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Abstract

Object recognition has reached a level where we can iden-

tify a large number of previously seen and known objects.

However, the more challenging and important task of cat-

egorizing previously unseen objects remains largely un-

solved. Traditionally, contour and shape based methods

are regarded most adequate for handling the generaliza-

tion requirements needed for this task. Appearance based

methods, on the other hand, have been successful in object

identification and detection scenarios. Today little work is

done to systematically compare existing methods and char-

acterize their relative capabilities for categorizing objects.

In order to compare different methods we present a new

database specifically tailored to the task of object catego-

rization. It contains high-resolution color images of 80 ob-

jects from 8 different categories, for a total of 3280 images.

It is used to analyze the performance of several appearance

and contour based methods. The best categorization re-

sult is obtained by an appropriate combination of different

methods.

1. Introduction

Even though generic object recognition and classification

have been one of the goals of computer vision since its be-

ginnings [1], we are still far from achieving this goal. On

the other hand, the identification of known objects in dif-

ferent poses and under novel viewing conditions has made

significant progress recently [2, 3, 4, 5, 6, 7, 8, 9]. At the

same time, impressive results have been achieved for the de-

tection of canonical views of individual categories, such as

faces [10], cars [11, 12], pedestrians [13], and horses [14].

Still, little progress has been made for the more general

task of multi-class object categorization, with some notable

exceptions such as [15, 16]. Even more importantly, many

recognition methods have not been tested on multi-class cat-

egorization, so that little is known about their respective

capabilities to generalize beyond known and seen objects.

Also, it is not clear what the role of different cues, such as

contour, shape, color, and texture is for categorization. Tra-

ditionally, contour and shape based methods are considered

most adequate for handling the generalization requirements

needed for categorization tasks.

To address these issues, we have built a novel database

specifically tailored to the task of object categorization. It

contains 80 objects from 8 categories. Each object is rep-

resented by 41 views spaced evenly over the upper viewing

hemisphere. This allows to analyze the performance of dif-

ferent recognition methods not only from a 1D circle or a

few canonical viewpoints, but from multiple viewing posi-

tions. For each image a high-quality figure-ground segmen-

tation mask is provided. This makes it possible to compare

both appearance and contour based methods in the idealized

setting of perfect segmentation. Even though any compari-

son on a particular database has its limitations, we strongly

believe that databases such as the one we propose, as well

as the comparison of different methods are important steps

to enable progress in the area of object categorization. The

database is made publicly available and other authors are

invited to run and report experiments.

Section 2 casts the object categorization problem in a

framework founded in Cognitive Psychology. This founda-

tion motivates our object database, introduced in Section 3.

Different contour and appearance-based methods are intro-

duced in Section 4, and Section 5 presents experimental re-

sults comparing those methods as well as different cues for

object categorization. As expected, different methods and

cues have their respective strengths and weaknesses. There-

fore, Section 6 proposes and discusses the combination of

different methods.

2. Object Categorization

It is important to emphasize that the notion and the abstrac-

tion level of object classes is far from being uniquely and

clearly defined. Notably, the question of how humans orga-

nize knowledge at different levels has received much atten-

tion in Cognitive Psychology [17]. Taking an example from

Brown’s work, a dog can not only be thought of as a dog,

but also as a boxer, a quadruped, or in general an animate

being [17]. Yet, dog is the term that comes to mind most

easily, which is by no means accidental. Experiments show

that there is a basic level in human categorization at which

most knowledge is organized [18]. According to Rosch et

al. [18, 19], this basic level is also

� the highest level at which category members have sim-
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ilar perceived shape.

� the highest level at which a single mental image can

reflect the entire category.

� the highest level at which a person uses similar motor

actions for interacting with category members.

� the level at which human subjects are usually fastest at

identifying category members.

� the first level named and understood by children.

These points are the motivation for us to address multi-

level object categorization rather than the less clearly de-

fined problem of object classification. Basic level catego-

rization is easiest for humans. At the next lower levels, sub-

ordinate categories and the exemplar level used in object

identification can be found. The next higher level, super-

ordinate categories, requires a higher degree of abstraction

and world knowledge. It is thus useful to start the generic

object recognition task in the framework of basic-level cat-

egories, which seem to be a good starting point for visual

classification.

Another argument is that the distinction between object

classes may be quite arbitrary when drawing strict borders

between any two classes. In reality, some classes are in-

herently more similar than others (e.g. dogs and horses

are more similar since they are quadrupeds than dogs and

cars). Looking at multiple levels of object categorization

rather than individual classes, it becomes a desired property

that objects from the same superordinate category, such as

quadrupeds, be classified as more similar than objects from

different superordinate categories. If the object itself is not

correctly recognized, then we want it to be assigned at least

to a “similar” category (graceful degradation).

