PINdb, PTM and Reactome)
• Signaling reactions (KEGG, Reactome and Wikipathways)
• Metabolic reactions (KEGG, PTM, Reactome, Wikipathways and YeastCyc)
• Gene regulatory interactions (BIND and PTM)
• Genetic interactions (Biogrid)
• Drug–target interactions (KEGG)
• Biochemical pathways (KEGG, Reactome, Wikipathways and YeastCyc)
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originating from the 32 integrated sources of interaction and 
pathway information. Furthermore, they are used to map 
identifiers from the user input to these physical entities, and 
hence they allow great flexibility with respect to what identifier  
namespace is chosen by the user.

Annotation sets. ConsensusPathDB offers four types of prede-
fined annotation sets: neighborhood-based entity sets (NESTs), 
protein complexes, pathways and GO terms.

•  NESTs. These sets are derived from the integrated interaction 
network, which includes four types of biological interactions: 
protein–protein, biochemical, gene regulatory and genetic 
interactions. A NEST is defined as a central protein and its 
network neighbors. The size of the network neighborhood is  
determined by its radius. The user can choose between a radius 
equal to one and a radius equal to two. A radius equal to one 
adds only the direct neighbors to the center protein, whereas 
a radius equal to two adds, in addition, all direct neighbors 
of the direct neighbors. We recommend using a radius equal 
to one; otherwise, the neighborhoods grow too large and 
lose specificity. There are as many NESTs as proteins in the  
integrated network.

•  Protein complexes. These sets are derived from specific  
databases that hold information on protein complexes. 
Note that most annotated protein complex sets are rather 
small ( < 5 members).

•  Pathways. These sets comprise metabolic, signaling and gene 
regulatory pathways annotated by 12 source databases for 
human (4 each for mouse and yeast). Pathways range from 
very large biological processes—covering, for example, the 
complete metabolism and having  > 1,000 members—to 
very specific concepts that describe detailed processes.

•  GO terms. ConsensusPathDB offers four levels of GO  
categories ranging from very general terms (level  =  2) 
with  > 1,000 members to more specific terms (level  =  5). 
In the analysis, the user can restrict the categories to specific 
level(s) or to the specific GO tree branches covering ‘biologi-
cal process’, ‘molecular function’ and ‘cellular compartment’.

Pathway annotation—specificity and redundancy. The 
pathway concept is essential for modern biology, and it usu-
ally describes a certain cellular process, for example ‘apoptosis’, 
in which the involved proteins or metabolites exert specific 
functions and are interconnected by molecular interactions 
of diverse types. ConsensusPathDB agglomerates 4,593 
human pathway concepts (mouse: 2,173 and yeast: 1,101)  
originating from 12 different resources (Table 1). On one hand, 
these pathway concepts are partially redundant because they 
describe subpathways of a given pathway that are annotated by 
the same database. For example, the pathway ‘apoptosis’ might 
cover the subpathways ‘extrinsic apoptosis’ and ‘intrinsic apop-
tosis’ among others, with corresponding subsets of proteins.  
On the other hand, most generic pathways are annotated 
by several databases, leading to more than one annotation  
set referring to ‘apoptosis’.

It is worth noting that pathway concepts from different 
resources might in fact involve different sets of molecules even 
when describing similar molecular processes. As a consequence, TA
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this can lead to differences in functional enrichment analyses 
(analysis paths 2 and 3), because the different annotation sets 
might have deviating overlaps with the gene list submitted by 
the user. For example, comparison of gene sets for the ‘apoptosis’ 
pathway in the three widely used databases KEGG35, Reactome36 
and WikiPathways37 reveals that 79% of the annotated proteins 
are specific to a single database, as compared with the number 
of proteins that are shared by at least two of the three databases 
(Fig. 2a). The reason for this is that pathway boundaries are not 
clearly defined and that expert opinion on the extent of cross 
talk with other pathways is highly variable. In addition, pathway 
annotations are commonly focused on specific substructures or 
specific cellular contexts (e.g. tissues, diseases and organisms), 
which might result in variations of the assembled gene lists. 
Consequently, in ConsensusPathDB, such overlapping path-
way concepts are not merged to generalized pathways; instead,  
the redundancy is kept and the annotated pathway set is always 
disclosed together with its source database.

Interaction retrieval for single biomolecules. ConsensusPathDB 
holds 158,523 unique physical entities (mouse: 31,679 and yeast: 
17,672), and it offers the possibility of retrieving interaction 
information for these entities. The concept of an interaction in 
ConsensusPathDB is very general, so that proteins can have con-
nections not only to other proteins but also to drugs, complexes 
or metabolites (Box 1). By selecting specific interactions, the user 
can generate fairly complex interaction networks.

The source database for each interaction is tracked by a color 
code, providing the user with the information on where the inter-
action originates. This allows for easy visualization of possible 
redundancy between databases, which might serve as an indicator 
for assessing confidence of the particular interaction. Figure 2b  
shows the distribution of the different interaction types and their 
origins. Most interactions are present for protein–protein and 

drug–target interaction types and are predominantly specific  
for a single or low number of databases.

Another level of confidence assessment is available for 
binary PPIs. Because a lot of PPI resources are integrated in 
ConsensusPathDB, control of false-positive interaction is of 
utmost importance. Therefore, binary PPIs have a quality score 
(range [0,1]) that is displayed with a color code. This score was 
computed as a meta-score integrating different methods for inter-
action confidence assessment, including graph-based topological 
criteria38–40, literature evidence and pathway co-occurrence41, and 
semantic similarity42 using our IntScore43 web tool (Box 2).

This section starts by defining the biomolecule of interest. 
Next, all interactions of that molecule are shown, which can be 
selected and visualized by the user based on prioritization or  
quality assessment. After generating the graph, the user can 
expand it at any given node and update the graph accordingly 
with further interactions.

