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ANALYZING BINOMIAL DATA IN A SPLIT-PLOT DESIGN: CLASSICAL APPROACHES 

OR MODERN TECHNIQUES?  

 

Liang Fang and Thomas M. Loughin 

Department of Statistics, Kansas State University, Manhattan, KS 66502 

 

ABSTRACT: Binomial data are often generated in split-plot experimental designs in 

agricultural, biological, and environmental research. Modeling non-normality and random effects 

are the two major challenges in analyzing binomial data in split-plot designs. In this study, seven 

statistical methods for testing whole-plot and subplot treatment effects using mixed, generalized 

linear, or generalized linear mixed models are compared for the size and power of the tests. This 

study shows that analyzing random effects properly is more important than adjusting the analysis 

for non-normality.  Methods based on mixed and generalized linear mixed models hold Type I 

error rates better than generalized linear models. Whole-plot tests tend to be conservative in 

some cases, but these tests can be improved by removing the lower bound of zero from variance 

parameter estimation or by increasing the number of whole-plot replications. Mixed model 

methods tend to have higher power than generalized linear mixed models when the sample size 

is small. However, they perform equally well as the sample size becomes large. 

 

1. INTRODUCTION 

 

Binomial data are often generated in split-plot experimental designs in agricultural, 

biological, and environmental research (Milliken and Johnson, 1992). For example, in 

entomology, mortality of insects treated with pesticides is measured on wheat of different 

moisture contents under each of several different temperatures, where chambers are set at 

different temperatures and pesticides are assigned to containers within the chambers (Fang et al., 

2003). In agriculture, germination rates are observed for different types of spores under several 

levels of temperature, where temperature is the whole-plot factor and spore type is the subplot 

factor (Huang et al., 2001).  

To analyze the data from these experiments, we are confronted with two challenges: non-

normality and random effects. No method of analysis proposed to date provides an exact solution 

to this problem.  Mixed model methods are standard ways to analyze split-plot designs, but they 

assume sampling from a normally-distributed population. Transformations are often used with 

the mixed models to stabilize the potentially heterogeneous variances due to the binomial 

sampling (Zar, 1999), but the transformed data are then assumed to have been sampled from a 

normal population. Additional techniques have been developed that can model non-normal data 

directly and are available to general users in popular statistical software packages. Generalized 

linear models are widely used to analyze binomial data (Agresti, 1996), but they contain no 

mechanism for modeling random effects, and tests from these models are based on asymptotic 

approximations that may not be adequate in typically-sized biological experiments. Generalized 

linear mixed models can analyze binomial data with random effects (Collett 1991, Cox and Snell 

1989), but tests from these models are also based on asymptotic approximations, and their small-

sample properties are not well understood. Thus, all methods of analysis involve some sort of 

approximation.  
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A similar problem occurs when we try to analyze Poisson-distributed count data in a 

split-plot experiment. Grossardt (MS report, 2003) studies Type I error rates of eleven methods 

for analyzing count data in split-plot designs and finds that mixed model methods and the 

generalized linear mixed model method maintain Type I error rates better than generalized linear 

model methods that have no mechanism to account for random effects. Beckman and Stroup 

(2003) and Sui and Stroup (2001) compare five methods for analyzing binomial or multinomial 

data in repeated measures experiments where the issues of non-normality and correlated 

measurements occur. They find similarly that the classical mixed model approach performs 

better than methods based on the generalized linear and generalized linear mixed models. 

Among all the methods above, the mixed model method with an angular or Freeman-

Tukey transformation is widely used by non-statistical researchers in many disciplines, due to its 

simplicity and long-time existence. The methods with generalized linear or generalized linear 

mixed models are drawing a lot of attention recently because they are now available in popular 

statistical software. More and more consulting statisticians recommend these “new” methods to 

researchers (Garrett et al., 2004); however, to our knowledge, no comprehensive study has been 

done to assess and compare these methods and ensure that these new methods are, indeed, 

improvements over their classical counterparts. 

