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Train capacity utilization (TCU), usually represented by passenger load factor (PLF), is a critical measure of e�ectiveness for rail
operation. In literature, e�orts are usually made to improve capacity utilization by optimizing rail operation and management
strategies. Comparably little attention is paid to analyzing the factors that a�ect TCU and to understanding the behavioral patterns
behind it. �is paper applies exploratory data mining techniques to a 3-month long real world train operation data of the Beijing-
Shanghai High-Speed Railway. Principal component analysis (PCA) is conducted to 	nd the principal components that can
e
ciently represent the collected data. Clustering techniques are then applied to understand the unique characteristics that a�ect
PLF and the travel pattern.�e 	ndings can be further used to guide train operation planning and facilitate better decision-making.

1. Introduction

Due to the vast land span and enormous transportation
demand in China, railway transportation plays an increas-
ingly vital role in China’s economy. In general, Chinese
high-speed rails are more preferable compared to other
transportation modes, especially for long-distance trips.
During the last 	ve years, the railway passenger volume
in China has been increasing with a yearly growth rate of
10%. According to the 2016 statistics, the Chinese railway
passenger volume is 2.8 billion, which has increased 11%
compared to 2015. Despite the continuous growth of railway
transportation in China, it is found that the train capacity
of some passenger lines is underutilized, especially during
o�-peak seasons. For example, the average passenger load
factor of high-speed trains in China is around 60-70%. In
extreme cases, the number is less than 40%. And this has
motivated transportation researchers to develop methods
to reduce such capacity waste. Optimizing train capacity
utilization (TCU) is challenging. �e challenges are mainly
bifold: (i) the passenger travel patterns are highly stochastic
and unpredictable; (ii) many factors may in�uence TCU, and

the causalities are hard to be captured. To overcome these
challenges, it has become an imperative task to 	nd out
the factors that a�ect TCU and to discover the behavioral
patterns behind it.

Generally speaking, there are two approaches to under-
standing and improving train capacity utilization. One is
model-based approach, which applies analytical models to
study the e�ects of train operation and management strate-
gies (e.g., timetabling and ticketing) on train capacity utiliza-
tion. �e second is data mining approach that empirically
analyzes TCUand the interrelationship betweenTCUand the
in�uential factors.

�e model-based approach usually assumes that the
causalities and quantitative relationships between rail pas-
senger’s choice and train operation/management factors are
given. For example, pricing and ticketing are o�en considered
as the main management strategies that directly a�ect TCU.
For this, researchers have developed optimal pricing models
for better train utilization and revenue generation. Zhang et
al. [1] introduced a discriminative pricingmethod to improve
TCU. You [2] formulated a constrained nonlinear integer
programming model for railway seat allocation. Shibata et
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al. [3], Park et al. [4], and Bao [5] developed seat class
assignment models to increase the utilization rate of intercity
railway. Wang et al. [6] studied the seat allocation problem
to optimize TCU, with considerations of the passengers’
randomchoice behaviors. Another portion of research targets
improving TCU by optimizing train operational factors such
as train scheduling and timetabling. Zha [7], Lan [8], and
Shi et al. [9] developed train operation optimization models
to maximize train capacity utilization. Bussieck et al. [10]
proposed a novel method to optimize train operation plan by
minimizing the number of transfer trips.Methods to improve
TCU and revenue generation were also studied by Zhou et al.
[11], Cadarso et al. [12], and Robenek et al. [13]. �ese studies
usually assume passenger volume and trip-making decisions
are known and 	xed. Such assumptions, albeit idealistic, are
quite common in literature mainly due to the lack of real
world data (which is o�en true for rail transportation studies
in China).

In contrast to the 	rst approach, the empirical approach
applies data mining techniques for pattern recognition and
knowledge discovery from real world rail operational data.
Although data mining approaches have been widely applied
in many transportation applications (e.g., Zheng et al. [14];
Xie et al. [15]; Anand et al. [16]), such studies are rare in the
	eld of railway transportation, mainly due to the lack of data.
Only a handful of such examples are found in literature. For
example, Xu et al. [17] used datamining techniques to analyze
the time sequence and the spatial in�uence of trip making
and presented a new approach for trip forecasting. Liu et al.
[18] applied fuzzy clustering model to analyze passengers’
travel behaviors and key factors relevant to the level of service.
Zheng et al. [14] used a data mining approach to analyze train
passenger �ow and developed a model to forecast passenger
volume. To the authors’ understanding, no previous work has
been done to analyze the in�uential factors of TCU.