The experiments of this paper are restricted to basic level

categories. In a first step, we explicitly do not want to model

functional categories (e.g. “things you can sit on”) and

ad-hoc categories (e.g. “things you can find in an office

environment”) [20]. Even though those categories are im-

portant, they exist only on a higher level of abstraction and

require a high degree of world knowledge and experience

living in the real world.

It is important to note that categories do not exist per

se in the world; they are a learned representation [18] and

therefore depend on experience and education. So, it may

not be possible to find the unique basic level for every ob-

ject. However, there are objects that have become so much

part of our daily life that their basic level is well-defined

almost all over the world (e.g. apples, horses, cars, etc.).

In the following section, we will introduce our evaluation

database, which contains some of those categories.

3. The Database

Existing publicly available image databases, like the COIL

[4], have been very influential. Most directly related to

our endeavor, the RSORT database [15] contains full-sphere

views, but only includes grayscale images and no segmen-

tations. In this section, we present a new database for object

categorization containing 80 objects from 8 carefully cho-

sen categories, high-resolution color images, and segmen-

tation masks for every image.

In our work, we want to explore categorization for both

natural and artificial (human-made) objects. In particular,

we include objects from the following basic areas: “fruits &

vegetables”; “animals”; “human-made, small (graspable)”;

and “human-made, big” (e.g. vehicles). Objects from these

areas have different affordances, that is different ways of

interacting with the environment, and different character-

istics. For the first iteration of our database, we chose to

include the following objects: apples, pears, and tomatoes

for the “fruits & vegetables” area; cows, dogs, and horses

for the “animals”; cups for the “graspable”, and cars for the

“vehicles” supercategory.

In principle, there are two ways how such a database

can be built. A category can either be set up by a rep-

resentative distribution of member objects reflecting their

probabilities of occurrence in practice, or by a few proto-

types that approximately span the category [21]. In light

of the difficulty of establishing representative distributions

and the effort involved in taking pictures of member ob-

jects, we resort to the second option. Figure 1 shows the

current status of our database (in the following referred to

as the ETH-80 database). For each category, we provide 10

objects that span large in-class variations while still clearly

belonging to the category. Each object is represented by

41 images from viewpoints spaced equally over the upper

viewing hemisphere (at distances of �������Æ). The view-

ing positions were obtained by subdividing the faces of an

octahedron to the third recursion level. For collecting the

views, we employed an automated robot setup and a blue

chromakeying background for easier segmentation. All im-

ages have been taken with a Sony DFW-X700 progressive

scan digital camera with ���� � ��� pixel resolution and

a Tamron 6-12mm varifocal lens (F1.4). For every image,

we provide a high-quality segmentation mask (Figure 1), so

that shape and contour based methods can be easily applied.

The full database is made available on our webpage 1.

The intended test mode is leave-one-object-out crossval-

idation. This means we train with 79 objects and test with

the one unknown object. Recognition is considered suc-

cessful if the correct category label is assigned. The re-

sults are averaged over all 80 possible test objects. We use

the database for a best case analysis: categorization of un-

known objects under the same viewing conditions, with a

near-perfect figure-ground segmentation, and known scale.

In a practical application, such perfect information is sel-

domly available. But if an algorithm does not work under

1http://www.vision.ethz.ch/pccv/
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(a) Example Image

(b) Segmentation

(c) Extracted Contour

Figure 1: The 8 categories of the ETH-80 database. Each category contains 10 objects with 41 views per object, spaced

equally over the viewing hemisphere, for a total of 3280 images.

these ideal conditions, it is likely to fail in practice.

4. Recognition Methods

Using the database presented above, we want to compare

different methods for multi-class object categorization. In

particular, we want to address the question of what the role

of color, texture, and shape is for this task. In this sec-

tion, we introduce a selection of well-known recognition

methods that are prototypical for these cues. Those methods

serve as the basis for our experiments.

Color: One of the earliest appearance based recognition

methods is recognition with color histograms [2]. Us-

ing this approach, we collect a global RGB histogram

over all image pixels belonging to the object (as spec-

ified by the segmentation mask). Two histograms �

and � can be compared using the intersection measure-

ment �	�� � 
 �
�

� ���	��� 	�
 or the 
� divergence


�	�� � 
 �
�

�

�������
�

�����
� The test image is then assigned

to the category containing the closest matching histogram.

In our experiments, we obtained the best results with a his-

togram resolution of 16-16-16 for the color channels and

using the 
� measurement.