The objective of this article is to compare various popular methods of analysis for 

binomial data from split-plot designs and to provide immediate and practical suggestions to the 

readers. A simulation study is designed to study the Type I error rates and power of the whole-

plot, subplot, and interaction tests. In a preliminary study, seven factors that may affect rejection 

rates of these tests are studied and screened for a thorough follow-up study. The follow-up study 

with selected factors and methods provides a more thorough investigation of Type I error rates 

and power of the tests. General recommendations are made at the end of the article.  

 

2. MODELS AND METHODS 

 

Suppose that N binomial trials are observed on each experimental unit in a split-plot 

design, and let Yijk represent the count of successes from the subplot unit receiving subplot 

treatment j in the k
th

 whole-plot unit receiving whole-plot treatment i. i = 1, 2, …I; j = 1, 2, …J; k 

= 1, 2, … K.  Let πijk represent the corresponding probability of success.

Three types of models are used in the study: 

a. Mixed model: Yijk = λ0 + λw
i + wk(i) + λs

j + λws
ij + sjk(i)  

b. Generalized linear model: Yijk ~ Binomial (N, πij), log (πij/(1- πij)) = λ0 + λw
i + λs

j + λws
ij   

c. Generalized linear mixed model: Yijk ~ Binomial (N, πijk), log (πijk/(1- πijk)) = λ0 + λw
i + 

wk(i) + λs
j + λws

ij + sjk(i) 

In each model, λ0 is the intercept; λw
i is the whole-plot effect for whole-plot treatment i; λs

j is the 

subplot effect for subplot treatment j; λws
ij is the interaction of the i

th
 whole-plot and j

th
 subplot 

treatment; wk(i) is a random error associated with unit k of whole-plot treatment i; and sjk(i) is a 

random error associated with the unit receiving subplot treatment j on whole-plot unit k(i). The 

whole-plot and subplot errors are independent of each other and each has an identical and 

independent normal distribution with mean zero and variance σ2
w and σ2

s respectively. Note that 

the interpretation of all parameters depends on the context of the model in which they appear. In 

Model (a) they are direct effects on the counts, while in (b) and (c) they are effects on the log-
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odds of success. In all cases, it is assumed that all binomial counts are based on the same number 

of trials, N, so that analysis of the counts is equivalent to analysis of the proportions.  

 Derived from the three models, there are seven analysis methods studied in this article: 

1) Mixed model (a) with original data as response (MIXED) 

2) Mixed model (a) with angular-transformed binomial data as response (MIXEDT) 

3) Generalized linear mixed model (c) (GLMM) 

4) Generalized linear model (b) without random effects using Type III likelihood ratio tests 

(GLM) 

5) Generalized linear model (b) without random effects using Wald tests (GLMW) 

6) Generalized linear model (b) without random effects and with overdispersion adjustment 

(GLMO) 

7) Generalized linear model (b) with random effects represented by correlated subplots 

(GLMGEE) 

These methods represent a wild range of popular or recommended analysis approaches for split-

plot designs and binomial data.  

All computations are done using SAS
®

.  PROC MIXED is used to implement the mixed 

model methods. The generalized linear mixed model (GLMM) is fitted with the GLIMMIX
®

 

macro that is available on the SAS
®

 website (McCulloch 1996). The generalized linear model 

methods are implemented with PROC GENMOD. Type III likelihood ratio tests and Wald tests 

are available to test the treatment effects in GENMOD. The GLMO method uses Pearson scaling 

(Agresti, 1996) in an effort to adjust for the overdispersion likely to result from the failure to 

model the random effects. As an alternative to modeling the random effects directly, one can 

model the correlated subplot units as repeated measures with a compound symmetry covariance 

structure.  Model fitting and testing are done using the generalized estimating equations approach 

of Liang and Zeger (1986) and achieved in SAS
®

 using the REPEATED statement in the 

GENMOD procedure.   Only Wald tests are available with this analysis in SAS
®

. 