�e paper makes contributions in two aspects. (i)
Exploratory data mining techniques are applied to a dataset
that contains 3-month long real world train operational data
of the Beijing-Shanghai High-Speed Railway. Such informa-
tion is usually held by railway companies and is not available
to the general public and the academia. (ii) �e unique
characteristics that a�ect PLF and the underlying behavioral
patterns are discovered and further analyzed.

�e rest of the paper is organized as follows. In Section 2,
we brie�y describe the data source used in the study. Sec-
tion 3 presents the key methodologies used for data mining
and knowledge discovery from train operation data. �e
experiment and numerical results are presented in Section 4,
followed by the concluding remarks in Section 5.

2. Data Description

�e Railway Passenger Transport Management Information
System is an o
cial rail operation and management sys-
tem maintained by China Railway Corporation (CRC). �e
dataset used for this study was retrieved from the system,
which contains 3-month rail operation information of the
Beijing-Shanghai High-Speed Railway. �is railway line is

Table 1: City levels for the stations on the Beijing-Shanghai high
speed railway.

ID Station Ab. Level

s1 Beijing South BJS 4

s2 Langfang LF 2

s3 Tianjin West TJW 4

s4 Tianjin South TJS 4

s5 Cangzhou West CZW 2

s6 Dezhou East DZE 2

s7 Jinan West JNW 3

s8 Taian TA 2

s9 Qufu East QFE 1

s10 Tengzhou East TZE 1

s11 Zaozhuang ZZ 1

s12 Xuzhou East XZE 2

s13 Suzhou East SZE 2

s14 Bengbu South BBS 2

s15 Dingyuan DY 1

s16 Chuzhou CZ 1

s17 Nanjing South NJS 3

s18 Zhenjiang South ZJS 2

s19 Danyang North DYN 1

s20 Changzhou North CZN 1

s21 Wuxi East WXE 2

s22 Suzhou North SZN 2

s23 Kunshan South KSS 1

s24 Shanghai Hongqiao SHHQ 4

the most important transportation corridor connecting two
largest cities of China. �e rail-line has a total length of 1318
km and goes through 24 stations. �ese 24 stations can be
further categorized based on their administrative levels, as
shown in Table 1. In general, higher level indicates higher
population and higher socioeconomic status.�e dataset was
further processed to extract 33 representative operational
features. Descriptions of the features can be found in Table 2.

�e operational features include passenger load factor
(PLF) that directly indicates the capacity utilization of a train,
date, ticketing strategy (TS), run duration (RDR), departure
time (DT), train type (TT), number of stops (NS), run
distance (RDI), stop schedule (SS), run speed (RS), and load
coe
cients (LCs) for all sections along the railway line. �e
authors are aware of other factors such as trip purposes and
passenger social-economic status that could also a�ect TCU,
but such information is not available from the CRC database.
Since the ticket prices remain stable during the study period,
pricing is not considered as an in�uential feature in the study.

In literature, PLF is used to assess TCU, and load
coe
cients are used to assess sectional capacity utilization.
In this study, both PLF and load coe
cients are considered
as important features. Let C denote the train capacity (i.e.,
number of seats), D is the running distance, S is the number
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Table 2: Extracted features.

No. Feature Variable type Value Notes

1 Passenger Load Factor (PLF) Ratio -- ����
2 Date (Date) Ordinal 1∼92 October 1st ∼ December 31st

3 Ticketing Strategy (TS) Nominal 0,1,2 0: Strategy for holiday seasons; 1: Strategy for weekends; 2: Strategy for weekdays

4 Run Duration (RDR) Measurement -- Train running time

5 Departure Time (DT) Measurement -- Departure time of each train

6 Train Type (TT) Nominal 0,1 0: Normal trains; 1: Fast trains

7 Number of Stops (NS) Measurement -- Number of stops of a train

8 Run Distance (RDI) Interval -- Train running distance

9 Stop Scheme (SS) Nominal 1∼5 Higher SS indicates less frequent stops

10 Run Speed (RS) Measurement -- Train running speed

11∼33 Load Coe
cient (LC) Ratio -- ��: load coe
cient of the k-th section
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Figure 1: (a) Average PLF distribution; (b) average load coe
cients.
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Figure 2: (a) Cumulative level of contribution; (b) correlations between PC1 and selected features.
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Figure 3: (a) �e clustering result; (b) run distance distribution; (c) stop schedule distribution; (d) load coe
cients of downward trains.
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Figure 4: Travel time distributions for both clusters.

of stations. PLF can be expressed as (1). Similar de	nition can
be found in Bao et al. [19, 20].