Analysis path 1

Single

molecule

Input

Analysis

Contents

Output

Analysis path 2
Omics data

Analysis path 3

Molecules

with data

Identifier mapping

Enrichment

Identifier mapping

Network analysis Over-representation

Identifier mapping

Interaction retrieval

Integrated interaction network:

Protein–protein interactions

Gene regulatory interactions

Drug–target interactions

Biochemical reactions

Genetic interactions

Interaction neighborhoods (NESTs)

Protein complexes

Pathways

Gene ontology terms (GOs)

Annotation sets:

Interaction

neighborhood

Induced

network

module

Functional

enrichment

results

Preselected

molecule list

Figure 1 | Outline of the protocol. Three paths of analysis are described 
in the protocol that depend on the user’s input. The content of the 
ConsensusPathDB (i.e., the integrated interaction graph and the predefined 
annotation sets) can be explored with single molecules (analysis path 1), 
with priority lists of molecules (genes, proteins and metabolites; analysis 
path 2) or with associated experimental data (analysis path 3). The Web 
server functionality includes over-representation analysis, enrichment 
analysis and network module analysis. The outputs are the generated tables 
and graphs that can be downloaded for further inspection.
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Figure 2 | Pathways and interactions in ConsensusPathDB. (a) Annotation 
specificity. Venn diagram generated with Venny 2.1 showing the proteins 
annotated for the apoptosis signaling pathway in three different databases 
(Wikipathways, WP254; Reactome, R-HSA-109581; and KEGG, hsa:04210). 
In total, 296 different proteins are annotated for apoptosis signaling, 84 
in Wikipathways, 165 in Reactome (proteins with gene symbols) and 140 
in KEGG. 61 of these proteins are common to all or at least two databases 
(20.6%), whereas the vast majority of proteins (235; 79.4%) are specific for 
a single database. (b) Histogram of the number of contributing databases 
per interaction (genetic interactions have been omitted in this figure, as 
their total number, n  =  443, is comparatively too small to be visible).
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Over-representation analysis. This section of the proto-
col describes the interrogation of the annotation sets (path-
ways and others) with lists of genes, proteins or metabolites. 
This analysis requires prior data analysis by the user outside of 
ConsensusPathDB—for example, by applying a statistical test to 
the genome data and preselecting the most significant molecules, 
as is typically done for RNA-seq or microarray data. For com-
puting the significance of the over-representation of the annota-
tion sets with respect to user-input molecules, ConsensusPathDB 
applies Fisher’s exact test. For each annotation set, the P value is 
calculated as follows: 

P x n m N
i
m

n i
N m

n
Ni

x
( | , , ) = −

( )( )
( )

−
−

=
−∑1
0

1

where x is the number of entities uploaded by the user that over-
lap with the entities in the set, n is the number of entities in 
the set that are identifiable in the user-provided identifier name-
space (e.g., if a pathway contains ten genes but only nine of them 
have an identifier of the type the user selects, then n  =  9), m is 
the number of entities that the user uploads and that are part 
of at least one annotation set of the selected type and N is the 
number of entities present in the union of all annotation sets of 
the selected type and identifiable in the user-provided identifier 
namespace (background). As many annotation sets are tested, we 
correct for multiple hypothesis testing using the false discovery 
rate procedure within each type of annotation set44. This is a 
widely used method that is also applied by many other tools. After 
computation, annotation sets are ordered according to signifi-
cance, and they can be downloaded in table format. In addition, 
specific sets and their overlaps can be visualized. Importantly, in 
contrast to many other tools, not only gene and protein lists—but 

also lists of metabolites—can be submitted to ConsensusPathDB; 
furthermore, the resulting functional categories can be visualized 
as overlap graphs, described below.

Enrichment analysis. This section describes the enrichment 
analysis using all experimental data in an unbiased way rather 
than prioritized molecule lists. It is worth noting that this  
analysis path is complementary to the above. With over- 
representation analysis, only the most significant changes are 
typically evaluated, whereas enrichment analysis is also sensi-
tive to subtle but congruent changes of many molecules in the 
set. Therefore, in practice, a pathway might emerge as signifi-
cantly enriched, although none of the genes in that pathway were 
in the priority list submitted for over-representation analysis. 
Furthermore, completely novel information can be retrieved— 
for example, involving interaction neighborhoods (NESTs) of 
proteins that were not even captured by the omics platform 
under consideration45.

ConsensusPathDB assumes that the user submits case–control  
data, for example disease versus normal or treated versus untreated 
conditions, and that for each molecule both values are given. 
Alternatively, a single log-fold change value for each molecule  
can be submitted.

For computing enrichment P values for the annotation sets, 
ConsensusPathDB applies Wilcoxon’s matched-pairs signed-rank 
test. This test is robust against experimental outliers because it 
is based on ranks rather than on experimental values. For each 
annotation set i with n molecules mi1, …,min and experimental 
measurements xi1, …,xin and yi1, …,yin, the ranks of the abso-
lute differences, |xij  −  yij|, of the two experimental conditions 
are computed; next, all ranks from pairs with positive differences 
R +  and negative differences R −  are summed. The test statistic is 
the minimum of both rank sums: R = min{R + , R − }. Expectation, 