 

3. SIMULATION STUDY 

 

An initial screening experiment is done to identify factors that influence the type I error 

rates of the various analysis methods and to determine which methods are robust in the sense of 

holding their type I error rates under varying circumstances.  Follow-up studies are done to 

further quantify the effects of important factors and to explore the extent to which sample sizes 

and small mean counts affect the methods.  Finally, power is assessed for those methods that 

satisfactorily hold their type I error rates. 

 

3.1 GENERATE BINOMIALLY DISTRIBUTED DATA FOR THE TYPE I ERROR 

RATE STUDY 

Assuming the whole-plot structure of the experiment is a completely randomized design, 

a plausible model for binomial data in a split-plot design is that the response Yijk ~ Bin(N, πijk), 

where πijk is generated from a logit-linear model of the form 

log (πijk /(1- πijk)) = λ0 + λw
i + wk(i) + λs

j + λws
ij + sjk(i)   (3.1) 

where all terms are defined as in the models of the previous section. The terms of λw
i, λs

j, and λws
ij 

are set to be zero in the study of Type I error rates, and set to selected values for the study of 
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power (see Section 3.5). The whole- and sub- plot errors, wk(i) and sjk(i), are simulated from 

normal distributions N(0, σ2
w) and N(0, σ2

s) respectively, using the SAS
®

 RANNOR function. 

The SAS
®

 RANBIN function is used to simulate the binomial data Yijk’s, i = 1, 2, …I; j = 1, 2, 

…J; k = 1, 2, … K. For each combination of study factors, the data are simulated 1000 times.  

 

3.2 A PRELIMINARY STUDY OF TYPE I ERROR RATES 

The seven factors studied in the preliminary study are either directly or indirectly 

involved in the F or Chi-square tests or in the data simulation process. These factors and their 

chosen levels are listed in Table 1. The number of replications of each whole-plot treatment (K), 

number of whole-plot levels (I), and number of subplot levels (J), jointly determine the size of 

the data set. Levels of I, J, and K are chosen to represent typical “small” and “moderately large” 

agricultural experiments. 

Levels of λ0 in (3.1) must be chosen. When λi, λj, and λij are all zero, log(πijk/(1 – πijk)) ~ 

N(λ0, σ2
w + σ2

s). Thus, λ0 represents the median value of log(πijk/(1 – πijk)), and hence π = 

exp(λ0)/(1+exp(λ0)) represents the median value of the distribution of πijk. Levels of π are chosen 

to create both symmetric and skewed binomial distributions. 

Levels of N must be chosen as well. Because sample size considerations for chi-square 

tests are typically based on expected counts, N is set implicitly through the relation µ = Nπ, 
where µ is the median of the expected counts, Nπijk, generated by (3.1). Values of µ are chosen to 

represent cases where normal approximation to the binomial ought to be reasonable. Smaller 

values of µ are considered in Section 3.4. 

 The values of σ2
w and σ2

s in (3.1) also have little intrinsic meaning. Instead, σ2
w and σ2

s are 

controlled implicitly by specifying the amount of variation they impart on the generated data. 

Because Var (log (πijk/(1 – πijk))) = σ2
w + σ2

s, the interval λ0 + 1.96 22

sw σσ +  contains the central 

95% of the distribution of log (πijk/(1- πijk)). By transforming this interval, we get an interval that 

contains 95% of the distribution of πijk,  

   

)1(

1
22

0 96.1λ swe
σσ ++−+

 , 

)1(

1
22

0 96.1λ swe
σσ +−−+

    (3.2) 

Thus, the width of interval (3.2) is representative of the variability of πijk (and hence µijk = Nπijk) 

across experimental units, and therefore also influences the variability of the binomial counts. To 

specify σ2
w and σ2

s, the spread rate (s) of πijk is defined as amount of variation imparted to πijk by 

the random effects, expressed as a percentage of the median value π, 
   s = (half of width of interval (2.2) / π) * 100%   (3.3) 

To distinguish the relative amounts of whole-plot and subplot variation, the ratio, r, is defined as 

r = σ2
w / σ2

s        (3.4) 

 For each specified median probability of success (π), spread rate (s) and ratio (r), we can 

get the whole-plot and subplot variances, σ2
w and σ2

s, by jointly solving equations (3.3) and (3.4). 