���� = ∑�−1�=1 ∑��=�+1 ��� ⋅ ���	 ⋅ 
 (1)

Here ��� and ��� indicate the passenger OD volume and
the section length between stations � and �, respectively. Since
passenger OD is not available from the dataset, equivalently,
we can use the sectional passenger volumes (V�) to calculate
PLF, as in

���� = ∑�−1�=1 ∑��=�+1 ������	 ⋅ 
 = ∑�−1�=1 V���	 ⋅ 
 (2)

Note that the load coe
cient of section 
 is known
as �� = V�/	 according to [21]. �erefore, we can derive
the following relationship between PLF and the sectional load
coe
cients, as in

���� = ∑�−1�=1 ����
 (3)

In Figure 1, we 	rst show the aggregated statistics of the
collected data. Figure 1(a) shows the PLF distribution and the
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trend line. Figure 1(b) shows the average load coe
cients of
the upward and downward trains. It can be found that the
average PLF decreases during the whole study period and
the travel pattern may be characterized by two segment trips
including s1(BJS)-s12(XZE) and s12(XZE)-s24(SHHQ).

3. Methodology

In the context of statistical analysis and data mining,
exploratory data analysis (EDA) is a process of detective
work that does not require a predetermined hypothesis to
be tested. Rather, the role of EDA is to explore data in as
many ways as possible, until a plausible “story” of the data is
unearthed. Formal de	nitions of EDA and exploratory data
mining can be found in Tukey [22] and Yu [23]. In this
section, exploratory data mining approaches are applied to
gain insights of the structure of the data and the underlying
travel patterns. First, principal component analysis (PCA)
is used to select the most salient features (called principal
components) to represent the train operation data. Secondly,
we use clustering techniques to discover the intrinsic relation-
ship between TCU and the principal components.

3.1. Principal Component Analysis. PCA is a commonly used
technique for dimensionality reduction and feature selection
[24]. Here we use PCA to seek a low-rank approximation
of the train operational data. In this step, the original 33
train operation features are transformed into a smaller set
of new variables called principal components (PCs), which
by concept retains similar amount of variation present in the
original dataset. PCs are uncorrelated variables, ordered by
their variance from the largest variance to the lowest one.

Suppose a zero-centered feature matrix � ={�1, �2, . . . , �	}T contains � = 133 sample trains (called
data points) and p=33 features marked as {�1, �2, . . . , �
}.∑ = var(�) is the � × � variance-covariance matrix.
Denote �� and �� as the ranked eigenvalues and associated
eigenvectors of ∑, where � = 1, . . . , � and �1 ≥ ⋅ ⋅ ⋅ ≥ �
 ≥ 0.
�e goal of PCA is to determine a new set of representative

variables ��, each considered as a linear combination of the
original features, as in

�1 = ��1� = �11�1 + �12�2 + ⋅ ⋅ ⋅ + �1
�

�2 = ��2� = �21�1 + �22�2 + ⋅ ⋅ ⋅ + �2
�


⋅ ⋅ ⋅
�
 = ��
� = �
1�1 + �
2�2 + ⋅ ⋅ ⋅ + �

�


(4)

and

var (��) = ��� ∑��,
cov (��, ��) = ��� ∑�� (5)

where �1, �2, ..., �
 are coe
cients of the linear trans-

formations and ‖��‖2 = ��� �� = 1. By maximizing the
variance of variables ��, it can be easily shown that �� = ��,�� = ��� � and var(��) = ��. Variables�� are referred to as PCs.
Further de	ne the level of contribution as ∑
̃�=1 ��/∑
�=1 ��,�̃ ≤ �, which represents the percentage of variation explained
by the selected PCs. �erefore we can get a reasonable
representation of the original data (e.g., with 80% level of
contribution) with only a few PCs. Correlation analysis could
be conducted to see the correlations between the PCs and the
original features.