 Box 2 | Interaction confidence assessment 

PPIs are derived from various different resources. It is well known that protein interactions are error prone and that PPI networks  
contain large numbers of false-positive interactions. This has given rise to attempts to control this error by judging interaction confidence.
ConsensusPathDB PPIs were examined with six different methods:
Topology-based criteria
CAPPIC37—This method applies Markov clustering and evaluates the confidence that a PPI belongs to its local cluster of PPIs; score 
range is [0,1].
Common neighbors38—This method evaluates common network neighborhoods of interacting nodes; score range is [0,1].
Geometric embedding39—This method embeds the network in a geometric space and weights edges according to the distance between 
their incident nodes in that space; score range is [0,1].
Annotation-based criteria
Literature evidence40 is the number of publications that report the interaction; score range is [0, ]
Pathway co-occurrence40 indicates whether interaction partners are found in the same pathway; score range is {0,1}.
Semantic similarity41 shows similarity of interaction partners computed from the GO tree; score range [0,1].
 Interaction confidence computation was done with the IntScore tool (http://intscore.molgen.mpg.de)42, which allows the assess-
ment of additional user-defined PPIs.
 In ConsensusPathDB, all binary PPIs have an aggregated confidence score, range [0,1], that was computed as a consensus score 
across the six methods described above. As a result, three classes of PPIs can be retrieved:

 High-quality PPI interactions (score  >  0.95):        81,736
 Medium-quality PPI interactions (0.5 ≤ score ≤ 0.95):   52,514
 Low-quality PPI interactions (score  <  0.5):         70,620

All integrated PPIs can be downloaded from the ConsensusPathDB web server.

http://intscore.molgen.mpg.de
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E(R), and variance of R, Var(R), can be derived, and the Z-score, 
Z, measures the significance of the observed outcome: 

Z
R E R

Var R
= − ( )

( )  

with E R
n n

( )
( )= +1
4

 and Var R
n n n

( )
( )( )= + +1 2 1

24
, respectively46.

If both conditions have similar values for mi1, …,min, then both 
rank sums are equal and the resulting test statistic is not sig-
nificant, whereas otherwise the Z score becomes significant. The 
enrichment method was applied for the first time with array data 
monitoring blastocyst development47 and since then has been 
applied multiple times.

As in the previous section, annotation sets are ordered according 
to significance, and they can be downloaded in table format. In 
addition, specific sets and their overlaps can also be visualized by 
overlaying color-coded experimental (e.g., gene expression) data.

Network module analysis. The idea behind this kind of analysis 
is to start with a priority list of genes/proteins (seed nodes) and to 
compute from the underlying interaction graph a subgraph that 
connects the seed nodes together through functional and physi-
cal links. In ConsensusPathDB, we re-implemented a previously 
published induced network approach29. The output subnetwork 
produced by this algorithm may optionally include nodes that are 
not originally part of the user’s list but have an abundant number 
of connections to seed nodes. These nodes are called intermediate  

nodes. Intermediate nodes are potential upstream regulators 
and specific participants in pathways, protein complexes and 
modules involving the input seed list. For example, if a list of 
downregulated genes as measured through RNA-seq is uploaded, 
ConsensusPathDB may output a common transcription factor  
regulating those genes that might be mutated or otherwise 
dysregulated (but is not on the transcriptional level and hence 
not included in the seed list). To judge the significance of the  
intermediate node, a Z score value is computed using a binomial 
proportions test as follows: 

Z

a

c

b

d

b

d

b

d

d

=
−





−



1

Here, a equals the number of links from the intermediate node 
being examined to nodes from the input seed list, b equals the 
number of total links for the intermediate node in the consoli-
dated background reference network, c is the number of total links 
in the output subnetwork and d is the number of total links in 
the consolidated background reference network. The threshold  
for the Z score can be set interactively by the user. It is clear that 
for large lists and/or low Z scores the outputted network can 
be fairly large, and thus we recommend either not using  > 100 
genes/proteins as seed nodes or restricting the analysis to specific 
interaction types in the parameter setting.

MATERIALS
EQUIPMENT

Data files. Example data files are supplied as Supplementary Data 1–4.
Computer with Internet access. The link to ConsensusPathDB is  
http://consensuspathdb.org. For hardware and software requirements,  
see Equipment Setup.

EQUIPMENT SETUP

Hardware requirements ConsensusPathDB is accessed via the web interface. 
Data analysis is performed on a dedicated web server. Thus, even complex 
network analyses can be performed by the user with a standard computer. 
For this protocol, we ran all analyses on (i) a standard single-CPU 3.6 GHz 
Windows 7 PC with 8 GB RAM, (ii) a Linux workstation, (iii) a MacBook 
Pro 2.8 GHz computer and (iv) an Android (version 5.1.1) Samsung  
S6 smartphone.

Software requirements The ConsensusPathDB can be accessed via a web 
server or via web services. Any modern HTML5-enabled browser can be 
used. The analysis performed for this protocol was tested with the current 
versions of Firefox (version 44.0.2) and Chrome (version 48.0.2564.109 m) 

•
•

on the Windows and Linux PCs, with Safari (version 8.0.3) on the MacBook 
computer and with a standard Android web browser. We recommend  
upgrading to the latest version of JAVA. As HTML5 support in Internet  
Explorer has historically been poor, we have not optimized the web server  
for this browser, and thus we cannot recommend its use.
Data files The data used in this protocol consist essentially of lists of genes 

and metabolites with or without experimental data. All data files are available 
in Supplementary Data 1–4.
Results download Results comprise tables in .txt file format and figures 
in .png file format. Furthermore, the networks can be downloaded in .sif 
format, as well as .owl BioPax 3 format, which is readable by other tools such 
as Cytoscape28. ConsensusPathDB also offers a download section comprising 
pathway annotation sets, as well as the integrated PPI network.
Web services Automated access to ConsensusPathDB’s over-representation 
and enrichment analysis functionality is possible through a SOAP/WSDL 
interface. A WSDL file needed for connecting to the SOAP/WSDL interface is 
provided in the ‘download / data access’ section on the web page.