Levels of s are chosen to represent relatively high and low overall variability and levels of r are 

chosen to allow variation in the relative sources of variability. The levels listed in Table 1 result 

in the values of σ2
w and σ2

s given in Table 2. 

 An initial simulation experiment is conducted to screen out factors that do not have an 

appreciable impact on the error rates, and also to identify which methods work consistently well.  

To keep simulation times reasonable, a fractional factorial experiment is designed based on all 
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seven factors. The experiment has 16 runs and achieves resolution IV (Wu and Hamada, 2000), 

meaning in particular that all main effects are aliased only with three-factor and higher 

interactions. Observed Type I error rates for this experiment are in Table 3.  

The methods with mixed and generalized linear mixed models generally hold their Type I 

error rates well for all tests. However, for whole-plot tests, these methods tend to be 

conservative, especially when there are not many replications (K is at the low level). The 

methods with generalized linear models tend to be liberal for whole-plot tests, with estimated 

Type I error rates as high as 0.998 for uncorrected methods (GLM and GLMW), 0.66 for the 

overdispersion-corrected analysis (GLMO), and nearly 0.5 for the GLMGEE method. For 

subplot and interaction tests, the GLM, GLMW, and GLMGEE continue to be excessively 

liberal, while GLMO is somewhat better (all estimated Type I error rates < 0.094). The results in 

this study indicate that methods with mixed or generalized linear mixed models, where random 

effects are modeled directly, hold Type I error rates better than the methods with generalized 

linear models, which model non-normality but not random effects.  This finding is similar to the 

one found by Grossardt (2003) for analyzing Poisson data in a split-plot design, by Beckman and 

Stroup (2003) for analyzing binary repeated-measures data, and by Sui and Stroup (2001) for 

analyzing multinomial repeated-measures data. T-tests done to test the factor effects show that 

the main effects of µ, K, and s are possibly significant for the three methods that best maintain 

their error rates (MIXED, MIXEDT, and GLMM). Follow-up studies focus on the effects of 

these three factors on the MIXED, MIXEDT, and GLMM methods. 

In addition to the angular transformation, the Freeman-Tukey transformation is also used 

in the study. The results are very similar to those from the angular transformation and not 

reported here. Similarly, for the GLMGEE method, three different variance-covariance structures 

(unstructured, compound symmetry, and auto regression) are used in the study. Only the results 

of the method with unstructured variance-covariance matrix are reported here because others’ 

results are quite similar. 

 

3.3 A FOLLOW-UP STUDY OF TYPE I ERROR RATES 

In Table 3, an interesting result is observed that Type I error rates for whole-plot tests 

tend to be conservative when replicates are low, especially when combined with low expected 

counts or low spread rates. For binomial data, low counts mean low variability, which could lead 

to negative whole-plot variance component estimates in SAS
®

 PROC MIXED. Even with high 

counts, negative estimates can result from having too little data to accurately estimate variance 

components.  SAS
®

 handles this problem by setting the lower boundary of variance component 

estimates to be zero. Stroup and Littell (2002) note that this strategy makes the estimates realistic 

but induces a bias upon them, which leads to conservative whole-plot and liberal subplot tests. 

This is exactly what is observed in Table 3. They suggest removing the lower bound of zero to 

reduce bias and improve the tests. 

The percentages of zero estimates of the whole plot variance components in our 

simulation study are reported on Table 3. Runs 1-6, 8, and 10, where the conservative whole-plot 

and liberal subplot tests occur, have generally high percentages of zero estimates of the whole 

plot variance components. To assess the effect of this phenomenon on Type I error rates, a 

NOBOUND option is used to remove the lower bound of zero and the simulations are rerun. 
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Only the apparent significant factors, µ, K, and s, are studied at both high and low levels. The 

rest of the factors, π, I, J, and r, are fixed to be 0.25, 5, 5, and 1. 