3.2. Clustering Analysis. Fuzzy c-means clustering (FCM; see
[25]) is then used to discover the interrelationship between
the principal components (PCs) and the passenger load factor
(PLF). �e purpose of clustering is to put “similar” samples
into the same group and to explore the patterns re�ected

by di�erent groups. Let �̃ = {�̃1, �̃2, . . . , �̃	}�, � = 133,
be the transformed train samples, each has � features; i.e.,�̃� = {�̃1� , �̃2� , . . . , �̃
� }, � = 1, 2, .., �. FCM is used to divide
these samples into 	 clusters; each cluster is characterized
by its sample mean, called the centroid. �e approach is
a standard and widely used data mining approach and is
proven to be e�ective for knowledge discovery from a high-
dimensional dataset [26]. FCM does not require each data
point to only belong to exactly one cluster; therefore it usually
outperforms hard clustering methods (e.g., K-means) for
overlapped dataset. �e objective of FCM is to minimize
the summation of weighted distance between each sample
and the centroid of each cluster, as in formulation (6), i.e.,
to minimize the di�erences of the samples within the same
cluster.

min ���� = 	∑
�=1

�∑
�=1
 ��� !!!!!�̃� − 	�!!!!!2 (6)

Here " ∈ [1,∞) is the fuzzy factor that determines
the fuzzy weight of the clustering results;  �� is the degree of
membership of �̃i in cluster �; and	� is the centroid of cluster�, in the �-dimensional feature space. Note that the distance
between each sample and each cluster centroid is measured
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Figure 6: (a) Cumulative contribution of the PCs; (b) the clustering result.
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by the Euclidean norm as in (7), where �̃�� represents the 
-
th feature of the i-th transformed sample and 	�� denotes the
location of centroid 	� at the k-th dimension.

!!!!!�̃� − 	�!!!!! = √ 
∑
�=1

(�̃�� − 	��)2 (7)

Fuzzy partitioning is carried out through an iterative
optimization of the objective function shown in (6), with the
updated degree of membership  �� calculated using

 �� = [[
�∑
�=1

(!!!!!�̃� − 	�!!!!!!!!!!�̃� − 	�!!!!!)
2/(�−1)]]

−1

(8)

And the cluster centroid 	� can be updated using

	� = ∑	�=1  ��� ⋅ �̃�∑	�=1  ��� (9)

�e iterative algorithm terminates when ‖	(�+1) − 	(�)‖ ≤8, where 8 is a stop criterion. 	(�) is a 
 × � cluster centroid
matrix, at iteration 9. �is procedure also at least converges

to a local minimum point of ����. It is noteworthy that the
aforementioned procedure does not specify the number of
clusters; the optimal number of clusters is determined based
on the Xie-Beni coe
cient [27] and Separation coe
cient
[28] in the experiment.

4. Experiment and Numerical Results

We 	rst separate the samples into downward trains and
upward trains. PCA and clustering techniques are then
applied to these two datasets. A few interesting 	ndings are
generated from the exploratory data analysis and they are
discussed in this section.

4.1. Downward Trains. �e downward trains represent trains
travel from Beijing South (s1) to Shanghai Hongqiao (s24).
PCA was 	rstly applied to the dataset. �e cumulative level
of contribution (with respect to PCs) is shown in Figure 2(a).
It is found that PC1-PC3 account for more than 80% of the
total variation. In Figure 2(b), it is shown that PC1 is strongly
correlated (degree of correlation > 0.6) with a few features,
including run duration (RDR), run distance (RDI), stop
scheme (SS), and the sectional load coe
cients �7∼�23, from
Jinan West (JNW) station to Shanghai Hongqiao (SHHQ)
station. Some other features such as Date and Run Speed (RS)
are not strongly correlated with PC1. �is indicates that PC1
and the strongly correlated features account for the highest
variation in the data.

In the following experiment, we use PC1 and PLF for
fuzzy c-means clustering. Two optimal clusters are found,
which are plotted in Figure 3(a). It can be observed that higher
PLF is associated with higher PC1. Since PC1 is positively
correlated with RDR, RDI, SS, and �7∼�23, it can be further
inferred that longer run distance/travel time, higher level of
stop scheme (i.e., fewer stops), and higher sectional loading
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Figure 8: (a) Stop schedule distribution; (b) run distance distribution; (c) load coe
cients of upward trains; (d) departure time distribution.

coe�cients from JNW station to SZN station are associated
with trains of higher PLF. Such inference can be validated by
plotting the distributions of these original features for each
cluster, as shown in Figures 3(b), 3(c), 3(d), and 4.