Texture: For the texture cue, we use a generalization of

the color histogram approach to histograms of local gray-

value derivatives at multiple scales [9]. In our experiments,

we compare two versions of this approach. The first is a

rotation-variant descriptor and uses only first derivatives in

� and � direction over 3 different scales. The second uses

rotation invariant features, namely the gradient magnitude

and the Laplacian, again over 3 scales. Both the ��

and the Mag-Lap version have been applied to the COIL

database in the past with 100% recognition rate [9]. In our

experiments, we obtained best results with the scales set to

������ � 	�� �� �
, 16 histogram bins per dimension, and the


� measurement for histogram comparison. As shown in

[9], histogram based approaches can also be used locally to

recognize objects from a small set of sample points taken

from the test image. In this paper, however, we use only the

simpler alternative of matching histograms.

Global Shape: For the shape cues, we make a differ-

ence between global and local shape. As representatives

for global shape, we use PCA-based methods [22, 4]. There

are two principal ways of using PCA for recognition. In the

traditional method [4], one single global eigenspace for all

categories is built and the training images are projected into

this space. Recognition then becomes a nearest-neighbor

search in the eigenspace for the closest training example.

The other approach is to build separate eigenspaces for each

category and measure the reconstruction error (”distance

from feature space” [22]), that is the quality by which the
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class-specific eigenspace can represent the test image. This

approach can be generalized even further towards view-

specific eigenspaces [23], which we will leave for future

experiments.

The class-specific approach has the advantage that it can

be extended easily to a larger number of categories – only

the eigenspaces for the new classes have to be recomputed –

but it is not yet known how it scales. We have made exper-

iments with both approaches and found no significant dif-

ferences in their recognition performance. Since our exper-

iments require the recalculation of the eigenspace for every

object, and the global eigenspace version takes an order of

magnitude longer to compute, we only report results on the

version with class-specific eigenspaces.

In two separate experiments, we apply PCA to the raw

segmentation masks (“pure” global shape) and to the seg-

mented grayvalue images. For the segmentation masks,

the best recognition performance was achieved using only

the first 30 eigenvectors; for grayvalue images, best re-

sults were obtained using the first 40 eigenvectors. For all

PCA experiments, the images are downscaled to a size of

��� � ��� pixels. In contrast to [4], we do not adapt the

scale for individual views of an object such that its bound-

ing box always fills the whole image. In our experience, the

varying scales distort the eigenspace and could potentially

hurt recognition performance.

Local Shape: We have chosen contours as a representa-

tive feature for local shape. Over the years, numerous meth-

ods have been developed for contour-based recognition, e.g.

deformable prototypes [21] or shock graphs [24], to name

but a few. We pick out a method based on the Shape Context

proposed by Belongie [25], which has achieved excellent

results, for example for handwritten digit recognition.

In this approach, an object view is represented by a dis-

crete set of points sampled regularly along the internal or

external contours. For every point, a log-polar histogram,

the Shape Context, is computed that approximates the dis-

tribution of adjacent point locations relative to the reference

point. In order to achieve scale invariance, the outer radius

for the histograms is typically set to the mean distance be-

tween all point pairs.

Point correspondences between different shapes can be

found by matching the log-polar histograms. In their origi-

nal implementation, Belongie et al. match shapes by itera-

tively deforming one contour using thin plate splines [25].

Here, we compare two simpler approaches. In the first

method, we search a continuous path around the main object

contour using a dynamic programming approach (similar to

Dynamic Time Warping). We allow that adjacent points on

one contour be matched to the same point on the other con-

tour, and that a mismatching point be skipped, but every

point on one of the contours must be matched and the over-

all matching order must be kept. The final score is the sum

over all individual matching costs. The second approach

is just a one-to-one matching between contour points us-

ing a greedy strategy. Here, the matching score is also the

sum over all individual matching costs. In both cases, best

results were obtained using 100 points on the contour, 5 ra-

dius and 12 sector bins, and the intersection measurement

for comparing shape context histograms.

5. Results

In this section, the methods described above are applied to

the object categorization task. As all methods depend on a

set of parameters, we made a series of preliminary experi-

ments to determine the optimal parameter settings for every

method. In the following, we report only the best results.

5.1. Global Recognition Rates

Table 1 shows the recognition results for the different meth-

ods, both averaged over the whole database and broken up

per category. As already mentioned in Section 3, the test

mode is leave-one-object-out crossvalidation. So, the re-

sults always show the performance for the categorization

of unknown objects. As can be seen, the contour-based

methods perform best with 86.4% recognition rate. Next

best are the global-shape based PCA variations with 83.41%

and 82.99%, respectively. The texture histograms are only

slighly behind with 82.23% for the rotation-invariant case,

and 79.79% for the rotation-variant one. With only 64.85%

recognition rate, color performs worst.