After removing the lower bound on variance component estimates, all whole-plot, 

subplot, and interaction tests for MIXED, MIXEDT, and GLMM hold Type I error rates within a 

95% confidence interval of 0.05 (Table 4). Compared to the tests with the lower bound left intact 

(Table 3), this adjustment improves the tests’ ability to hold Type I error rates dramatically, 

especially for the whole-plot and interaction tests. All further simulations in this article are 

performed without the lower bound. 

 

3.4 TYPE I ERROR RATES WITH SMALL EXPECTED COUNTS 

 Normal linear mixed models assume sampling from normal populations, which is 

violated with binomial counts.  The quality of the normal approximation to the binomial depends 

on the expected count (Agresti, 1996).  For π ≤ .05, the closeness of the approximation 

deteriorates as µ→0.  The initial simulations are conducted under favorable circumstances (µ≥5) 

where the normal approximation might be expected to hold reasonably well.  To study the type I 

error rates of the selected methods under small expected counts, values of µ are reduced to 5, 2.5, 

1, and 0.5.  The numbers of whole-plot replications, K, are 3, 10, and 20 in expectation that the 

effects of small expected counts within a plot may be modified by increasing the number of 

plots.  Other factors (π, I, J, r, and s) are set to be 0.25, 5, 5, 1, and 0.1, respectively, and data are 

simulated as before. The observed rejection rates for this study are in Table 5. Mixed model 

methods (MIXED and MIXEDT) still hold Type I error rates close to 0.05 in all the simulations 

except one slightly low value of 0.035. GLMM tends to be conservative when µ is smaller than 

5, and the convergence rates drop as well. The trends are offset somewhat when the number of 

replications increases. However, when µ is extremely small (0.5), the tests are still conservative 

when the number of replications is increased to 20, which is higher than what is normally used in 

agricultural and biological experiments.  

 

3.5 A STUDY OF POWER 

 The power of the three methods (MIXED, MIXEDT, and GLMM) that hold Type I error 

rate properly is examined in this power study. The factors K, I, J, π, s, and r are fixed to be 3, 3, 

3, 0.25, 0.25, and 1 respectively. The median count, µ, is varied at the levels of 1, 5, and 100.  

The resulting numbers of binomial trials, N, are 4, 20, and 400 respectively.  

 Power functions and non-centrality parameters for hypothesis tests in split-plot designs 

are rather complicated. They are functions of the number of replicates, whole-plot levels, subplot 

levels, and sum of squares of the corresponding treatment effects (Kanji and Liu, 1984). 

Generally, however, they depend on the treatment effects only through the magnitude of the sum 

of squared deviations of the effects and not through the pattern of the effects. For convenience, 

we use the following patterns are used to incorporate the treatment effects in the study: 

 

(1) Whole-plot effects: λ, λ, -2λ 
 

(2) Subplot effects: λ, λ, -2λ 
 

(3) Whole by sub plot interaction effects: 
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Whole plot 

         1  2       3 

  Subplot 1 5.4 λ  0 - 5.4 λ 
    2    0  0       0 

    3 - 5.4 λ 0 5.4 λ 
 

The sums of squares of the whole and sub plot effects are 3*3*(λ2
 + λ2

 + (2λ)2
) = 54λ2

. The sum 

of squares of their interaction effect is 3*(( 5.4 λ)2
 + ( 5.4 λ)2 

+ ( 5.4 λ)2 
+( 5.4 λ)2

) = 54λ2
 

as well. The values of λ are chosen by “trial-and-error” to achieve a series of rejection rates that 

fit a smooth curve over the range from 0 to 1. For each of the tests, λ = 0 represents a study of 

Type I error rates, and λ > 0 represents a study of power. One thousand sets of data are simulated 

from Model (3.1) for each λ and µ combination in a similar way to the Type I error rate study of 

the previous sections. The rejection rate results are displayed in Figures 1.  