PROCEDURE
Selection of the organism of interest ● TIMING  < 1 min
1| Choose the correct version of the database (human, mouse or yeast). This protocol refers to the human version, which 
is the default setting. The mouse and yeast versions of ConsensusPathDB can be accessed on the home page by clicking the 
respective organism at the top center position. The active version of the database is shown in red and underlined.
?TROUBLESHOOTING

http://consensuspathdb.org
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Data analysis
2| Depending on the required analysis method, see the table below to select the appropriate option.

Option Method Description

A Network neighborhoods of single 
biomolecules

Search and retrieve the complex interaction neighborhood of a biomolecule 
of interest; interactively expand the network or overlay experimental data

B Over-representation analysis of  
a batch of genes/proteins

Characterize and visualize a predefined gene/protein list with respect to GO, 
pathway, complexes and interaction information

C Over-representation analysis of  
a batch of metabolites

Characterize and visualize a predefined metabolite list with respect to  
pathway information

D Induced network approach Identify network relationships of a list of genes/proteins in order to retrieve 
upstream regulators, or drug or protein interactions

E Enrichment analysis with  
high-throughput experiments

Characterize and visualize genes/proteins with associated experimental  
data with respect to GO, pathway, complexes and interaction information 
(whole-genome approach)

(A) Identification of network neighborhoods of individual biomolecules ● TIMING 1–10 min
 (i)  Submit a single entity (Fig. 3a). This is done by clicking on ‘search’ and ‘interactions of molecules/pathways’. There  

are two ways to search for a molecule of interest: The user can enter the molecule of interest in the input box and 
specify whether the text represents a name—for example, ‘epidermal growth factor receptor’—or the user can enter an 
identifier—for example ‘EGFR’ or ‘ENSG00000146648’. A list of 138 valid identifier types is displayed when clicking on 
‘list of valid types’. 
? TROUBLESHOOTING

 (ii)  Specify search entry. The next page displays all results that match the search entry. For each entry, it holds the  
available names, the corresponding types and the supporting databases. The user can then select the corresponding 
entry and click ‘show interactions’. 
 CRITICAL STEP For highly connected biomolecules such as EGFR, it may take 10–30 s until the full list of  
interactions is loaded, depending on the Internet connection. Wait until the full list is loaded before proceeding.

 (iii)  Review the interaction results page. The user can review the interactions retrieved from the integrated databases  
(Fig. 3b). Interactions cover PPI, gene regulatory, genetic, metabolic, signaling and drug–target interactions.  
The specific role of the molecule of interest is displayed by a one-letter code. Mouseover reveals the full text,  
for example, ‘I’ = physical interactor and ‘T’ = target. For PPIs, in addition, a quality criterion (range [0,1]) is given  
with a traffic light-code that represents the interaction confidence (green:  > 0.95, orange: [0.5, 0.95] and  
red:  < 0.5). The rightmost column displays the source database; original information about each interaction  
from the corresponding source database can be accessed by a mouse click. After selecting all or several interactions, 
the user can click on ‘map and visualize interactions’. 
 CRITICAL STEP Note that selecting all interactions for highly connected molecules (e.g., EGFR has 4,670  
interactions, of which 2,095 are distinct) will generate a warning. It might be infeasible to display these networks.  
We thus recommend focusing on smaller subnetworks—e.g., by selecting interactions of interest from the interaction 
list rather than clicking ‘select all’. 
? TROUBLESHOOTING

 (iv)  Explore and modify the interaction network. The network is displayed as a bipartite graph in which interactions are 
displayed as circular nodes and biomolecules as square nodes (Fig. 3c). The colors and shapes represent the different 
types of interactions and biomolecules, respectively, as explained in the graph legend. The network is interactive and 
can be rearranged by the user. Furthermore, specific action items can be performed when clicking the nodes.

Feature Description/options

Biomolecule node (square) • Physical entity information: displays the different identifier and annotation

• More interactions of this entity: allows selection of further interactions of this biomolecule and, 
thus, extending the network

• Hide external interactions: hides all interactions that are not related to that specific node

• Hide name: hides the name of that specific node
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Interaction node (circular) • Interaction information: displays details of the interaction

• Hide interaction

• Hide all except the current interaction

• Hide secondary participants: physical entities with a secondary role (e.g., enzymes,  
modifiers) can be hidden, for example, when the user wishes to visualize only the mass flow  
in a biochemical pathway

Task bar • Graph legend: displays the legend

• Overlay values: allows submitting experimental data for the selected biomolecules  
(cf. Step 2E(v))

• Graph settings: allows modification of the graphical output

• Misc functions: displays a summary of network statistics and allows the network to be exported 
as a BioPAX level 3 .owl file or as plain graph dump

?TROUBLESHOOTING
(B) Over-representation analysis of a batch of genes/proteins ● TIMING 1–10 min
 (i)  Submit a list of genes/proteins (Fig. 4a). Submit a list of genes/proteins of interest and perform over-representation 

with predefined functional sets such as pathways and GO associations. This is done by clicking on ‘gene set analysis’ 
and ‘over-representation analysis’. There are two options for insertion: copy the list of genes/proteins into the box,  
or upload a corresponding text file (.txt format). As an example in this protocol, the gene list from Supplementary 
Data 1 can be used. 
 CRITICAL STEP ConsensusPathDB recognizes multiple entries that are the same. It reduces the list to unique  
identifiers automatically. Thus, if the user’s list contains duplicates, then the system reports fewer entries than were  
in the submitted list.

 (ii)  Specify the background for the genes/proteins. By default, the whole genome/proteome is used as a background,  
but the user can provide his or her own background sets instead (e.g., when only a subset of the genome has been 
measured). This influences the computation of the statistical significance.