Globally, there is only a slight difference between the

two PCA methods. However, on the category level signifi-

cant differences become apparent. For the apple and tomato

categories, the version with grayvalue images outperforms

the mask-based version. Here, the global shape is similar

for both categories, but the objects in both classes have a

characteristic, class-specific texture. As a result, shape am-

biguities between the categories can be resolved by addi-

tional information from the grayvalue images. For the cow,

dog and horse categories, on the other hand, the mask-based

version shows better performance. Here, the global shape

is again similar for all three categories. However, the am-

biguities cannot be resolved by resorting to the grayvalue

information encoded in the eigenspaces, because there is no

characteristic texture for those categories. On the contrary,

the in-class variation for texture is so high that using lo-

calized grayvalue information actually hurts performance.

The behavior of both contour based methods is similar to

the one for PCA on mask images, only on a globally higher

level. Between the two contour-based methods, there is no

significant difference.

For the texture histograms, the rotation invariant version

has a better global performance than the rotation variant
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Color �� Mag-Lap PCA Masks PCA Gray Cont. Greedy Cont. DynProg Avg.

apple 57.56% 85.37% 80.24% 78.78% 88.29% 77.07% 76.34% 77.66%

pear 66.10% 90.00% 85.37% 99.51% 99.76% 90.73% 91.71% 89.03%

tomato 98.54% 94.63% 97.07% 67.80% 76.59% 70.73% 70.24% 82.23%

cow 86.59% 82.68% 94.39% 75.12% 62.44% 86.83% 86.34% 82.06%

dog 34.63% 62.44% 74.39% 72.20% 66.34% 81.95% 82.93% 67.84%

horse 32.68% 58.78% 70.98% 77.80% 77.32% 84.63% 84.63% 69.55%

cup 79.76% 66.10% 77.80% 96.10% 96.10% 99.76% 99.02% 87.81%

car 62.93% 98.29% 77.56% 100.0% 97.07% 99.51% 100.0% 90.77%

total 64.85% 79.79% 82.23% 83.41% 82.99% 86.40% 86.40% 80.87%

Table 1: Recognition Results for the categorization of unknown objects.

Category Primary feature(s) Secondary feature(s)

apple PCA Gray Texture��

pear PCA Gray / Masks

tomato Color Texture Mag-Lap

cow Texture Mag-Lap Contour / Color

dog Contour

horse Contour

cup Contour PCA Gray / Masks

car PCA Masks / Contour Texture��

Table 2: Best primary and secondary features for our cate-

gories, as derived from the recognition results.

one. On the per-category level, however, the methods show

more distinct behaviors. Rotation variant features seem to

be significantly better for the apple, pear, and car categories,

that is for those objects where the relative orientation of

texture elements or lines is important for recognition. For

those categories that contain mainly circular texture ele-

ments (like the specularities on most of the tomatoes), or

where the relative number of edge pixels on its own is a

characteristic feature (as seems to be the case for the an-

imals and cups), the rotation invariant texture descriptor

gives the better results.

In general, it becomes clear that no single method is su-

perior for all categories. Interestingly, though, almost all of

the above methods are the best choice for at least one cat-

egory. For example, the global color distribution, which is

in general not a characteristic feature for many basic-level

categories, still performs well for cows and tomatoes. From

this we can conclude that for multi-class object categoriza-

tion, we need multiple features and different combinations

of features. Table 2 shows a list of the most discriminative

primary and secondary features for our categories (achiev-

ing best and second best recognition results).

5.2. Confusions

In Section 2, we have stated the need for graceful degrada-

tion of an object categorization system. We therefore want

to evaluate which objects are treated as similar or are con-

fused by the different methods. We hope this can shed more

light onto how the methods perform and how they may gen-

eralize to larger tasks with more categories.

In order to examine this more closely, we look at the

confusion matrix for each method. By iteratively grouping

together those categories that are confused most often, we

obtain a hierarchy of groupings. Figure 2 shows the group-

ing hierarchies for color, rotation invariant texture, PCA on

segmentation masks, and contours. As can be seen from

these diagrams, the contour based method results in the

most intuitive hierarchy, grouping together both the fruits

and the animals. Both PCA and texture succeed in group-

ing together the animals, but manage only two of the three

fruit categories. Interestingly, those groupings are different

for the two cues: apples and tomatoes are treated as simi-

lar in terms of global shape; apples and pears in terms of

texture. As could be expected, color again performs worst.