 Among the three methods tested, none of them stands out when µ is at least 5. The Type I 

error rates are controlled within the 95% confidence interval of 0.05. However, when µ = 1, the 

convergence rates of the GLIMMIX
®

 macro drop down dramatically (most of them are less then 

50%) and all the tests tend to be very conservative. Therefore, no results of GLMM method are 

shown on the figures when µ = 1.  The MIXED and MIXEDT methods have exactly the same 

Type I error rates when µ=1.  

 

4. CONCLUSIONS 

 

In summary, the methods with mixed (MIXED and MIXEDT) and generalized linear 

mixed models (GLMM) can hold Type I error rates near a nominal .05 level most of time. The 

whole-plot tests tend to be conservative when the spread rate and median count are low, in other 

words, when median counts for all treatments in the experiment are low and close to each other. 

This difficulty can be overcome by increasing the number of whole-plot replicates in designing 

the experiment or removing the lower constraint on the mixed models’ variance component 

estimates in the analysis. Although this latter approach may lead to negative variance component 

estimates, all tests from MIXED, MIXEDT, and GLMM methods hold Type I error rates close to 

α. For GLMM method, tests become conservative when µ is smaller than 5. The GLIMMIX 

macro has serious convergence problems when the median count is smaller than 5 and the 

number of whole-plot replications is not large. Therefore, mixed model methods are preferred 

when a lot of small counts occur. The methods based on generalized linear models cannot hold 

Type I error rates appropriately and should not be used to analyze binomial data in split-plot 

designs.  

While this work demonstrates favorable performance of the classical mixed model 

approach, we should not rule out the new techniques completely. There are certain limits to this 

study. The binomial data in the study are simulated with Model 3.1. In real problems, if the 

mechanism that produces data cannot be represented adequately by this model, different 

conclusions might be drawn. Also, these simulations are conducted under the assumption that 

each experimental unit experiences the same number of binomial trials.  Possible future work can 

also be done to compare the methods under unequal N for each treatment combination. 
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Nonetheless, these results, along with those of Grossardt (2003), Beckman and Stroup (2003), 

and Sui and Stroup (2001) provide evidence to suggest that normal-based mixed model 

procedures are reasonably robust against deviations from normality. Also, it appears that proper 

modeling of random effects is much more important in an analysis than exactly matching the 

parent distribution of the data. 
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Table 1. Factor levels in the first set of simulations  

 

  Factor            Values 

 Mean number of successes (µ)    5  100 

 Probability of success (π)     0.1  0.5 

 Number of replications (K)     3  10 

 Number of whole-plot levels (I)    2  5 

 Number of sub-plot levels (J)    2  5 

 Spread rate (variability) of success probs (s)  10%  50% 

 Ratio of σ2
w/σ2

s (r)     0.25  4 
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Table 2. Whole- and sub- plot variances used in the first set of simulations 

    Probability of success Spread rate Ratio Whole-plot variance Sub-plot variance  

  π  s r σ2
w σ2

s

 0.1 0.1 0.25 0.00064 0.00257 

 0.5 0.1 0.25 0.00210 0.00839 

 0.1 0.5 0.25 0.01538 0.06152 

 0.5 0.5 0.25 0.06284 0.25134 

 0.1 0.1 4 0.00257 0.00064 

 0.5 0.1 4 0.00839 0.00210 

 0.1 0.5 4 0.06152 0.01538 

 0.5 0.5 4 0.25134 0.06284 
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Table 3. Factor level combinations and observed Type I error rates for the preliminary simulation study. 