 (iii)  Specify identifier type. Diverse identifier types (e.g., Ensembl, Entrez and Uniprot) are supported. Select the appropri-
ate ones for your list and hit ‘Proceed’. For the example gene list used here, select ‘gene symbol (HGNC symbol)’. 
 CRITICAL STEP The identifier type must match the names in the submitted list. Otherwise, the system reports that 
no identifier could be mapped. 

? TROUBLESHOOTING
 (iv)  Select annotation sets for genes/proteins. The next page allows selection of the different types of annotation sets  

for over-representation analysis (Fig. 4b).

Option Description

Neighborhood-based  
 sets (NESTs)

• Protein interaction neighborhoods centered on a certain protein; NESTs can be of radius 1  
(direct neighbors) or 2 (i.e., including direct neighbors of direct neighbors)

Pathway-based sets • Interaction networks as defined by 12 different public databases, which can be specified by  
the user

Gene ontology (GO)  
 categories

• This option allows filtering for GO levels (depth of terms in the GO-directed acyclic graph),  
as well as for the three GO domains (biological process, molecular function and cellular component)

Protein-complex-based  
 gene sets

• Sets of genes whose products are found together in protein complexes

For each annotation set, different parameters specifying overlaps, P value cutoffs and minimal set sizes can be  
adjusted by the user. After setting all optional parameters, click ‘Find enriched sets’ to get to the results page. 
 CRITICAL STEP The NEST analysis can take up to several minutes, depending on the settings. We recommend  
using NEST radius equal to two only exceptionally. Note that if the response time is too long, the session expires and 
the results are lost. 
? TROUBLESHOOTING
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 (v)  Inspect over-representation analysis results. For each annotation set, a different table is generated listing the  
enriched sets by P value (Fig. 4c). The information comprises annotated names, source, set size, overlap, P value and 
q value. The individual annotation sets, here pathways, can be further inspected by clicking on the number in the 

ba

c

Figure 3 | Interaction neighborhood retrieval in ConsensusPathDB. (a) Search field. (b) Interactions found for the molecule of interest (here EGFR).  
(c) Complex interaction neighborhood comprising different interaction types (colored circles) and biomolecules (colored squares).
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column ‘candidates contained’. Further details of the original annotation can be inferred by clicking on the source  
database link in the rightmost column. This lists the members of the annotation set and the overlap with the gene 
list. The enriched sets can be downloaded as a tab-delimited file or visualized as a word cloud. Annotation sets can  
be checked by tick boxes and visualized in graph format by clicking ‘Visualize enriched sets’.

 (vi)  Visualize enriched annotation sets. The different sets and their overlap can be viewed in an interactive map  
(Fig. 4d). The size of nodes and edges is proportional to the number of members and the overlap of the annotation 
sets, as described in the graph legend. Further information for each annotation set can be reviewed by clicking on  
the node. Further information for each edge can be reviewed by clicking on the edge. The complexity of the graph  
can be reduced by filtering edges based on the overlap.

a c

b d

Figure 4 | Over-representation analysis with gene lists in ConsensusPathDB. (a) Submission page. (b) Selection of annotation sets. (c) Results page showing 
top-enriched pathways. (d) Visualization of overlap between enriched annotation sets.
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(C) Over-representation analysis of a batch of metabolites  
● TIMING 1–10 min
 (i)  Submit the list of metabolites. As in the case of 

genes/proteins, submit a list of metabolites of interest  
and perform over-representation with predefined  
functional sets such as pathways and GO associations. 
This is done by clicking on ‘metabolite set analysis’ 
and ‘over-representation analysis’. There are two  
options for insertion: copy the list of metabolites into 
the box or upload a corresponding text file (.txt  
format). As an example in this protocol, the metabo-
lite list from Supplementary Data 2 can be used.

 (ii)  Specify the background for the metabolites. By default,  
the whole metabolome is used as a background, but 
the user can provide his or her own background sets 
instead (e.g., when only a subset of the metabolome 
has been measured).

 (iii)  Specify the identifier type. Diverse identifier  
types (KEGG, ChEBI, PubChem, CAS and HMDB) are 
supported. Select the appropriate ones for your list 
(for this example, select ‘KEGG’) and hit ‘Proceed’. 
 CRITICAL STEP The identifier type must match  
the names in the submitted list. Otherwise, the  
system reports that no identifier could be mapped. 
 CRITICAL STEP Metabolites are often referred to  
by nonstandardized names—for example, ‘glyoxal’.  
To map these names to database entries, it is usually 
necessary to convert them into the corresponding 
identifiers; otherwise, the system cannot match  
the entry. This is a manual step, which should be  
done outside of ConsensusPathDB. In this example,  
we have converted all identifiers to KEGG IDs,  
resulting in ‘C14448’ instead of ‘glyoxal’. 
? TROUBLESHOOTING

 (iv)  Select annotation sets for metabolites. For metabolites, 
the analysis is restricted to pathway annotation sets 
(Fig. 5a). Select pathway database resources, set a 
minimum required overlap and define a P value cutoff. 
Click on ‘Find enriched sets’ to get to the results page.

 (v)  Inspect over-representation analysis results. The 
resulting page lists the pathways that are enriched 
among the input set, ranked by P value (Fig. 5b). 
Information is given on pathway name, size, overlap, 
P value, q value and source database. The individual 
pathways can be further inspected by clicking on 
the number in the column ‘candidates contained’. 
This lists the members of the annotation set and the 
overlap with the gene list. The enriched sets can be 
downloaded as a tab-delimited file or visualized as a 
word cloud. By ticking boxes, annotation sets can be 
checked and visualized in graph format.

 (vi)  Visualize enriched annotation sets. This step is the 
same as Step 2B(vi) above (Fig. 5c).