The out-of-class confusions that occurred most often in

our experiments are cows with cars for the shape and con-

tour cues, and apples with cups for texture. These are

mainly degenerate views from above, where a cow has

a roughly rectangular outline, or from a medium height,

where the cup handle is not visible and only an ambigu-

ous shape remains. In real-world situations and with uncon-

strained viewpoints, such confusions are likely to appear.

Interestingly, rotation-invariant texture is the cue that

best groups the animal categories together. When taken for

a single class, this cue can recognize them with 99.59% ac-

curacy – significantly better than it is possible with global

shape or contours. It only fails when trying to distinguish

the individual types of animals.

6. Multi-Cue Combination

The results from our experiments stress the need for multi-

cue combination. In the following, we examine how recog-

nition performance can be improved by applying a decision

tree [26] that at each level bases its decisions on one cue

only. Starting again from the confusion matrices, we seek

an optimal partition of the categories that minimizes the

number of misclassifications. We then make our decision
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Figure 2: Grouping hierarchies for four different cues: color (top left), rotation invariant texture (top right), PCA on masks

(bottom left), and contours (bottom right). The diagrams show, from bottom to top, the best groupings for each cue. At each

node the local recognition rate for this grouping is displayed. The numbers to the right show the global recognition rate after

the groups are split.

based on the cue that produces the best partition and itera-

tively refine the resulting group of categories. For this, we

have to recompute the confusion matrices for all cues while

leaving out those views that have already been misclassi-

fied. In this example, we stop at the category level, but we

expect that the results can be improved when the approach

is pursued down to a view or aspect level.

Figure 3 shows the resulting optimal decision trees for

the case where all cues are available, and for the case where

local shape is not. The performance for the first case is

clearly better, with 93.02% recognition rate compared to

89.97% for the second case. However, both versions are

comparable up to the point where the individual animal cat-

egories need to be distinguished. Here, the main difference

occurs, and 3% performance is lost because the other cues

are not as good at separating the animals. Using only color

and texture and no shape information at all, the performance

is significantly worse with only 86.4% combined recogni-

tion rate (not shown). This confirms that both global and

local shape are important cues for object categorization.

7. Discussion & Conclusion

In this work, we have analyzed the performance of several

state-of-the-art appearance- and contour-based recognition

methods for the more general task of multi-class object cat-

egorization. As basis for our analysis, we have introduced

a new database containing several categories and both ob-

ject appearances and segmentation masks. We hope it will

serve to bring together the communities of appearance and

contour based recognition. That there is a potential for mu-

tual benefit can be seen from our results. Contours proved

to be the best single cue for the categories in our database,

followed by global shape and (rotation invariant) texture de-

scriptors. What is even more important, though, is that ev-

ery cue we tested turned out to be the best choice for at least

one category. This shows that there is significant potential

for improvement by using multiple cues.

In the second part of our analysis, we have demonstrated

how this potential can be used in the form of a multi-cue

decision tree. Using all available cues, we were thus able

to improve the global recognition rate from 86.4% to 93%.

Contours again played an important role in this improve-

ment. Without them, the recognition rate could only be in-

creased to about 90%, mostly because the remaining cues

were not able to distinguish the different animal categories.

Without both contours and global shape, recognition per-

formance could only be increased from 83.4% to 86.4% –

a performance the contour-based methods achieved on their

own. This emphasizes the importance of shape-based cues

for object categorization.

It is important to bear in mind that this work shows a best

case analysis. Transferring methods from a lab setting to the

real world is not a trivial task, and it may well be that some

necessary features cannot be extracted in sufficient quality

for a particular method to work. What we can deduct from

the experiments is an opposite argument: if a method does

not achieve good results under our idealized conditions, it

is likely to fail in practice. In that respect, our finding that

no single method achieved over 87% recognition rate is an

even stronger argument for the necessity of multiple cues.

The size of the database will be increased in the future,

with more objects per category and a larger number of cat-

egories. However, the ultimate test case is the real world.
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Figure 3: Optimal multi-cue decision trees when all cues are available (left) and when local shape is not (right). The

numbers to the right of each tree show the global recognition rate after each split. Note that the performance of both trees

differs significantly only for distinguishing the animal categories.

Thus, our long-term vision is to use this database as a train-

ing set and test on pictures taken under more realistic and

less controlled viewing conditions. For this goal, we will

produce a series of test sets with increasing difficulty, with

objects placed in the real world including cluttered settings,

occlusions, and different lighting conditions.

With the exception of the contour-based approaches, all

methods analyzed in this paper have been global. It would

be interesting to compare also local, part- or region-based

approaches, such as [8, 12, 13, 27]. This work provides a

framework in which they can be tested.
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