 

K -                - - - - - - - + + + + + + + +

s -                - - - + + + + - - - - + + + +

µ -
 

-               + + - - + + - - + + - - + +

π -                + - + - + - + - + - + - + - +

r -                + - + + - + - + - + - - + - +

I -                - + + + + - - + + - - - - + +

J -                + + - - + + - + - - + + - - +

run                 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Method Whole-Plot Main Effect 

MIXED 0.015 0.009 0.015 0.031 0.029 0.017 0.038 0.025 0.037 0.039 0.040 0.043 0.054 0.051 0.047 0.049

MIXEDT 0.017 0.009 0.015 0.031 0.027 0.016 0.037 0.025 0.042 0.038 0.040 0.042 0.052 0.052 0.046 0.049

GLMM 0.016 0.008 0.016 0.031 0.024 0.015 0.037 0.025 0.038 0.034 0.040 0.043 0.054 0.050 0.048 0.048

GLM 0.048 0.063 0.176 0.309 0.237 0.358 0.751 0.621 0.073 0.063 0.102 0.148 0.151 0.202 0.904 0.998

GLMW 0.046 0.063 0.175 0.308 0.214 0.347 0.751 0.620 0.074 0.062 0.102 0.148 0.151 0.202 0.902 0.998

GLMO 0.067 0.067 0.083 0.155 0.139 0.128 0.351 0.117 0.067 0.062 0.066 0.098 0.097 0.101 0.092 0.663

GLMGEE 0.162 0.173 0.455 0.486 0.498 0.467 0.194 0.192 0.155 0.128 0.068 0.083 0.095 0.081 0.141 0.138

Method Subplot Main Effect 

MIXED 0.054 0.057 0.049 0.057 0.049 0.057 0.051 0.067 0.050 0.068 0.058 0.052 0.049 0.052 0.047 0.052

MIXEDT 0.055 0.056 0.050 0.057 0.052 0.054 0.052 0.064 0.051 0.065 0.057 0.052 0.049 0.049 0.045 0.052

GLMM 0.051 0.050 0.049 0.057 0.050 0.053 0.055 0.064 0.046 0.065 0.056 0.052 0.050 0.048 0.043 0.053

GLM 0.051 0.051 0.114 0.071 0.066 0.190 0.419 0.558 0.045 0.070 0.061 0.155 0.114 0.052 0.442 0.623

GLMW 0.048 0.041 0.113 0.070 0.064 0.184 0.415 0.557 0.046 0.070 0.061 0.155 0.112 0.052 0.442 0.623

GLMO 0.082 0.074 0.052 0.031 0.042 0.044 0.006 0.064 0.045 0.065 0.042 0.047 0.046 0.019 0.030 0.000

GLMGEE 0.178 0.797 0.406 0.157 0.144 0.401 0.812 0.190 0.105 0.079 0.080 0.163 0.194 0.076 0.064 0.127
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K -                - - - - - - - + + + + + + + +

s -                - - - + + + + - - - - + + + +

µ -
 

-               + + - - + + - - + + - - + +

π -                + - + - + - + - + - + - + - +

r -                + - + + - + - + - + - - + - +

I -                - + + + + - - + + - - - - + +

J -                + + - - + + - + - - + + - - +

run                 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Method Whole-Plot by Subplot Interaction 

MIXED 0.069 0.063 0.049 0.064 0.045 0.055 0.055 0.049 0.052 0.056 0.057 0.051 0.051 0.053 0.054 0.045

MIXEDT 0.070 0.062 0.047 0.063 0.037 0.055 0.056 0.047 0.053 0.054 0.056 0.051 0.044 0.056 0.050 0.044

GLMM 0.073 0.054 0.049 0.063 0.037 0.028 0.057 0.047 0.050 0.051 0.057 0.051 0.049 0.051 0.058 0.043

GLM 0.067 0.071 0.177 0.065 0.061 0.377 0.434 0.578 0.054 0.062 0.068 0.150 0.106 0.057 0.858 0.977

GLMW 0.061 0.066 0.174 0.065 0.051 0.340 0.433 0.578 0.047 0.061 0.068 0.150 0.105 0.057 0.857 0.977

GLMO 0.094 0.085 0.074 0.031 0.037 0.050 0.010 0.056 0.061 0.057 0.043 0.047 0.050 0.025 0.027 0.000

GLMGEE 0.200 0.814 0.977 0.443 0.476 0.975 0.833 0.183 0.542 0.141 0.090 0.163 0.174 0.088 0.162 0.545

Method Percentage of Zero Estimates of the Whole-plot Variance Components 

MIXED 0.513 0.505 0.402 0.200 0.280 0.262 0.011 0.365 0.438 0.481 0.241 0.230 0.333 0.075 0.125 0.000

MIXEDT 0.499 0.506 0.400 0.200 0.268 0.267 0.011 0.365 0.440 0.481 0.243 0.230 0.335 0.072 0.122 0.000

GLMM 0.498 0.490 0.387 0.197 0.268 0.257 0.009 0.348 0.424 0.471 0.237 0.223 0.326 0.072 0.110 0.000

 