(D) Induced network approach ● TIMING 3-15 min
 (i)  Submit seed genes. ConsensusPathDB allows the generation of a network that connects as many members of an input 

gene list (seed genes) as possible with intermediate nodes using the induced network graph algorithm. This is done by 

a

b

c

Figure 5 | Over-representation analysis with list of metabolites in 
ConsensusPathDB. (a) Selection of databases and parameters. (b) Results 
page showing the top-enriched pathways. (c) Visualization of annotation 
sets and their overlap.
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clicking on ‘gene set analysis’ and ‘induced network modules’ (Fig. 6a). There are two options for insertion: copy the 
list of genes/proteins into the box or upload a corresponding text file (.txt format). As an example in this protocol, 
the gene list from Supplementary Data 3 can be used.

 (ii)  Specify the identifier type. This is the same as Step 2B(iii) above. Select the appropriate identifiers for your list  
and hit ‘Proceed’. For the example gene list used here, select ‘gene symbol (HGNC symbol)’. 
 CRITICAL STEP The identifier type must match the names in the submitted list. Otherwise, the system reports that 
no identifier could be mapped. 
? TROUBLESHOOTING

 (iii)  Select interactions and database sources. At the top of the next page, there is a summary of the identifier mapping 
from the imported list to internal identifiers. To select the content to be included, the user has several options  
(Fig. 6b). After selecting options, click ‘Find induced modules’.

Option Description

Specify interactions to be  
 included in the analysis

• Protein interactions with quality score (low, medium, high confidence according to the 
traffic signal criterion (cf. Step 2A(iii) above)

• Genetic interactions

• Biochemical reactions

• Gene regulatory interactions

• Drug–target interactions

Specify database sources to  
 be included in the analysis

• Seed nodes are displayed either as seed node identifiers or as default display names

Specify display settings • Show nonconnected seed nodes or not

• Intermediate nodes: display or leave out. If this box is deselected, the created network will 
be based solely on interactions between seed nodes

• Seed nodes are displayed either as seed node identifiers or as default display names

• Show nonconnected seed nodes or not

 CRITICAL STEP The computation time, as well as the graph visualization, is heavily dependent on the number of 
nodes and edges. Thus, we recommend using only a small to medium number of genes as seed nodes ( < 200) or, for 
larger lists, to restrict the interactions to specific types—for example, gene regulatory interactions. Running a large 
list with all interactions selected might cause an error. 
? TROUBLESHOOTING

 (iv)  Explore and modify the resulting network module. After the network analysis is completed, the user is directed to the 
visualization page (Fig. 6c). Biomolecules (genes, proteins and compounds) are depicted as squares, and interactions are 
depicted as lines connecting the interaction partners. Seed genes are labeled in black, whereas intermediate nodes are  
labeled in magenta. The colors of the lines and rectangles represent the interaction types and biomolecule classes. The user 
can customize the layout of the network directly on the webpage by moving and hiding nodes. This is achieved by clicking 
on and dragging the respective nodes and edges. The menu bar at the top of the page offers the following options:

Option Description

Graph legend button Click on the ‘graph legend’ button in the menu bar on top of the page for a detailed description

Slide bar Using the slide bar, the user can control the threshold for the intermediate nodes: a more stringent 
threshold will reduce the number of nodes, whereas a lower threshold will increase this number

Export button Using the ‘export’ button, the final network module can be downloaded in a text-based format, 
which can be imported into network visualization software such as Cytoscape11

Overlay values button The ‘overlay values’ button in the menu bar allows uploading of a file with numerical values for each 
gene from additional experimental data; these will be displayed by color-coding of the nodes

 CRITICAL STEP The ConsensusPathDB offers basic visualization features. If the user wants to change the graph layout,  
we recommend exporting the graph as a .sif file and modifying the layout with appropriate tools—for example, Cytoscape28.
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(E) Enrichment analysis with high-throughput experiments ● TIMING 3–15 min
 (i)  Submit experimental data. In this section, we describe the enrichment analysis with respect to gene expression. Analysis  

of quantitative protein or metabolite data can be carried out analogously. Enrichment analysis is activated by clicking 
on ‘gene set analysis’ and then on ‘enrichment analysis’. The procedure is similar to that for the over-representation  

a b

c

Figure 6 | Induced network module analysis in ConsensusPathDB. (a) List of seed nodes inserted by the user. (b) Setting of parameters that determine the 
underlying interaction graph. (c) Visualization of results. Seed node labels are shown in black, and intermediate node label, here E2F4, is shown in magenta.
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analysis described in Step 2B(i–vi), except that in this case the user’s genes/proteins of interest have numerical  
values associated with them (Fig. 7a). To insert data, the user has two options: copy the list of genes in the  
box or upload a corresponding text file (in tab-delimited .txt format). As an example in this protocol, the list from 

a b

c

ID1

Figure 7 | Enrichment analysis with RNA-seq data in ConsensusPathDB. (a) Data input as a three-column file holding the RPKM values from two conditions per gene.  
(b) Specification of annotation sets and parameters. (c) Visualization of a significantly enriched NEST with ID1 as center protein with overlaid gene expression data (logFC).
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Supplementary Data 4 can be used. ConsensusPathDB assumes that data come from case–control studies that  
compare two experimental conditions—for example, disease versus control, treated versus untreated, time point  
1 versus time point 2 and so on. In both cases, the user thus has two options for submitting experimental data:

Option Description

One value per gene/protein In this case, the value will be interpreted as a (log-)fold change of case versus control  
expression; this setting is recommended if the user wants to overlay expression data on the 
networks, because the color-coding then allows better interpretability

Two values per gene/protein In this case, values will be interpreted as expression values for case and control conditions, 
respectively