It is also noticed that cluster B in Figure 3(a) shows
the multifurcated lines with di�erent slopes, representing
di�erent rates of PLF to PC1. To further analyze the pattern,
we used RDI as a surrogate of PC1 and applied the clustering
model using PLF/RDI as the only feature. �e results in
Figure 5 have shown 	ve clusters which correspond to the
	ve linear lines shown in Figure 3(a).�e results imply that the
marginal e�ect of RDI gradually decreases; i.e., changing short-
distance trains to medium-distance trains seems to be more
bene	cial (in terms of the gain in PLF) compared to changing

medium-distance trains to long-distance trains. �is 	nding
can be used to guide train scheduling.

4.2. Upward Trains. �e cumulative level of contribution
of each PC is shown in Figure 6(a) for the upward trains
from Shanghai Hongqiao (s24) to Beijing South (s1). We then
conducted clustering analysis using PLF, PC1, and PC2. It is
found that the optimal number of clusters is 3, as shown in
Figure 6(b).

Figure 7 shows the original features that are strongly
correlated with PC1 and PC2. In particular, it is found that�23∼�7, RDI, and SS are strongly correlated with PC1; LCs
(�6∼�1) and departure time (DT) are strongly correlated with
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Figure 9: (a) �e subclusters of cluster C; (b) correlations between PCs and selected features of cluster C.

PC2. For the upward trains, a few 	ndings of TCU and
passenger travel patterns can be put forward.

As observed in Figure 6(b), compared to the samples with
lower PLF (cluster B), trains with higher PLF (cluster A) are
associated with larger PC1, indicating that higher SS (fewer
stops), longer RDI, and higher LCs lead to better train capacity
utilization. �is is further veri	ed in Figures 8(a), 8(b), and
8(c). Such 	nding is consistent with the downward trains.

�e result in Figure 6(b) also shows that a cluster C,
separated from the other two clusters, has large variation in
the dimension of PC2. By further analyzing the distributions
of DT (a surrogate of PC2), it is found that cluster C is
associated with the samples that have early departure time (as
shown in Figure 8(d)) and go through fewer sections/shorter
distance (as shown in Figures 8(b) and 8(c)). �ese samples
correspond to the extra (temporal) short-distance trains
that depart in the early morning. We then rerun the PCA
and clustering models only for cluster C samples to further
explore the patterns of these extra trains. �e results are
shown in Figure 9.

It is shown that PLF and LCs (�6∼�1) are strongly cor-
related with PC1; date, DT, and LCs (�16∼�7) are strongly
correlated with PC2. As in Figure 9(a), cluster C-2 and cluster
C-3 are in the higher region of PC1; cluster C-1 is in the
lower region of PC1. It is found that early of this quarter and
early DT are associated with higher PLF with greater LCs
(�6∼�1), as illustrated by cluster C-2; late of this quarter and
relatively late DT also lead to the higher PLF with greater
LCs. It is noteworthy that early of the quarter corresponds
to the “Golden week” (Chinese national holiday) and late
of the quarter is close to the New Year. �erefore, the extra
trains with early or late departure time are better utilized in
the holidays seasons compared to those in other seasons.

By scrutinizing Figure 8(c), it is found that the major trip
attraction for cluster A trains is Beijing (as the load coe
cient

is high at section 1), and the major trip attraction for cluster
B trains is the city of Xuzhou (XZE station), a medium-level
city. Combining the patterns in Figures 8(a) and 8(c), it can be
concluded that passengers traveling to Beijing prefer to choose
the trains with fewer stops, most likely due to their higher value
of time.

5. Concluding Remarks

�is paper proposes an exploratory data mining approach
to discover the in�uential features of TCU and understand
the travel patterns using real world train operational data.
Several interesting 	ndings were reported in the paper, as
summarized below.

(1) Run distance and stop scheme are found to be closely
related to TCU. Per the speci	c dataset, trains with
longer run distance and fewer stops result in higher
TCU.

(2) �e marginal e�ect of travel distance decreases in
terms of the gain in TCU. Making the short-distance
trains into medium-distance trains is more bene	cial
compared to making medium-distance trains into
long-distance trains.

(3) �e extra (temporal) trains are better utilized during
the holiday seasons, and the extra trains in o�-peak
seasons are not as well-utilized.

(4) Passengers to major cities prefer trains with fewer
stops. Such behavioral pattern can be explained by
their value of time.

�ese 	ndings, albeit case-speci	c, have shown that the
proposed approach is a useful tool for data mining and
knowledge discovery from train operational data and it can
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be utilized to facilitate smarter decision-making for train
operation and management.
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