 

1. Factors with negative signs have low-level values; factors with positive signs have high-level values (see Table 1). 

2. Black background means the observed Type I error rates are larger than 0.064 (liberal), gray background means smaller 

than 0.036 (conservative), and white background means between 0.036 and 0.064.
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Table 4. Observed Type I error rates using selected methods without lower bound 

constraints on covariance parameter estimates. 

 

µ - - - - + + + + 

K + - + - + - + - 

s + + - - + + - - 

run 1 2 3 4 5 6 7 8 

Method Whole-Plot Main Effect 

MIXED 0.043 0.055 0.050 0.050 0.056 0.052 0.046 0.048 

MIXEDT 0.040 0.056 0.047 0.052 0.053 0.053 0.045 0.048 

GLMM 0.042 0.058 0.049 0.053 0.056 0.052 0.045 0.048 

Method Sub-Plot Main Effect 

MIXED 0.051 0.051 0.061 0.052 0.045 0.057 0.051 0.053 

MIXEDT 0.053 0.048 0.055 0.048 0.046 0.055 0.050 0.052 

GLMM 0.048 0.048 0.057 0.044 0.048 0.061 0.048 0.056 

Method Whole-Plot by Sub-Plot Interaction 

MIXED 0.044 0.051 0.046 0.062 0.049 0.043 0.045 0.048 

MIXEDT 0.045 0.051 0.050 0.063 0.051 0.040 0.044 0.046 

GLMM 0.046 0.039 0.040 0.045 0.055 0.049 0.046 0.047 
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Table 5. Observed Type I error rates with various levels of expected counts and 

replications 

 

µ 5 2.5 1 0.5 

K 3 10 20 3 10 20 3 10 20 3 10 20 

Methods Whole-plot Tests 

1 0.051 0.045 0.048 0.045 0.051 0.059 0.044 0.056 0.049 0.048 0.049 0.052

2 0.052 0.048 0.047 0.043 0.053 0.056 0.043 0.054 0.049 0.048 0.049 0.052

7 0.047 0.044 0.050 0.037 0.049 0.057 0.009 0.051 0.046 0.000 0.029 0.048

  Sub-plot Tests 

1 0.045 0.040 0.053 0.060 0.047 0.039 0.038 0.036 0.048 0.047 0.047 0.053

2 0.051 0.038 0.047 0.058 0.041 0.042 0.038 0.035 0.050 0.047 0.047 0.053

7 0.045 0.039 0.050 0.051 0.045 0.037 0.007 0.036 0.051 0.000 0.035 0.052

  Interaction of Whole and Sub plots Tests 

1 0.048 0.044 0.048 0.052 0.042 0.044 0.045 0.055 0.048 0.048 0.052 0.044

2 0.050 0.047 0.048 0.054 0.046 0.041 0.044 0.056 0.048 0.048 0.052 0.044

7 0.033 0.038 0.046 0.028 0.032 0.041 0.004 0.027 0.039 0.000 0.009 0.030

Convergence 

Rates (%) of 

Method 7 

99.7 100 100 98.5 100 100 76.0 100 100 16.3 97.0 100 

 

 

The observed Type I error rate is smaller than 0.036 if the cell background is gray, and between 

0.036 and 0.064 if the cell background is white. 
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Figure 1. The power is estimated based on 1,000 simulated sets of data. The estimated Type I 

error rates of all tests shown on the graph are within the 95% confidence interval of 0.05. The 

GLMM method has very low convergence rate when µ =1, and the results are not shown here.  
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