 (ii)  Specify the identifier type. This is the same as Step 2B(iii) above. 
 CRITICAL STEP The identifier type must match the names in the submitted list. Otherwise, the system reports that 
no identifier could be mapped. 
? TROUBLESHOOTING

 (iii)  Select annotation sets for genes/proteins. This is the same as Step 2B(iv) above (Fig. 7b). Finally, click on  
‘Find enriched sets’. 
 CRITICAL STEP The NEST analysis can take up to several minutes, depending on the settings. We recommend using 
NEST radius equal to two only exceptionally. Note that if the response time is too long, the session expires and the 
results are lost. Furthermore, to ensure proper execution, the NEST analysis can be done separately from the other 
analyses by repeating Step 2E(i–iii) multiple times with different annotation sets. 
? TROUBLESHOOTING

 (iv)  Inspect enrichment analysis results. This is the same as Step 2B(v) above.
 (v)  Visualize enriched annotation sets. This is the same as Step 2B(vi) above. In addition to the visualization of the  

annotation sets, for example, significant NESTs can be further inspected. For example, experimental data can be  
overlaid to significant NESTs, as is shown in Figure 7c by performing Step 2A(iv).

?TROUBLESHOOTING
Troubleshooting advice can be found in Table 3.

TABLE 3 | Troubleshooting table.

Step Problem Possible reason Solution

1 No matching entity  
was found

User chose the wrong version of the  
database (e.g., submitted mouse  
identifiers to the human version of  
the database)

Go to the home page and click on the correct 
organism at the center top panel; the active 
version of the ConsensusPathDB is shown  
underlined in red

2A(i) No matching entity  
was found

User set wrong settings (e.g., entry  
is not a name but an accession  
number or vice versa)

Check your settings; check whether your ID is  
supported by clicking on ‘list of valid types’;  
otherwise, convert your IDs to a supported type

2A(iii) Network neighborhood  
is not generated

The size of the network is too large, and  
the browser fails to show it

Restrict the number of interactions for  
visualization (recommended size  < 500)

2A(iv) Overlaying experimental 
data does not work

The identifier type in the data list  
does not match the identifier type  
used for generating the network

Modify the data file accordingly

2B(iii), 2C(iii),  
2D(ii), 2E(ii)

No identifier could be 
mapped

The identifier types in the submitted list and 
the specified identifier type do not match

Redo submission with matching identifier  
types; also cf. Step 1

2B(iv), 2E(iii) No enrichment results 
are displayed; session 
expires

The number of annotation sets is  
too large; this is more of a problem for  
Step 2E(iii) (enrichment analysis)  
when using whole-experimental data

We recommend using NEST radius equal to two 
only exceptionally because it generates very 
large annotation sets. Perform Step 2E(iii) in an 
iterative way—i.e., activate only NEST annota-
tions first, and then store the results, return to 
the page and activate the other annotation sets

(continued)
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● TIMING
The time required to execute the above protocol is strongly dependent on the size of the analyzed data set, the load  
generated from the number of users on the local servers and in general on the network traffic.
 Analysis steps for the different use cases of this protocol were performed with a standard Windows 7 PC with a single CPU 
(3.6 GHz) and 8 GB of memory, and had the following time requirements:
Step 1, selection of the organism of interest:  < 1 min
Step 2A, identification of network neighborhoods of single biomolecules: 1–10 min
Step 2B, over-representation analysis of a batch of genes/proteins: 1–10 min
Step 2C, over-representation analysis of a batch of metabolites: 1–10 min
Step 2D, induced network approach: 3–15 min
Step 2E, enrichment analysis with high-throughput experiments: 3–15 min

It should be noted that the achieved performance refers solely to the computation time. In between the different steps, the 
user has multiple options for inspecting results and for literature review of the identified interactions and proteins, as well as 
for modifications of visualization features. Thus, full analysis time is heavily dependent on the amount of user interaction.

ANTICIPATED RESULTS
Here we discuss plausibility of the results achieved with the protocol for the different analysis paths.

Generation of complex interaction networks for biomarkers (Step 2A)

As a use case, we have inspected interactions of EGFR. This is a well-investigated gene that is important for tumor  
progression and is a primary target for several therapies. EGFR has 4,670 interactions, of which 2,095 are actually distinct. 
ConsensusPathDB discovers diverse interactions for this gene, mostly with proteins such as SHC148 and drugs such as  
cetuximab49. When inspecting the individual interactions (Fig. 3c), the user can review further annotations and literature 
references. It should be noted that ConsensusPathDB’s identifier matching is very important because in many publications 
this gene is described with aliases—e.g., HER1 or ERBB1. The traffic light score for the individual interactions typically 
relates to the number of references found. For example, although the interaction between EGFR and SHC1 has 56 references 
and a score of 0.9999 (green), the interaction of EGFR with DOK6 has only one reference, corresponding to a score of 0.0067 
(red). On the other hand, such interactions could be also of particular interest, as they might refer to rather novel findings.

Characterization of lists of genes/proteins with network-based information (Step 2B)

As a use case, we have uploaded the list of 18 driver mutation genes (Supplementary Data 1) that have been identified 
by the Cancer Genome Atlas Network to be frequently mutated in lung adenocarcinomas1. Not surprisingly, on inspecting 
the pathway results, gene sets involving cancer pathways are found to be most significantly enriched, the top three being 
those for glioblastoma, melanoma and lung cancer (Fig. 4c). Looking at GO terms reveals that many genes from the input 
list (12 out of 18) are involved in cell death, the evasion of which is a hallmark of cancer50. In addition to pathways and 
GO terms, which can also often be found with other online tools, ConsensusPathDB provides results for NESTs and protein 
complexes. This enables the user to find other genes/proteins (i.e., those not from the input list) in the form of NEST centers 
or members of protein complexes, which themselves may not have been regarded as interesting but can be potential targets 
or biomarkers as well because of their molecular connectivity to genes of interest. For example, in the original publication1, 
the authors analyzed the effects of somatic mutations in 230 patients on specific signaling pathways and discovered MAPK, 
mTOR and AMPK signaling as major targets. Our analysis based solely on the 18 driver mutations can confirm this finding. 
MTOR has interactions with 4 of the driver genes (RBM10, PIK3CA, EGFR and TP53), which gives a significant result for the 
respective NEST (Q  =  8.49 × 10 − 4). Furthermore, all pathways found to be substantially affected by somatic mutations in the 

TABLE 3 | Troubleshooting table (continued).

Step Problem Possible reason Solution

2D(iii) Induced network  
module graph is  
not generated

The number of seed nodes is too high

Too many interactions are selected

The session expired because it exceeded 
allowable run time

Restrict either the number of seed nodes or the 
number of interaction types

Induced network  
module graph shows 
disconnected subsets  
of seed nodes

The user did not allow for showing  
intermediate nodes

Tick the corresponding check box
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original study are also identified by the ConsensusPathDB over-representation analysis (AMPK signaling, Q  =  2.97 × 10−4; 
MAPK signaling, Q  =  2.25 × 10−5; mTOR signaling, Q  =  2.54 × 10−4.

Characterization of lists of metabolites with pathway information (Step 2C)

As a use case for metabolites, we have investigated the list of 130 uremic toxins provided by the EUTox work group, which 
is an international consortium for research on chronic kidney disease. As the metabolite names are given in nonstandardized 
format, we have manually converted them to KEGG identifiers in order to be able to map them to pathways (Supplementary 
Data 2). However, not all metabolites could be mapped, resulting in 79 unique KEGG identifiers. Uremic toxins, by  
definition, have an increased concentration in the blood due to renal insufficiency, and they can cause severe organ  
damage, atherosclerosis and vascular remodeling34. As a major result of the pathway over-representation analysis (Fig. 5b),  
pathways appear that are associated with transport processes. This result is in line with previous reports showing that  
high levels of uremic toxins can compete with transporter molecules for elimination and distribution of drugs and other 
compounds51. Furthermore, cardiovascular pathways are significantly enriched, emphasizing that chronic kidney disease is 
a major risk factor for cardiovascular disease. In particular, we find that the pathway ‘vascular smooth muscle contraction’ 
is affected by the metabolites, which confirms knowledge from the literature. Recently, it has been shown that a particular 
uremic toxin, p-Cresyl sulfate, causes vascular smooth muscle cell damage through oxidative stress52.

Generation of interaction network module maps from lists of genes/proteins (Step 2D)

For the induced network module computation, we repeated the analysis from a published application of the ConsensusPathDB 
(Supplementary Data 3). The authors performed genome-wide histone modification analysis of H3K4me2 with ChIP-seq in  
T cells isolated from asthmatic and normal individuals in order to identify disease-specific enhancers. They identified MYC, 
E2F2 and E2F4 as major regulators for H3K4me2 methylation target genes (comparing TH2 cells with naive T cells from  
asthmatic individuals)17. They performed analysis Step 2D(i–iv) using an input list of 691 different targets. In Step 2D(iii), 
they restricted analysis to gene regulatory interactions, which makes the analysis of such a large list computationally  
feasible. Next, the three master regulators appeared as central hubs of the induced network (Fig. 6c). Interestingly, E2F4 
was not a seed node—i.e., not among the target genes—and its role as a master regulator was inferred from the background 
interaction network of ConsensusPathDB.

Enrichment analysis with lists of genes/proteins (Step 2E)

As a use case, we analyzed whole-genome single-cell RNA-seq data derived from different stages of human development2. 
These data were provided as reads per kilobase of transcript per million mapped reads (RPKM)-normalized values for each 
gene across the different cells. For each developmental stage, we averaged the corresponding biological replicates (i.e., 
single cells) and used human epiblast (EPI) samples, as well as embryonic stem cells (hESCs) derived from these epiblasts, 
as a case–control study. The EPI is a layer of cells in the late blastocyst that differentiates from the inner cell mass, usually 
around day 9 of human embryonic development, and builds the precursor of all embryonic tissues53. One goal of the original 
study was to identify differentially expressed genes between EPI and hESC cells.

Data were uploaded in .txt file format (Step 2E(i)) as a three-column file containing the gene symbols and the two RPKM 
values per gene. Before data analysis, we excluded genes that had zero RPKM values in both conditions. Enrichment analysis 
found huge differences between EPI and hESC cells, in line with the result of the original work in which the authors identified 
1,498 genes differentially expressed between the two stages. Among these genes were pluripotency-related genes, as well  
as Wnt signaling genes, underlying the prominent role of this pathway for development. Consistently, we find several Wnt- 
related signatures among the top enriched categories such as ‘signaling by Wnt’ (Q  =  6.69 × 10 − 5), ‘TCF = dependent signaling 
in response to WNT’ (Q  =  2.82 × 10 − 5) and ‘Wnt signaling pathway and pluripotency’ (Q  =  5.36 × 10 − 3). ID1, a gene associ-
ated with pluripotency, was found to be significantly upregulated in hESC cells as compared with EPI cells in the original 
publication, and the NEST for ID1 was found to be significantly enriched by ConsensusPathDB analysis. Inspecting its  
network neighborhood (Step 2A(iv)) also reveals that most of the interaction partners of ID1 were upregulated (Fig. 7c).

In summary, the results generated with the ConsensusPathDB protocol show that the tool is a useful complement for  
genome analysis and that it delivers plausible functional and network-based interpretation for heterogeneous applications.

Note: Any Supplementary Information and Source Data files are available in the 

online version of the paper.
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